technische universitat
dortmund

26th European Workshop
on Computational Geometry

March 22-24,2010

Department of Computer Science
Technische Universitat Dortmund
Dortmund, Germany

Workshop Proceedings

Jan Vahrenhold (Ed.)

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Introduction

This volume contains the abstracts of the talks given at the 26th European Workshop on Computational Geom-
etry (EuroCG’10). The workshop was held at the Technische Universitdt Dortmund, Germany, on March 22-24,
2010. EuroCG is renowned as a friendly workshop, where researchers across Europe and the world can meet and
exchange ideas in a delightful atmosphere.

The workshop received 85 submissions. There was a limited refereeing process to make sure that the presented
papers were in scope and met some minimal standards. Since the abstracts were not peer-reviewed in a formal
manner, it is expected that many of them will appear in formally reviewed conference proceedings or journals.
The reviewing process was synchronized using the EasyChair conference management system, and we thank the
EasyChair team for providing this tremendously helpful service to the community.

In addition to the accepted contributions, this volume also contains the abstracts of the invited lectures by
Timothy M. Chan (Waterloo), Markus Gross (ETH Zurich), and Jénos Pach (EPFL Lausanne and Rényi Institute
Budapest).

We would like to thank all the authors who responded to the call for papers, the invited speakers, the members
of the program committee, as well as the external referees and the organizing committee members.

The conference was made possible in part by generous financial support of the “Alumni der Informatik Dortmund
e.V.”, the Chair for Efficient Algorithms and Complexity Theory and the Chair for Algorithm Engineering at
the Faculty of Computer Science, Technische Universitat Dortmund.

March 2010 Jan Vahrenhold

Program Committee External Reviewers

— Séndor P. Fekete (TU Braunschweig, GER) — Mohammad Ali Abam

— Herman Haverkort (TU Eindhoven, NED)
Klaus H. Hinrichs (WWU Minster, GER)

— Heinrich Miiller (TU Dortmund, GER)
Michiel Smid (Carleton University, CAN)
Christian Sohler (TU Dortmund, GER)

— Jan Vahrenhold (chair) (TU Dortmund, GER)

Organizing Committee

— Fabian Gieseke (TU Dortmund, GER)
Jorn Godel (TU Dortmund, GER)

— Gundel Jankord (TU Dortmund, GER)
Jan Vahrenhold (TU Dortmund, GER)

Mark de Berg
Prosenjit Bose

Artur Czuma;j

Dan Feldman

Bernd Gértner

Frank Hellweg
Christiane Lammersen
Elmar Langetepe
Morteza Monemizadeh
Elena Mumford
Rainer Penninger
Harald Réacke

Melanie Schmidt
Bettina Speckmann
Dirk Sudholt

26th European Workshop on Computational Geometry, 2010

ii

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Table of Contents

Instance-Optimal Geometric Algorithms (Invited Talk) o i i 1
Timothy M. Chan

Point Samples for Surface Representation and Geometry Processing (Invited Talk) 3
Markus Gross

Touching Points (Invited Talk) 5
Jdnos Pach

Proximity Graphs inside Large Weighted Graphs. i i 9
Bernardo Abrego, Ruy Fabila, Silvia Fernandez-Merchant, David Flores, Ferran Hurtado, Henk Meijer,
Vera Sacristan, Maria Saumell

Computing the discrete Fréchet distance with imprecise input 13
Hee-Kap Ahn, Christian Knauer, Marc Scherfenberg, Lena Schlipf, Antoine Vigneron

Arc Triangulationso 17
Oswin Aichholzer, Franz Aurenhammer, Katerina Cech Dobiasova, Bert Juettler, Wolfgang Aigner

3-Colorability of Pseudo-Triangulations e 21
Oswin Aichholzer, Franz Aurenhammer, Thomas Hackl, Clemens Huemer, Alexander Pilz, Birgit Vogten-
huber

Connecting Obstacles in Vertex-Disjoint Paths. e 25

Marwan Al-Jubeh, Gill Barequet, Mashhood Ishaque, Diane Souvaine, Csaba Toth, Andrew Winslow

Blocking Coloured Point Sets 29
Greg Aloupis, Brad Ballinger, Sebastien Collette, Stefan Langerman, Attila Por, David Wood

Computing the depth of an arrangement of axis-aligned rectangles in parallel 33
Helmut Alt, Ludmila Scharf

Even Triangulation of Planar Set of Points with Steiner Points. 37
Victor Alvarez

Separability of Point Sets by k-Level Linear Classification Trees. 41
Esther M. Arkin, Delia Garijo, Alberto Mdarquez, Joseph S. B. Mitchell, Carlos Seara

Order types of segments in floorplan partitions i 45
Andrei Asinowski, Gill Barequet, Toufik Mansour, Ron Y. Pinter

The geodesic diameter of polygonal domains. e 49
Sang Won Bae, Matias Korman, Yoshio Okamoto

On the complexity of the edge guarding problem e 53
Vicente H. F. Batista, Fernando L. B. Ribeiro, Fdabio Protti

From invariants to predicates: example of line transversals to lines 57
Guillaume Batog

On the Diameter of a Geometric Johnson Type Graph i 61
Crevel Bautista-Santiago, Javier Cano, Ruy Fabila-Monroy, David Flores-Penaloza, Herndn Gonzdlez-
Aguilar, Dolores Lara, Eliseo Sarmiento, Jorge Urrutia

Polygonal Reconstruction from Approximate Offsets........ .. . 65
FEric Berberich, Dan Halperin, Michael Kerber, Roza Pogalnikova

The Class Cover Problem with BoXes e e e 69
Sergey Bereg, Sergio Cabello, José Miguel Diaz-Bdarnez, Pablo Pérez-Lantero, Carlos Seara, Inmaculada
Ventura Molina

iii

26th European Workshop on Computational Geometry, 2010

How Alexander the Great Brought the Greeks Together while Inflicting Minimal Damage to the Barbarians 73
Mark de Berg, Dirk Gerrits, Amirali Khosravi, Ignaz Rutter, Constantinos Tsirogiannis, Alerander
Wolff

Approximation algorithms for free-label maximization 7
Mark de Berg, Dirk H.P. Gerrits

On Rectilinear Partitions with Minimum Stabbing Number...... o . .. 81
Mark de Berg, AmirAli Khosravi

Finding Structures on Imprecise Points 85
Mark de Berg, Elena Mumford, Marcel Roeloffzen

The time-optimal helicopter trajectory is a circle segment i 89
Andre Berger, Alexander Grigoriev, Natalya Usotskaya

A Traveller’'s Problem 93
Florian Berger, Rolf Klein

The edge rotation graph 97
Javier Cano, Mayra Corvera Espinoza, José Miguel Diaz-Bdnez, Joel Espinosa Longi, Clemens Huemer,
Jorge Urrutia

Delaunay Triangulations of Point Sets in Closed Euclidean d-Manifolds 101
Manuel Caroli, Monique Teillaud

Certified Computation of planar Morse-Smale Complexes 105
Amit Chattopadhyay, Sijbo Holtman, Gert Vegter

Memoryless Routing in Convex Subdivisions: Random Walks are Optimal 109
Dan Chen, Luc Devroye, Vida Dujmouvié, Pat Morin

Planar Hop Spanners for Unit Disk Graphs. i e 113
Victor Chepoi, Nicolas Catusse, Yann Vazes

Embedding into the rectilinear plane in optimal O(n?) timeoiiiiiiiiian .. 117
Victor Chepoi, Nicolas Catusse, Yann Vazes

Hide-and-Seek: A Linear Time Algorithm for Polygon Walk Problems 121
Atlas F. Cook 1V, Chenglin Fan, Jun Luo

A Reactive-Agent Based Approach for a Facility Location Problem Using Dynamic Additively Weighted
Voronoi Diagram. 125
Arman Didandeh, Mehdi Khosravian, Bahram Sadeghi Bigham

Approximating the Frechet Distance for Realistic Curves in Near Linear Time 129
Anne Driemel, Sariel Har-Peled, Carola Wenk

Guarding 1.5D Terrains with Demands 133
Khaled Elbassioni, Domagoj Matijevic, Domagoj Severdija

Regular triangulations and resultant polytopes. i 137
lToannis Emiris, Vissarion Fisikopoulos, Christos Konazxis

Approximate Nearest Neighbor Queries among Parallel Segments 141
Toannis Emiris, Theocharis Malamatos, Elias Tsigaridas

Steinitz Theorems for Orthogonal Polyhedra 145
David Eppstein, Elena Mumford

Evacuation of rectilinear polygomns 149
Sandor Fekete, Chris Gray, Alexander Kréller

iv

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Robot Swarms for Exploration and Triangulation of Unknown Environments 153
Sdandor Fekete, Tom Kamphans, Alexander Kréller, Christiane Schmidt

Coding and Counting Arrangements of Pseudolines. i i 157
Stefan Felsner, Pavel Valtr

Even and quasi-even triangulations of point sets in the plane, 161
Isabel Ferndndez Delgado, Clara Isabel Grima Ruiz, Alberto Mdrquez Pérez, Atsuhiro Nakamoto, Rafael
Robles Arias, Jesus Valenzuela Munoz

Combinatorial Proof for fast Pivoting in K-matrix Linear Complementarity 165
Jan Foniok, Komei Fukuda, Lorenz Klaus

Fitting Flats to Points with Outliers e 169
Guilherme da Fonseca

Hardness of discrepancy and related problems parameterized by the dimension........................ 173
Panos Giannopoulos, Christian Knauer, Magnus Wahlstrom, Daniel Werner

Nearest-neighbor queries with well-spaced points i 177
Chris Gray
Removing Local Extrema from Imprecise Terrains. i 181

Chris Gray, Frank Kammer, Maarten Ldoffler, Rodrigo Silveira

Recursive tilings and space-filling curves with little fragmentation 185
Herman Haverkort

Straight Skeletons and their Relation to Triangulations 189
Stefan Huber, Martin Held

Convex Hull Of Imprecise Points Modeled By Segments. 193
Ahmad Javad, Ali Mohades, Mansoor Davoodi, Farnaz Sheikhi

Hiding in the Crowd: Asymptotic Bounds on Blocking Sets........ i i . 197
Natasa Jovanovic, Jan Korst, Zharko Aleksovski, Radivoje Jovanovic

Largest Inscribed Rectangles in Convex Polygons 201
Christian Knauer, Lena Schlipf, Jens M. Schmidt, Hans Raj Tiwary

2-Factor Approximation Algorithm for Computing Maximum Independent Set of a Unit Disk Graph 205
Sudeshna Kolay, Subhas Nandy, Susmita Sur-Kolay

Visibility Polygons in the Presence of a Mirror Edge. e 209
Bahram Kouhestani, Mohammad Asgaripour, Salma Sadat Mahdavi, Arash Nouri, Ali Mohades

Snap Rounding on the Sphere 213
Boris Kozorovitzky, Dan Halperin

Locating an Obnoxious Line Through a Set of Weighted Points i .. 217
Yan Mayster, Mohammed Al-Bow, Catherine Durso, Mario Lopez

On Widest Empty Wedgeso e 221
Yan Mayster, Riquelmi Cardona, Mario Lopez

Certifying curve-reconstruction algorithms 225
Asish Mukhopadhyay, Harshit Rathod, Chong Wang, Bryan St. Amour

Circles with Independent and Dependent Uncertainties iinnenn... 229
Yonatan Myers, Leo Joskowicz

Partial Visibility Polygon with Semi-Transparent Objects 233
Mostafa Nouri Baygi, Mohammad Ghodsi

26th European Workshop on Computational Geometry, 2010

Computing the visibility area between two simple polygons in linear time 237
Rainer Penninger, Elmar Langetepe, Jan Tulke

Triangulating a System of Disks 241
Daniel Peterseim

One-Reporting QUETIESottt e e e e e e e e e e e e 245
Saladi Rahul, Rajan K.S

Partial Least-Squares Point Matching under Translations i, 249
Ginter Rote

A new separation theorem with geometric applications. i 253
Farhad Shahrokhi

Towards Non-Uniform Geometric Matchings. i e 257
Fabian Stehn, Christian Knauer, Klaus Kriegel

How to cope with undesired side effects of symbolic perturbation............... 261
Shuhei Takahashi, Kokichi Sugihara

Geometric realization of a triangulation on the Klein bottle with one face removed 265
Atsuhiro Nakamoto, Shoichi Tsuchiya

Real-Time Offset Surfaces o e e e 269
Andreas von Dziegielewski, Rainer Erbes, Elmar Schomer

A fast and easy-to-implement algorithm for the Minimal Translational Distance (MTD) of boxes 273
Kai Werth, Elmar Schomer

The Tidy Set: A Minimal Simplicial Set for Computing Homology of Clique Complexes 277
Afra Zomorodian

Author Indexo e 281

vi

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Instance-Optimal Geometric Algorithms*

Timothy M. Chan'

Abstract

Planar convex hull is undisputably one of the most
basic problems in computational geometry. Many
O(nlogn)-time algorithms have been discovered, and
this bound is worst-case optimal under a standard
algebraic decision tree model. However, some input
point sets are “easier” than others. For example, for
point sets with output size h, O(nlogh) algorithms
are known; for point sets under various distributions,
O(n) algorithms are known. In this talk, I will present
arguably the ultimate result on planar convex hull:
there is an algorithm that provably has running time
as good as any other algorithms (within a general
class, up to constant factors) on every point set. Such
an algorithm achieves so-called instance optimality (in
an order-oblivious sense). Similar instance-optimal
results are possible for 3D convex hull and several
other fundamental geometric problems, such as 2D
and 3D maxima, orthogonal line segment intersection,
and planar point location.

The talk will describe an elegant theory that
touches on many interesting threads—output-
sensitive, adaptive, and average-case algorithms,
partition trees, entropy, distribution-sensitive data
structures, decision-tree lower bounds, and a new
simple adversary argument.

*Joint work with Peyman Afshani and Jeremy Barbay (work
appeared in FOCS 2009).

TDepartment of Computer Science, University of Waterloo
tmchan@uwaterloo.ca

26th European Workshop on Computational Geometry, 2010

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Point Samples for Surface Representation and Geometry Processing

Markus Gross™*

Abstract

Over the past decade point primitives have received
a growing attention in Computer Graphics and Ge-
ometry Processing. There are two main reasons for
this new interest in points: On one hand, we have
witnessed a dramatic increase in the polygonal com-
plexity of computer graphics models. The overhead
of managing, processing, and manipulating very large
polygonal meshes has led many researchers to ques-
tion the future utility of polygons as the fundamen-
tal graphics primitive. On the other hand, modern
3D digital photography and 3D scanning systems fa-
cilitate the ready acquisition of complex, real-world
objects. These techniques generate huge volumes of
point samples and create the need for advanced point
processing.

In this presentation I will discuss the utility and
versatility of point primitives for surface representa-
tion and geometric modeling, and I will present a sur-
vey the latest research results in this area. I will re-
view novel concepts for the mathematical represen-
tation of point-sampled shapes with a focus on mov-
ing least squares, spherical MLS, and robust statis-
tics. Furthermore, I will address efficient algorithms
for digital geometry processing and modeling of point
models, including filtering, resampling, spectral pro-
cessing, and deformation. In last part, I will discuss
how point based representations can help to bridge
the gap between numerical simulations and interac-
tive graphics, and I will demonstrate their potential
for a fusion of both.

*Department of Computer Science ETH Zurich

26th European Workshop on Computational Geometry, 2010

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Touching points

Janos Pach*

We say that two simple curves in the plane touch
or are tangent to each other if they have precisely one
point in common (which is their point of tangency)
and at this point one curve does not pass from one
side of the other curve to the other. Two Jordan re-
gions are said to touch if their boundary curves touch.
We say that two curves cross or properly cross at a
point p if p belongs to both of them and in a small
neighborhood of p one curve passes from from one side
of the other curve to the other.

Estimating the maximum number of tangencies be-
tween noncrossing circles was initiated by de Roc-
quigny [19] at the end of the 19th century. The
problem was forgotten for three quarters of a cen-
tury, until similar questions were asked and answered
for “Apollonian arrangements” [10]. It follows imme-
diately from FEuler’s polyhedral formula that among
any n > 2 pairwise disjoint simply connected Jordan
regions in the plane there are at most 3n — 6 “touch-
ing” (tangent) pairs. This bound is tight. A family
of closed curves in the plane is said to form a set of
pseudo-circles if any two of them are disjoint, or tan-
gent to each other in one point, or cross in precisely
two points.

Theorem 1 (Erdds-Griinbaum) Any set of n > 2
pairwise noncrossing pseudo-circles in the plane de-
termines at most 3n — 6 points of tangencies. This
bound is tight.

Note that at each of these “touching points” (points
of tangencies) several curves may touch one another.

Erdés’s famous unsolved question [6] on the maxi-
mum number of unit distance pairs among n points in
the plane can also be formulated as a problem about
tangencies: What is the maximum number u(n) of
tangencies among n (possibly overlapping) disks of
unit diameter in the plane? The answer is superlin-
ear in n.

Theorem 2 (Erdés, Spencer-Szemerédi-Trotter [21])
The maximum number of tangencies among n unit
circles in the plane satisfies

nl—l—c/loglogn <u(n) <cln4/37

for suitable constants c,c¢’ > 0.

*EPFL, Lausanne and Rényi Inst.,
pach@cims.nyu.edu

Budapest

Equivalently, one can ask: What is the maximum
number of incidences between mn unit circles and n
points in the plane?

It was first observed by Tamaki and Tokuyama [22]
that in order to obtain an upper bound on the num-
ber of incidences between a family C of curves and a
set of points, it is sufficient to estimate the minimum
number of points needed to cut the curves in C into
“pseudo-segments,” that is, smaller pieces such that
any pair of them are either disjoint or cross precisely
once. Obviously, this number is at least as large as
the number of tangencies between the members of C,
and in most cases these two quantities do not differ
too much. For many applications, this approach leads
to the best known upper bounds for the number of in-
cidences between curves and points [1], [5], [12].

Theorem 3 (Marcus-Tardos) Any family of n
pseudo-circles can be cut into O(n*/?logn) pseudo-
segments.

A natural generalization of the notion of tangency
among closed curves is that of a “lens,” i.e., a face
of the arrangement bounded by precisely two arcs
belonging to different curves. In his thesis, Rom
Pinchasi [16], in connection with a conjecture of
Bezdek [4], proved the following remarkable result:
Any family of n pairwise intersecting circles in the
plane determines at most n lenses. This result was
extended to pseudo-circles [1] (see also [2]).

Theorem 4 (Agarwal et al.) Any family C of pair-
wise Intersecting pseudo-circles, no three of which
pass through the same point, determine at most O(n)
tangencies.

As is shown by Theorem 2, this statement does not
remain true if we drop the condition that the curves
are pairwise intersecting. However, if we count only
those tangencies that do not belong to the interior of
any member of C, then we can again obtain a linear
upper bound [11], [15]. If we also drop the condi-
tion that the curves are pseudo-circles, then even the
number of tangencies not contained in the interior of
a third curve can be as large as Q(n*/3). It was proved
in [8] that this bound is not far from being optimal,
provided that no pair of curves is allowed to cross in
more than a fixed number s of times.

If we do not assume that any two curves cross a
bounded number of times, then it is easy to construct

26th European Workshop on Computational Geometry, 2010

a family of n simple closed curves, no three of which
pass through the same point, with a quadratic number
of touching pairs. In fact, there are two families of
size n/2 such that each member of the first family is
tangent to every member of the second. However, in
this case, the total number of crossings between the
curves must be quite large.

Theorem 5 [FFPP10] Let A and B be two families
of x-monotone curves with a total of n members, no
three of which pass through the same point, such that
no curve in A properly crosses any curve in B. If m
denotes the number of pairs of touching curves («, (3)
with a € A and 8 € B, the total number of crossing
points in AU B is Q(mlogm).

Consequently, if m > en? for some ¢ > 0, then
the total number of crossing points in AU B is su-
perquadratic in n.

This result seems to support the following conjec-
ture (see also [13], [20]).

Conjecture 1 (Richter-Thomassen [18]) Any inter-
secting family of n closed curves, no three of which
pass through the same point, determines a total of at
least (1 — o(1))n? intersection points.

In a forthcoming paper [14], we study the structure
of tangencies between two families of closed Jordan re-
gions, each consisting of n pairwise disjoint members.
It was shown by Pinchasi and Ben-Dan [3], using the
proof idea of Theorem 3 that the maximum number
of such tangencies is O(n%/?logn).

Theorem 6 [PST10] The number of tangencies be-
tween two families of convex bodies in the plane, each
consisting of n > 2 disjoint members, cannot exceed
6n — O(1). This bound is asymptotically tight.

Corollary 7 [PST10] Let C be a family of n convex
bodies in the plane, which can be decomposed into
k subfamilies consisting of disjoint bodies. The total
number of tangencies between members of C is O(kn).
This bound is asymptotically tight.

Conjecture 2 [PST10] For every fixed integer k > 2,
the number of tangencies in any n-member family of
convex bodies, no k of which are pairwise intersecting,
is at most Oy (n).

Somewhat surprisingly, the above results are no
longer true if we replace the assumption that the sets
are convex by the weaker one that they are vertically
convet, that is, they are closed connected sets and ev-
ery vertical line misses them or intersects them in a
connected set (interval).

Theorem 8 [PST10] Let f(n) denote the maximum
number of tangencies between two n-member families
of disjoint, vertically convex bodies in the plane. Then
we have

Q(nlogn) < f(n) < O(nlog®n).

Acknowledgment

Research supported by Grants from NSF, NSA, PSC-
CUNY, BSF, OTKA, and SNF.

References

[1] P.K. Agarwal, E. Nevo, J. Pach, R. Pinchasi,
M. Sharir, and S. Smorodinsky. Lenses in arrange-
ments of pseudo-circles and their applications. J.
ACM 51 (2004), 139-186.

[2] N. Alon, H. Last, R. Pinchasi, and M. Sharir. On the
complexity of arrangements of circles in the plane.
Discrete Comput. Geom. 26 (2001), 465-492.

[3] I. Ben-Dan and R. Pinchasi. Personal communica-
tion, November 2007.

[4] A. Bezdek. Incidence problems for points and unit
circles. In: Paul Erdds and His Mathematics (A. Sali,
M. Simonovits and V. T. Sés, Eds.), J. Bolyai Math.
Soc., Budapest, 1999, 33-36.

[5] T.M. Chan. On levels in arrangements of curves. II.
A simple inequality and its consequences. Discrete
Comput. Geom. 34 (2005), no. 1, 11-24.

[6] P. Erdés. On sets of distances of n points. Amer.
Math. Monthly 53 (1946), 248-250.

[7] P. Erdés and B. Griitnbaum. Osculation vertices in ar-
rangements of curves. Geometriae Dedicata 1 (1973),
322-333.

[8] E. Ezra, J. Pach, and M. Sharir. On regular ver-
tices of the union of planar convex objects. Discrete
Comput. Geom. 41 (2009), 216-231.

[9] J. Fox, F. Frati, J. Pach, and R. Pinchasi. Cross-
ings between curves with many tangencies. In: Proc.
WALCOM: Workshop on Algorithms and Computa-
tion, Lecture Notes in Computer Science, Springer-
Verlag, to appear.

[10] B. Griinbaum. Arrangements and Spreads. Re-
gional Conference Series in Mathematics, No. 10,
Am. Math. Soc., Providence (1972).

[11] K. Kedem, R. Livne, J. Pach, and M. Sharir. On
the union of Jordan regions and collision-free trans-
lational motion amidst polygonal obstacles. Discrete
Comput. Geom. 1 (1986), 59-71.

[12] A. Marcus and G. Tardos. Intersection reverse se-
quences and geometric applications. J. Combin. The-
ory Ser. A 113 (2006), 675-691.

[13] D. Mubayi. Intersecting curves in the plane Graphs
Combin. 18 (2002), no. 3, 583-589.

[14] J. Pach, A. Suk, and M. Treml. Tangencies between
families of disjoint regions in the plane. Unpublished
manuscript.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

[15]

[16]

[17]

18]

[19]
[20]

21]

22]

J. Pach and M. Sharir. On the boundary of the union
of planar convex sets. Discrete Comput. Geom. 21
(1999), no. 3, 321-328.

R. Pinchasi. Problems in Combinatorial Geome-
try in the Plane. Ph.D. Thesis, Hebrew University,
Jerusalem, 2001.

R. Pinchasi and R. Radoi¢i¢. On the number of edges
in geometric graphs with no self-intersecting cycle
of length 4. In: Towards a Theory of Geometric
Graphs, Contemporary Mathematics (J. Pach, ed.),
342, American Mathematical Society, Providence,
RI, 2004.

R. B. Richter and C. Thomassen. Intersection of
curves systems and the crossing number of C5 x Cs,
Discrete Comput. Geometry 13 (1995), 149-159.

G. de Rocquigny. Questions 1179 et 1180. Intermed.
Math. 4 (1897), 267 and 15 (1908), 169.

G. Salazar. On the intersections of systems of curves.
J. Combin. Theory Ser. B 75 (1999), 56-60.

J. Spencer, E. Szemerédi, and W. Trotter, Jr. Unit
distances in the Euclidean plane. In: Graph The-
ory and Combinatorics (Cambridge, 1983), Academic
Press, London, 1984, 293-303.

H. Tamaki, T. Tokuyama. How to cut pseudoparabo-
las into segments. Discrete Comput. Geom. 19
(1998), no. 2, 265-290.

26th European Workshop on Computational Geometry, 2010

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Proximity Graphs inside Large Weighted Graphs

Bernardo M. Abrego* Ruy Fabila-Monroy

Ferran Hurtado$ Henk Meijer?

Abstract

Given a large weighted graph G = (V| E) and a subset
U of V', we define several graphs with vertex set U in
which two vertices are adjacent if they satisfy some
prescribed proximity rule. These rules use the short-
est path distance in G and generalize the proximity
rules that generate some of the most common proxim-
ity graphs in Euclidean spaces. We prove basic prop-
erties of the defined graphs and provide algorithms
for their computation.

1 Introduction

In Euclidean spaces, proximity graphs are a key tool
to obtain neighborhood relations in a given set of
points [5]. They have been intensively explored in
the contexts of spacial distribution analysis [9] and
graph drawing [7], among others.

In non-Euclidean settings, the Delaunay graph and
its relatives have found applications in the analysis of
networks that model real connection nets. A promi-
nent example is the network Voronoi diagram (see
Section 3.8 in [9]).

Here we deal with a complex graph G with a large
number of vertices and edges, in which it is difficult
to distinguish which are the relations of proximity
among a subset of the vertices. The edges of the graph
come with an associated positive weight. We study
relations of proximity based on shortest paths along
G = (V,E) among the vertices of a subset U C V,
which might represent the schools in the map of a
city, the corresponding stations in a huge transporta-
tion net, etc. We consider generalizations of some
well-known proximity graphs. This appears to be a
natural method to provide notions of closeness.

*Department of Mathematics, California State University,
Northridge, CA,
{bernardo .abrego,silvia. fernandez}@csun .edu.

TDepartamento de Mateméticas, CINVESTAV, Mexico DF,
Mexico, ruyfabila@math.cinvestav.edu.mx.

Instituto de Matematicas, Universidad Nacional Auténoma
de México, dflores@math.unam.mx.

8Departament de Matematica Aplicada II, Uni-
versitat Politecnica de Catalunya, Barcelona, Spain,
{ferran.hurtado,vera.sacristan,maria.saumell}@upc.edu.
Partially supported by projects MTM2009-07242 and Gen.
Cat. DGR 2009SGR1040.

9Science Department, Roosevelt Academy, Middelburg, The
Netherlands, h.meijer@roac.nl.

Silvia Ferndndez-Merchant*

David Flores-Pefialozal

Vera Sacristan® Maria Saumell®

The natural and important question of defining
suitable notions of closeness among vertices of a graph
has found different kinds of answers in the literature.
However, we are only aware of one approach that uses
proximity graphs (see [6, 11]). The graphs considered
there are clearly different from ours, as proximity is
constructed by adopting a notion whose universe is
a given geometric graph, but where the relations are
given by the full Euclidean plane.

Let us mention that the set U together with
the shortest-path distance constitutes a finite metric
space, so some of the proximity graphs we consider are
not new because they can be seen as a particular case
of proximity graphs defined on general metric spaces.
Even though there exists some literature on proximity
graphs in metric spaces, to the best of our knowledge
this topic has not been deeply investigated, as only
some definitions and basic properties have been given
(see Section 4.5 in [12], and also [4]). The sphere-of-
influence graph has been further studied [3, 8], but it
is out of the scope of our work.

When using empty regions as proximity criteria
in G, such as disks, two main variations arise, since
we might allow these disks to be centered at any point
in G, or we might restrict their centers to lie only on
vertices of the graph, as in [3, 1]. Moreover, the defi-
nition of certain regions of interference might depend
on the multiplicity of paths or distances in G. Degen-
eracies that occur in the standard geometric case also
generate several possibilities. For the sake of clarity
we first present the situation where there are essen-
tially no degeneracies (Sections 2-5). In Section 6 we
drop the non-degeneracy assumptions and extend our
results to the general setting.

Proofs and descriptions of the algorithms will be
given in the full-version of this paper.

2 Definitions and Notation

We deal with a connected and edge-weighted graph
G = (V,U,E), where U C V and all edges have posi-
tive real weights assigned to them. We assume that it
is possible to consider points in the edges of G; more
precisely, for every edge e = (v1, v2) with weight w(e)
and every r € (0,w(e)), we assume that there exists
a point p in e and paths from both v; and vs to p
such that the weight of the path from v, to p is r,

26th European Workshop on Computational Geometry, 2010

and the weight of the path from ve to p is w(e) — r
(if G is embedded in the plane, these paths are sim-
ply portions of the edges). We say that p is a point
of G if p is either a vertex of GG, or a point in an
edge of G. The distance dg(p,q) between two points
p and ¢ in G is defined as the minimum total weight
of any path connecting p and g in G. The closed disk
D¢ (p,) is defined as the set of points g of G for which
da(p,q) < r. We say that u; € U is a nearest neigh-
bor of u; € U with i # j if dg(uj,u;) < de(uy, ur)
for all vertices ui, # uj,u; € U. A midpoint of two
points p and g of G is a point m on one of the shortest
paths from p to ¢ such that dg(m, p) = dg(m, q). We
denote the set of midpoints of p and ¢ by Mga(p, q).
For the remainder of this paper, we define |V| = m,
|U| =n, and |E| =e.

We first consider the case where the following non-
degeneracy assumptions hold: (A1) for all u;, u; € U,
the shortest path connecting u; and w; is unique; (A2)
there do not exist three distinct vertices u;,u; € U,
v € V —U such that dg(v,u;) = dg(v,u;); (A3) there
do not exist vertices v;,v; € V, us, u; € U such that
da(vi,u;) = dg(vj, uj) with v; # u;; (A4) all paths in
G between distinct nodes in V' have different lengths.

Obviously, the previous assumptions are not inde-
pendent, but considering them separately allows to
clarify and provide a more precise description of the
scenario. In Section 6, we extend the results from
Sections 3-5 to the general case where A1-A4 are not
necessarily satisfied.

We now adapt several known definitions to proxim-
ity structures in graphs G = (V,U, E).

Definition 1 The nearest neighbor graph of G =
(V,U,E), denoted by NNG(G), is the graph H =
(U, F') such that (u;,u;) € F' ifu; is one of the nearest
neighbors of u; in G.

Definition 2 A minimal spanning tree of G =
(V,U,E) is a tree T = (U, F) such that the sum of
dg(ui, uj) over all edges (u;,u;) € F is minimal. The
union of the minimal spanning trees of G, denoted
by UMST(Q), is the graph consisting of all the edges
included in any of the minimal spanning trees of G.

If A3 holds, each vertex in U has exactly one nearest
neighbor and the minimal spanning tree of G, denoted
by MST(G), is unique.

Definition 3 The relative neighborhood graph of
G = (V,U,E), denoted by RNG(G), is the graph
H = (U, F) such that (u;,u;) € F if there exists no
vertex uy € U such that dg(ug,w;) < dg(u;,u;) and
da(uk, uj) < da(us, uj).

Definition 4 The free Gabriel graph of G =

(V,U,E), denoted by GG¢(G), is the graph H =
(U, F) such that (u;,u;) € F if there exists no vertex

10

up € U (ug # u;,u;) such that dg(p,ur) < da(p, w;),
where p is the midpoint of u; and u;.

If A1 holds, there exists only one midpoint of w;
and u;, thus the previous graph is well-defined.

Definition 5 The constrained Gabriel graph of G =
(V,U,E), denoted by GG.(G), is the graph H =
(U,F) such that (u;,u;) € F if the smallest closed
disk centered at a vertex in V enclosing u; and u;
does not contain any other vertex from U.

The previous graph is well-defined if A3 holds.

Definition 6 The Voronoi region of a vertex u; €
U is the set of points p of G such that dg(p,u;) <
de(p,u;) for all vertices u; € U different from wu,.
The Voronoi diagram of G = (V,U, E), denoted by
VD(G), is the Voronoi diagram of the vertex set U
for the distance dg.

Definition 7 The free Delaunay graph of G =
(V,U,E), denoted by DG¢(G), is the graph H =
(U,F) such that (u;,u;) € F if there exists a closed
disk Dg(p,r), where p is a point of G, enclosing u;
and u; and no other vertex from U.

Definition 8 The constrained Delaunay graph of
G = (V,U,E), denoted by DG.(G), is the graph
H = (U, F) such that (u;,u;) € F if there exists a
closed disk D¢ (v, r), with v € V', enclosing u,; and u;
and no other vertex from U.

3 Inclusion Sequence

The graphs just defined satisfy some inclusion rela-
tions. In this section we show which proximity graphs
are subgraphs of which other proximity graphs assum-
ing A1, A2, and A3.

Theorem 1 The relations of containment among all
classes of proximity graphs are shown in Table 1. The
symbol C means that the inclusion is satisfied for all
graphs G, and ¢ means that there are graphs G for
which the inclusion is not satisfied.

All inclusions in the table are proper, in the sense
that there exists a graph G for which the correspond-
ing proximity subgraph does not coincide with its su-
pergraph.

4 Geometric and Combinatorial Properties

We define the dual graph of the Voronoi diagram of
G = (V,U,E) as the graph with vertex set U and
edges connecting two vertices if their Voronoi regions
share some point in G that does not belong to the
Voronoi region of any other element in U.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Table 1: Relations of containment among proximity
graphs in the non-degenerate case.

Table 2: Running times of the algorithms to compute
the proximity graphs on G.

| [MST [RNG | GG, | GGy | DG, | DG |

NNG c - < c - c
MST C < - <z C
RNG < - g -
GG, Z - C
GGy Z C
DG, -

Proposition 2 Let G = (V,U, E) be a graph. Then
DG¢(G) is the dual graph of VD(G).

The previous proposition allows to draw the first
analogy between the usual proximity graphs and these
new proximity structures on graphs. Moreover, it is
a key tool to prove the following result:

Corollary 3 Let G = (V,U,E) be a graph. The
number of edges of NNG(G), MST(G), RNG(G),
GG.(G), GG¢(G), DG(G), and DG¢(G) is at most e.

This bound is tight up to a constant factor:

Proposition 4 There exists a graph G = (V,U, E)
such that RNG(G) = GG¢(G) = DG¢(G) = G. There
also exists a graph G' = (V',U’,E’) such that the
number of edges of GG.(G') and DG.(G’) is €'/2.
Furthermore, all of these graphs have ©(n?) edges.

In the following theorems we show that the prox-
imity graphs inherit planarity and acyclicity from the
original graph.

Theorem 5 Let G = (V,U,E) be a planar
graph. Then NNG(G), MST(G), RNG(G), GG.(G),
GG¢(G), DG.(G), and DG¢(G) are planar.

Theorem 6 Let G = (V,U,E) be a tree. Then
GG¢(GQ) and DG(G) are forests, and RNG(G) =
GGt(G) = DG¢(G) = MST(G).

Next we give complete characterizations for those
graphs that are isomorphic to a certain proximity
graph of some other graph.

Proposition 7 If G = (V, E) is a graph, there exists
a graph G = (V,U,E) such that G = NNG(G) if
and only if G is acyclic and does not contain isolated
vertices.

Proposition 8 If G = (V, E) is a graph, there exists
a graph G = (V,U, F) such that G = MST(QG) if and
only if G is a tree.

l proximity graph l running time ‘

NNG O(e + (m — n)log(m — n))
MST O(eal(e,n) + (m — n)log(m —n))
RNG O(APSP(G) + min{n?, e}n)
GGc O(APSP(G) + min{n?, e}m)
GGs O (APSP(G) + min{n* e}m)
DG, O(e + mlogm)

DGt O(e + (m — n)log(m — n))

Proposition 9 If G = (V, E) is a graph, there exists
a graph G = (V,U, FE) such that G =2 RNG(G) if and
only if G is triangle-free.

Proposition 10 Let G = (
exists a graph G = (V

GGo(G) = GG¢(G) =D c(b)

E) be a graph. There
,E) such that G =
= DG¢(G).

4
U

5 Algorithms

We have derived algorithms to compute each of the
proximity graphs we have studied. Due to lack of
space, we omit the description of the algorithms and
only give their running times.

In some cases the algorithm computes the short-
est paths between all pairs of vertices in U.
If G is a sparse graph, we use the algorithm
in [10], which runs in O(mlogm + neloga(m,e))

time. If G is dense, we use the algorithm
in [2], which runs in O (m®log®logm/log®m)
time. We define APSP(G) = min{mlogm +

nelog a(m, e), m? log® log m/ log® m}.

Theorem 11 For each graph G = (V,U,E), the
proximity graphs on G can be computed in the num-
ber of steps indicated in Table 2.

6 Presence of Degeneracies

In this section we generalize our results to the case in
which degeneracies arise.

First of all, we look through the definitions. The
graphs NNG(G), UMST(G), RNG(G), DG¢(G), and
DG.(G) are well-defined regardless of the properties
of G, although, in contrast to the non-degenerate case,
a vertex in U might have several nearest neighbors.

In the general case there might be more than one
shortest path between two vertices of U. This gives
rise to two definitions of free Gabriel graphs:

Definition 9 The free-one Gabriel graph of G
(V,U,E), denoted by GGy (G), is the graph H
(U,F) such that (u;,u;) € F if there exists p €

11

26th European Workshop on Computational Geometry, 2010

Table 3: Relations of containment among all classes
of proximity graphs in the general case.

[[UMST[RNG|GGca | GGe1|GGrta | GGr1 [DGe [DGy
NNG C c 4 <
UMST C [
RNG 7
GGea
GGe1
GGga
GGq
DG.

NI

R

IRISINBSIISIN

INBSTRIIRIBSIINIIN]

IN[ININININIRIMR

M (ui, uj) such that no vertex ux € U (up, # wi, uj)
satisfies dg(p, ux) < dg(p, u;).

Definition 10 The free-all Gabriel graph of G =
(V,U,E), denoted by GGg,(G), is the graph H =
(U,F) such that (u;,u;) € F if, for each p €
Mc(ui, uj), no vertex u,, € U (uy, # u;,u;) satisfies
da(p,ux) < dg(p, wi).

Analogously, the definition of the constrained
Gabriel graph must be replaced by the following vari-
ants:

Definition 11 The constrained-one Gabriel graph
of G = (V,UE), denoted by GGe¢(G), is the
graph H = (U,F) such that (u;,u;) € F if there
exists a closed disk Dg(v,r), with v € V and
r = minyev{r | De(v,r) contains both u; and u;},
enclosing u; and u; and no other vertex from U.

Definition 12 The constrained-all Gabriel graph of
G = (V,U,E), denoted by GGe,(G), is the graph
H = (U,F) such that (u;,u;) € F if every closed
disk Dg(v,r) containing both w; and u;, and where
veVandr = mingey{r | Dg(v,r) contains both
u; and u;}, does not contain any other vertex of U.

Now we may go through the inclusion relations of
the proximity graphs.

Theorem 12 If degenerate situations are allowed,
the relations of containment among all classes of prox-
imity graphs are shown in Table 3. Furthermore, all
classes of proximity graphs are different.

To conclude this section, we focus on the most im-
portant properties presented in Section 3.

The fact that DG¢(G) is the dual graph of the
Voronoi diagram of GG holds in all cases. On the other
hand, if A2 is not satisfied, some of the proximity
graphs might have more edges than the original graph:

Theorem 13 Let G = (V,U,E) be a graph. The
number of edges of GGea(G), GG.(G), GG(G),

12

GG¢(G), DG.(G), and DG¢(G) is at most e. The num-
ber of edges of NNG(G), UMST(G), and RNG(G)
may be greater than e.

Finally, we check whether all proximity graphs in-
herit the property of being planar or acyclic in the
degenerate case.

Theorem 14 Let G = (V,U, E) be a planar graph.
Then the graphs GGe(G), GGc1(G), GGn(G),
GG (G), DG.(G), and DG¢(G) are planar, whereas
NNG(G), UMST(G), and RNG(G) may not be.

Theorem 15 Let G = (V,U,E) be a tree. Then
the graphs GGea(G), GG (G), GGun(G), GGn(G),
DG¢(G), and DG¢(G) are acyclic, whereas NNG(G),
UMST(G), and RNG(G) may not be.

The algorithms in the preceding section can be
adapted to run under the presence of degeneracies yet
we omit here further details.

References

[1] M. Abellanas and F. Harary. Delaunay Graphs on
a Prescribed Graph. Proc. EuroCG’99, pp. 101-103,
1999.

[2] T.M. Chan. More Algorithms for All-Pairs Shortest
Paths in Weighted Graphs. Proc. STOC’07, pp. 590—
598, 2007.

[3] F. Harary, M.S. Jacobson, M.J. Lipman, and
F.R. McMorris. Abstract Sphere-of-Influence Graphs.
Math. Comput. Modelling 17(11):77-83, 1993.

[4] J.W. Jaromczyk and M. Kowaluk. A Note on Relative
Neighborhood Graphs. Proc. SoCG’87, pp. 233-241,
1987.

[5] J.W. Jaromczyk and G.T. Toussaint. Relative Neigh-
borhood Graphs and Their Relatives. Proc. IEEE
80(9):1502-1517, 1992.

[6] S. Kapoor and X.-Y. Li. Prozimity Structures for Ge-
ometric Graphs. Proc. WADS’03, pp. 365-376, 2003.

[7] G. Liotta. Prozimity Drawings. In: Handbook of
Graph Drawing and Visualization. CRC Press, to ap-
pear.

[8] T.S. Michael and T. Quint. Sphere of Influence
Graphs in General Metric Spaces. Math. Comput.
Modelling 29(7):45-53, 1999.

[9] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu.

Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. John Wiley & Sons, 2000.

[10] S. Pettie and V. Ramachandran. A Shortest Path Al-
gorithm for Real-Weighted Undirected Graphs. SIAM
J. Comput. 34(6):1398-1431, 2005.

[11] R. Pinchasi and S. Smorodinsky. On Locally Delau-
nay Geometric Graphs. Proc. SoCG’04, pp. 378-382,
2004.

[12] H. Samet. Foundations of Multidimensional and Met-
ric Data Structures. Morgan Kaufmann, 2006.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Computing the discrete Fréchet distance
with imprecise input*

Hee-Kap Ahn | Christian Knauer ¥

Abstract

We consider the problem of computing the discrete
Fréchet distance between two polygonal curves when
their vertices are imprecise. An imprecise point
is given by a region and this point could lie any-
where within this region. By modelling impre-
cise points as balls in arbitrary fixed dimension, we
present an algorithm for this problem that returns
in time O(m?n?log®(mn)) the Fréchet distance lower
bound between two imprecise polygonal curves with
n and m vertices, respectively. We give an im-
proved algorithm for the planar case with running
time O(mnlog?(mn) + (m? + n?)logmn). In the d-
dimensional orthogonal case, where points are mod-
elled as axis-parallel boxes, and we use the L., dis-
tance, we give an O(dmnlog(dmn))-time algorithm.

1 Introduction

Shape matching is an important ingredient in a wide
range of computer applications such as computer vi-
sion, computer—aided design, robotics, medical imag-
ing, and drug design. In shape matching, we are given
two geometric objects and we compute their distance
according to some geometric similarity measure. The
Fréchet distance [1] is a natural distance function for
continuous shapes such as curves and surfaces, and is
defined using reparameterizations of the shapes.

The discrete Fréchet distance is a variant of the
Fréchet distance in which we only consider vertices of
polygonal curves. Given two polygonal curves with
n and m vertices, respectively, there is a dynamic
programming algorithm that computes the discrete
Fréchet distance between them in ©(mn) time [6], and
no subquadratic algorithm is known yet.

*Work by Ahn was supported by the Korea Research Foun-
dation Grant funded by the Korean Government(KRF-2008-
614-D00008). Work by Scherfenberg was supported by the
Deutsche Forschungsgemeinschaft, grant AL 253/5-1. Work
by Schlipf was supported by the Deutsche Forschungsgemein-
schaft within the research training group ’Methods for Discrete
Structures’(GRK 1408).

TDepartment of Computer Science and Engineering,
POSTECH, Pohang, Korea. heekap@postech.ac.kr

Hnstitut fiir Informatik, Freie Universitéit Berlin, Germany,
{knauer,scherfen,schlipf }@mi.fu-berlin.de

SINRA, UR 341 Mathématiques et
tique Appliquées, 78352 Jouy-en-Josas,
antoine.vigneron@jouy.inra.fr

Informa-
France.

Marc Scherfenberg?

Lena Schlipf? Antoine Vigneron $

Most of previous works on the Fréchet distance as-
sume that the input curves are given precisely. The
input curve, however, could be only an approxima-
tion; In many cases, geometric data comes from mea-
surements of continuous real-world phenomenons, and
the measuring devices have finite precision.

Imprecise data can be modelled in different ways.
One possible model, for data that consists of points,
is to assign each point to a region, typically a disk or
a square. In this case, existing algorithms for com-
puting the Fréchet distance could be too sensitive to
the precision of the measurements, and they may re-
turn a solution without providing any guarantee on
its correctness or preciseness. One solution to this
problem is to take the impreciseness of the input into
account in the design of algorithms, so that they re-
turn a solution with some additional information on
its quality.

Our results. We study the problem of computing
the discrete Fréchet distance between two polygonal
curves, where the vertices of a polygonal curve are
imprecise. Each point belongs to a region, which is
either a Euclidean ball or an axis-parallel box in R?.
We consider two cases: the orthogonal case and the
Euclidean case. In the orthogonal case, the regions are
boxes, and we use the L, distance. In the Euclidean
case, the regions are balls and we use the Euclidean
distance.

Given two imprecise sequences of n and m points,
respectively, we give algorithms for computing the
Fréchet distance lower bound between these two se-
quences. In the orthogonal case, our algorithm runs
in O(dmnlogdmn) time. In the Euclidean case, we
give an O(m?n? log® mn)-time algorithm for arbitrary
fixed dimension. We also give an improved algo-
rithm for the planar Euclidean case with running time
O(mnlog®(mn) + (m? + n?)logmn).

2 Notation and preliminaries

We work in R?, and we use a metric dist(-,-) which
is either the Euclidean distance, or the L., distance.
Let A = ay,...,a, and B = by,...,b,, denote two
sequences of points in R?. A coupling is a sequence of
ordered pairs (aq, 81), - -, (@, Bc) such that:

e oy =1,0,=1,a. =nand B. =m.

13

26th European Workshop on Computational Geometry, 2010

e for each 1 < k < ¢, one of the three statements
below is true:

— apy1 = o +1and By = G + 1.
— opq1 = ap + 1 and Bri1 = B
= Brt1 =B+ 1 and apq1 = ax

The discrete Fréchet distance F(A, B) is the mini-
mum, over all couplings, of max; i<, dist(aq,,bs,)-

In what follows, we consider the case where the two
point sequences A and B are imprecise. So, instead of
knowing the position of each a;,b;, we are given two
sequences of regions of R? denoted by H = hy, ..., h,
and V = v1,...,v,. These regions will be either
Euclidean balls, or axis-aligned boxes. They specify
where the points a;, b; lie, and thus for each 4, j, we
have a; € h; and b; € v;. For all i < n, we denote by
H,; the subsequence hq, ..., h;, and for all j < m, we
denote V; = vq,...,v;.

We will consider two different cases. In the Fu-
clidean case, the regions are Euclidean balls in R?
and we use the Euclidean distance. In the orthogonal
case, the regions are axis-aligned boxes and the dis-
tance we use is the Lo, metric. In the Euclidean case,
we will assume that we are in fixed dimension, that
is, we assume that d = O(1).

A realization of the region sequence H is a point
sequence A = aq,...,a, such that a; € h; for all
1 < ¢ < n. Similarly, a realization of the region se-
quence V is a point sequence B = bq,...,b,, such
that b; € v; for all 1 < j < m. We denote by
A € H and B € V the fact that A is a realiza-
tion of H, and B is a realization of V', respectively.
When A €p H and B € V, we will say that (A4, B)
is a realization of (H,V’). This will be denoted as
(A,B) €r (H,V). For two region sequences H and
V, the Fréchet distance lower bound F™"(H, V) is the
minimum, over all realizations (A, B) of (H, V'), of the
discrete Fréchet distance F(A, B):

F™Y(H, V)= min

F(A, B).
(A,B)er(H,V)

3 Computing the Fréchet distance lower bound
Fmin

In this section, we give algorithms for computing
FOin(H V). We first give a decision algorithm
that, given a real number § > 0 , decides whether
Fnin(H V) < 6. Then we give an improved deci-
sion algorithm for the Euclidean case. Based on these
decision algorithms, we finally give optimization algo-
rithms, which compute F™"(H, V) in the orthogonal
case and in the Euclidean case.

We denote by h? (resp. v?) the set of points that
are at distance at most ¢ from h; (resp. v;). In the
Euclidean case, where h; is a ball with radius r, the

14

set h¢ is the concentric ball with radius 7 + d. In the
orthogonal case, if h; = [z1,y1] X - - - X [€ g, Ya], we have
he =[x1 — 8,y1 + 0] X --- X [24 — 6,ya + 6].

3.1 Decision algorithm for the orthogonal case

Our decision algorithm is based on dynamic pro-
gramming. In each cell of an array with n rows
and m columns, we will store two feasibility regions
FHs(i,7) € R? and FVs(i,5) C R% The ith row rep-
resents the region H;, and the jth column represents
V;. We will compute these fields row by row, from
t1=1toi=n.

As we shall see in Lemma 1, the feasibility region
FH;(4, j) represents the possible locations of a;, where
(A;, Bj) is a realization of (H;,Vj), and there exists a
coupling that achieves F(A;, Bj) < ¢ whose last two
pairs are not (i — 1,4),(¢,4). The other feasibility
region FV;(i,j) represents the possible locations of
b;j, when there is such a coupling whose last two pairs
are not (¢,7 — 1), (4,74).

The pseudocode of our decision algorithm De-
cideFréchetMin is given below. Lines 1 to 8 initialize
some of the fields of our array for the first row and
column, as well as an extra zeroth column and row.
It allows boundary cases when ¢ =1 and j = 1 to be
handled correctly in the main loop. The main loop is
from line 9 to 15.

Algorithm DecideFréchetMin

Input: Two sequences of regions H = hy,...,h, and

V =w1,...,0m, and a value § > 0.
Output: TRUE when F™*(H,V) < §, and FALSE
otherwise.
1. fori—1ton
2 FHs(7,0) < 0
3 FVs(i,0) — 0
4. for j—1tom
5. FHs(0,5) < 0
6. FVs(0,7) «— 0
7. FHs(0,0) « R4
8. FVs(0,0) « R¢
9. fori+—1ton
10. for j — 1tom
11 if FHs(: — 1,5 — 1) = 0 and
FVs(i—1,j—1)=0
12. then FH;s(i,j) <« FHs(i,5 —
nn vg
13. FVs(i,j) <« FVs(i —
1,j)Nh?
14. else FH;(i,j) — h; Nv?
15. FVs(i,5) «— h N,

16. if FHs(n,m) =0 and FVs(n,m) =0
17. then return FALSE
18. else return TRUE

In order to prove that our decision algorithm De-
cideFréchetMin is correct, we need the following

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

lemma.

Lemma 1 For any 2 < ¢ < n, 2 < j < m, we
have F™n(H;, V;) < § if and only if FH;(i,j) # 0
or FVs(i,j) # 0. More precisely, for any z,y € R,
we have:

(a) x € FHs(i,j) if and only if there exists
(A;,Bj) €r (H;,V;) such that a; = z, and
such that there exists a coupling achieving
F(A;,Bj) < ¢ whose last two pairs are not

(i - 17j)’(i7j>'

(b) y € FVs(i,j) if and only if there exists
(Ai, Bj) €r (H;,V;) such that b; = y, and
such that there exists a coupling achieving
F(A;,Bj) < ¢ whose last two pairs are not

(iv.j - 1)7 (Zm])

We now prove Lemma 1 when ¢, 5 > 3. The bound-
ary cases where ¢ = 2 or j = 2 can be easily checked.
We only prove Lemma 1(a); the proof of (b) is similar.
Our proof is done by induction on (i, j), so we assume
that Lemma 1 is true for all the cells that have been
handled before cell (i,7) by our algorithm; in partic-
ular, it is true for all cells (i',5’) # (4,4) such that
i <iandj <j.

We first assume that z € FHs(4,5), and we want
to prove that there exists (A;, Bj) €r (H;,V;) such
that a; = x, and such that there exists a coupling
achieving F(A;, B;) < 6 whose last two pairs are not
(i —1,7),(i,75). We distinguish between two cases:

e First case: FHs(i — 1,5 — 1) # 0 or FVs(i —
1,7 — 1) # 0. Then, by induction, there ex-
ists (Ai,th,l) €ER (Hifl, ij,l) such that
F(Ai—1,Bj-1) < 4. We also know that FH;(¢, j)
was set to h; N ’U? at line 14. In other words, z €
hi, and there exists y’ € v; such that dist(z,y’) <
0. So we extend A;—1 and Bj_; by choosing
a; = x and b; = y’. We extend a coupling achiev-
ing F(A;—1,Bj—1) < ¢ with the pair (¢,7), and
obtain a coupling achieving F(A4;, Bj) < ¢ whose
last two pairs are (i — 1,5 — 1), (4, §).

e Second case: FHs(i — 1,5 — 1) = 0 and FVs(i —
1,7—1) = (. Then FH;(i, j) was set to FHg (4, j —
1N v;-s at line 12. Thus x € FHs(4,5 — 1), so by
induction, there exists (A;, Bj—1) €r (H;, Vj_1)
such that a; = = and F(4,,B;_1) < 6. Since
x € v?, there exists ' € v; such that dist(z,y’) <
d. So we extend B;_; by choosing b; = y'. We
extend a coupling achieving F(A4;, B;_1) = 0 with
the pair (4, j), and we obtain a coupling achieving
F(A;, Bj) < 0 whose last two pairs are (i,j —
1. (i),

Now we assume that there exists (A;,B;) €r
(H;,V;) such that there exists a coupling C achiev-
ing F(A;,B;) < § whose last two pairs are not

(i—1,7),(i,4). We want to prove that a; € FH;(i, j).
We distinguish between two cases:

e First case: FHs(i —1,7—1) #Dor FVs(i—1,5—
1) # (0. Tt implies that FHs(7, j) was set to hiﬂv;-s
at line 14. Since A; €r H;, we have a; € h;.
Since B; €r V; and F(A;, B;) < 6, it follows
that dist(a;,b;) < d, and thus a; € v?. Thus,
a; € FH(;(’L,])

e Second case: FHs(i — 1,7 — 1) = 0 and
FVs(i — 1,5 — 1) = (. Then, by induction, we
have Fmi“(Hi,l,Vj,l) > ¢, which implies that
F(A;_1,Bj_1) > 0, so the pair (i —1,j — 1) can-
not appear in C. It follows that the last three
pairs of C can only be (i,5 —2), (4,5 — 1), (¢,4) or
(i—1,7—2),(i,7 — 1),(¢,7). So, by induction,
we have a; € FH;(4,j — 1). Since F(A4;, B;) < 6,
we have a; € v]. As FHs(i —1,j — 1) = () and
FVs(i — 1,5 — 1) = 0, the value of FHg(i,5) was
set to FHs(i,5 — 1) N v? at line 14, so we have
a; € FHs(4, 7).

This completes the proof of Lemma 1. It
follows immediately from Lemma 1 that Algo-
rithm DecideFréchetMin decides correctly whether
Fmin(H V) < 6. We still need to analyze this al-
gorithm. In the orthogonal case, lines 12-15 consist
in intersecting two axis-aligned boxes in fixed dimen-
sion; it can be done in O(d) time. Thus, we obtain
the following result:

Theorem 2 In the d-dimensional orthogonal case,
given § > 0, and given two imprecise sequences H
and V' of n and m points, respectively, we can decide
in O(dmn) time whether F™»(H, V) < §.

3.2 Decision algorithm for the Euclidean case

In this section, we give an efficient algorithm for the
Euclidean case. We will need the following result:

Lemma 3 We can decide in O(k) time whether k
balls in fixed-dimensional Euclidean space have an
empty intersection.

Proof. We consider a collection of k balls in R?, with
d = O(1). We use the standard lifting-map [5, Sec-
tion 1.2], which maps any point z = (z1,...,z4) € R?
Ti,...,%d, Zle xf) Then a

ball B ¢ R% can be mapped to an affine hyperplane
H C R such that x € B if and only if & is be-
low H. Thus, deciding whether %k balls have a non-
empty intersection reduces to deciding whether there
is a point « such that 2 is below all the corresponding
hyperplanes. To do this, it suffices to decide whether
there is a point « below all these hyperplanes and such
that 3% | 22 < 2441 It can be done in O(k) time

to the point z =

15

26th European Workshop on Computational Geometry, 2010

using an algorithm of Dyer [4] for some generalized
linear programs in fixed dimension; in our case, the
linear constraints for Dyer’s algorithm are given by
our set of hyperplanes, and the convex function we
use is (z1,...,Td441) — —Zd+1 —I—Z?zl x2. O

We now explain how we implement line 13 in amor-
tized O(logn) time. We fix the value of j, and
we show how to build an incremental data struc-
ture that decides in amortized O(logn) time whether
FVs(i,j) = (0. To achieve this, we do not maintain the
region FV(i, j) explicitly: we only maintain an aux-
iliary data structure that allows us to decide quickly
whether it is empty or not. During the course of Al-
gorithm DecideFréchetMin, the region FVs(i,j) can
be reset to h? Nv; at line 15, and otherwise, it is the
intersection of FVs(i — 1,5) with h. So at any time,
we have FVs(i,j) = hS NhS i -+ N A Nv; for some
1 <ip <.

So our auxiliary data structure needs to perform
three types of operations:

1. Set S = 0.
2. Insert the next ball into S.

3. Decide whether the intersection of the balls in &
is empty.

When we run Algorithm DecideFréchetMin on col-
umn j, the sequence of n balls h‘{, ey hi is known
in advance, but not the sequence of operations. So
this is the assumption we make for our auxiliary data
structure: we know in advance the sequence of balls,
but the sequence of operations is given online. A
trivial implementation using Lemma 3 requires O(n)
time per operation. Using exponential and binary
search [8], we will show how to do it in amortized
O(logn) time per operation.

Operation 1 is trivial to implement. To implement
operation 2, suppose that, before we perform this op-
eration, the cardinality |S| of S is s = 2, for some
integer ¢. Then, using Lemma 3, we check whether
the intersection of the balls in S and the next s balls
is empty. If so, we find by binary search the first sub-
sequence of balls, starting at the balls of S, whose
intersection is empty. By Lemma 3, it can be done
in O(slogs) time. Then we can perform in constant
time each operation of type 2 or 3 until the next time
operation 1 is performed. On the other hand, if the
intersection of the balls in S and the next s balls is not
empty, we record this fact. Then, until the cardinality
of S reaches 2s = 2¢*1, or we perform operation 1, we
can perform each operation of type 2 or 3 in constant
time.

This data structure needs only amortized O(logn)
time per operation. Keeping one such data struc-
ture for each value of j, we can perform line 13 of
Algorithm DecideFréchetMin in amortized O(logn)

16

time. Similarly, we can implement line 12 in amor-
tized O(logm) time. Overall, we obtain the following
result:

Theorem 4 In the fixed-dimensional Euclidean case,
given § > 0, and given two imprecise sequences H and
V of n and m points, respectively, we can decide in
O(mnlogmn) time whether F™»(H, V) < 6.

3.3 Optimization algorithms

We obtain algorithms for computing the Fréchet dis-
tance lower bound based on the decision algorithms
above, and two standard optimization technique: We
use the monotone matrix searching technique by Fred-
erickson and Johnson [2, 7] in the orthogonal case, and
we use parametric search [2, 3] in the Euclidean case.
The results are summarized in the theorem below,
whose proof is omitted, due to the space limit.

Theorem 5 Given two imprecise sequences H and
V' of n and m points, respectively, we can com-
pute F™(H, V) in O(dmnlogdmn) time in the d-
dimensional orthogonal case. The running time of
our algorithm is O(mnlog®(mn) + (m? 4 n?) log mn)
in the planar Euclidean case, and O(m2n?log?(mn))
in the fixed-dimensional Euclidean case.

References

[1] H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. International
Journal of Computational Geometry and Applica-
tions, 5:75-91, 1995.

[2] P. Agarwal and M. Sharir. Efficient algorithms for ge-
ometric optimization. Computing Surveys, 30, 1998.

[3] P. Agarwal, M. Sharir, and S. Toledo. Applications
of Parametric Searching in Geometric Optimization.
In Proc. 3rd ACM-SIAM Symposium on Discrete Al-
gorithms, pages 72-82, 1992.

[4] M. Dyer. A Class of Convex Programs with Applica-
tions to Computational Geometry. In Proc. 8th An-
nual Symposium on Computational Geometry, pages
9-15, 1992.

[5] E. Edelsbrunner. Geometry and Topology for Mesh
Generation. Cambridge University Press, 2001.

[6] T.Eiter and H. Mannila. Computing discrete Fréchet
distance. Technical Report, CD-TR 94/64, Christian
Doppler Laboratory for Expert Systems, TU Vienna,
Austria, 1994.

[7] G. Frederickson and D. Johnson. Generalized selec-
tion and ranking: Sorted matrices. SIAM Journal on
Computing, 13(1):14-30, 1984.

[8] A. Moffat and A. Turpin. Compression and Coding
Algorithms. Kluwer Academic Publishers, 2002.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Arc Triangulations®

Oswin Aichholzer' Wolfgang Aigner$

Franz Aurenhammer?

Katefina Cech Dobidsova$

Bert Jiittler$

Abstract

The quality of a triangulation is, in many practical
applications, influenced by the angles of its triangles.
In the straight line case, angle optimization is not pos-
sible beyond the Delaunay triangulation. We propose
and study the concept of circular arc triangulations, a
simple and effective alternative that offers flexibility
for additionally enlarging small angles. We show that
angle optimization and related questions lead to lin-
ear programming problems, and we define unique flips
in arc triangulations. Moreover, applications of cer-
tain classes of arc triangulations in the areas of finite
element methods and graph drawing are sketched.

1 Introduction

Geometric graphs and especially triangulations are an
ubiquitous tool in geometric data processing [2, 8, 13].
The quality of a given triangular mesh naturally de-
pends on the size and shape, in particular the angles,
of its composing triangles. In practice, quite often the
Delaunay triangulation (see, e.g., [8]) is the mesh of
choice, because it maximizes the smallest angle over
all possible triangulations of a given finite set of points
in the plane. Still, the occurrence of ‘poor’ trian-
gles cannot be avoided sometimes, especially near the
boundary of the input domain, or due to the presence
of mesh vertices of high edge degree.

The situation becomes different (and interesting
again) if the requirement that triangulation edges be
straight is dropped. In applications like finite element
methods or graph drawing, the numerical and optical
benefits of a graph that potentially grants nice angles
can be exploited fully only if curved edges are admit-
ted. In this paper, we try to encourage the use of
so-called arc triangulations, which are triangulations
whose edges are circular arcs. Modeling triangula-
tions this way bears several advantages if angles are
to be optimized. Small angles at the boundary can
be enlarged by optimizing the arc curvatures for the
given triangulation. Situations with vertices of high
degree can be faced by applying angle-improving flips
in arc triangles that reduce the vertex degree.

*Supported by FWF NRN ‘Industrial Geometry’ S92

TInstitute for Software Technology, Graz University of Tech-
nology, Austria, {oaich,waigner}@ist.tugraz.at

Hnstitute for Theoretical Computer Science, Graz Univer-
sity of Technology, Austria, auren@igi.tugraz.at

8Institute of Applied Geometry, Johannes Ke-
pler University Linz, Austria, {Bert.Juettler,
Katerina.Cech-Dobiasova}@jku.at

Maximizing the smallest angle in a combinatorially
fixed arc triangulation of a point set can be formulated
as a linear program. This guarantees a fast solution
of this optimization problems for arc triangulations
in practice. Moreover, the linear program will tell
us whether a given domain admits an arc triangula-
tion of a pre-specified combinatorial type, by checking
whether its feasible region is void. In particular, flips
for arcs can be defined, via optimization after the flip
has been applied combinatorially. If we want to opti-
mize equiangularity in an arc triangulation (i.e., max-
imize the sorted angle vector lexicographically) then
we can do so as well.

We believe that arc triangulations constitute a use-
ful tool in several important areas, including finite ele-
ment methods or especially graph drawing. In view of
the latter application [5, 6], it is desirable to extend
our approach to optimizing angles in general plane
graphs. As our simple optimization method works
only for full triangulations, we complete the graphs
to suitable triangulations (e.g., the constrained De-
launay [11, 4]) and treat the newly obtained angles in
concatenation. In several applications, the boundary
of the underlying domain will be given as a polynomial
spline curve. Such domains can be approximated in
a convenient way using circular biarc splines [1], and
thus are naturally suited to triangulation by circular
arcs.

2 Angle Optimization

Consider a straight line triangulation, 7, in a given
domain D of the plane. No restrictions on D are
required but, for the ease of presentation, let D be
simply connected and have piecewise circular (or lin-
ear) boundary. In general, 7 will use vertices in the
interior of D. We are interested in the following op-
timization problem: Replace each interior (i.e., non-
boundary) edge of 7 by some circular arc, in a way
such that the smallest angle in the resulting arc tri-
angulation is maximized. To see that this problem
is well defined, notice that the optimal solution, call
it 7%, cannot contain negative angles: The smallest
angle between arcs has to be at least as large as the
smallest angle that arises in 7. As a consequence, for
each vertex in S, the order of its incident arcs in 7*
coincides with the order of its incident edges in the in-
put triangulation 7. In other words, each arc triangle
in 7* is well-oriented, i.e., it has the same orientation
as its straight line equivalent. Therefore, if each angle
is less than 7, no overlap of arcs or arc triangles in 7*

17

26th European Workshop on Computational Geometry, 2010

Figure 1: Angles of deviation

can occur. Interestingly, this is a specialty of trian-
gulations; the last conclusion remains no longer true
if faces with more than three arcs are present. We
postulate for the rest of this paper that arc triangles
be well-oriented.

We now formulate the angle optimization problem
as a linear program. For each interior edge e = pq in
the triangulation 7 we introduce one variable, ¢, de-
scribing the angle at which the circular arc pg deviates
from the straight connection of p and ¢ (at these very
points). Figure 1 offers an illustration. Note that ¢
may take on positive or negative values, depending on
the sidedness of pg with respect to e. For each edge ¢
of 7 on the input boundary 9D, we fix ¢ to the
value do given by OD.! The inequalities for the lin-
ear program now stem from the angles a; arising in 7.
If e and f are the two edges of 7 that define «;, we
consider the angle between the two respective circular
arcs, 3; = ¢ + o; + ¢¢, and we put

e<fi.
The linear objective function L, which is to be max-
imized, is just L = ¢, what clearly maximizes the

smallest angle B, in the arc triangulation. There
are precisely 3-(2n—h—2) inequalities and 3n—2h—3
variables, if n is the total number of vertices, and h
among them are situated on 0D.

Sometimes the objective is to optimize not only the
smallest angle, but rather to maximize lexicographi-
cally the sorted list of all arising angles, as is guaran-
teed by the Delaunay triangulation in the straight line
case. This can be achieved by repeatedly solving the
linear program above, keeping angles that have been
optimized already as constants. (This is a nontriv-
ial task. Depending on the solver, minimum angles
do typically occur at several places, and the optimal
ones among them have to be singled out.) By modifiy-
ing or adding constraints the results may be adapted
to various needs, as avoiding angles larger than 7 or
obtaining arc triangles ‘as equilateral as possible’. We
consider the flexibility of our simple approach as an
important feature in practice.

1We have d./ = 0 if €’ is a line segment. However, we can
keep ¢, variable and bound it from above by some thresh-
old t > d..

18

(a) Delaunay triangulation (b) Arc triangulation

Figure 2: Flip-optimized arc triangulation starting
from a Delaunay triangulation.

3 Flipping in Arc Triangles

The fact that every simple polygon can be triangu-
lated with straight line segments is folklore. Again, a
domain D with piecewise circular boundary need not
admit any triangulation, even if circular arcs may be
used. It is known that a linear number of Steiner
points is required in the worst case to ensure an arc
triangulation [1].

One of the arising questions is: Given the domain D
and a (combinatorial) triangulation 7. in D (possibly
with interior points), can 7. be realized by circular
arcs? For deciding this, we can now utilize the lin-
ear program formulated in Section 2. A realizing arc
triangulation exists if and only if the feasible region
of the linear program is nonempty. As a particularly
nice feature, this enables us to define flip operations
in arc triangulations, as is described below.

Consider some arc triangulation A in the domain D.
Each interior arc pq of A lies on the boundary of two
arc triangles. Let r and s be the two vertices of these
arc triangles different from p and ¢. Flipping pq by
definition means removing pq from A, establishing an
arc between r and s combinatorially, and optimizing
over the resulting triangulation. The new arc trian-
gulation, if it exists, will contain a unique circular arc
between r and s. In case of nonexistence, we declare
the arc pq as not flippable. Observe that an arc flip
may change various circular arcs geometrically (by op-
timizing over their curvature), whereas only a single
arc is exchanged combinatorially. An arc flip thus is
a geometrically global operation which is combinato-
rially local.

Optimizing angles with arc flips is a powerful
(though maybe costly) tool. We demonstrate the pos-
itive effect of sequences of such flips with Figures 2a
and 2b. A significant improvement over the Delaunay
triangulation becomes possible (in fact, the smallest
angle is doubled in this example) by reducing the de-
gree of a particular vertex, v. In general, we observe
that small angles in a straight line triangulation stem
from one of two reasons: (1) The geometry of the
underlying domain D (plus its vertex set) forces slim

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

triangles in the vicinity of dD. These ‘boundary ef-
fects’ can usually be mildened by mere geometric op-
timization of the corresponding arc triangulation. (2)
Vertices of degree k naturally impose an upper bound
of 27” on the smallest arising angle. This situation
can be remedied only with combinatorial changes, and
in contrast to the straight edge case, this is indeed
possible for arc triangulations. (For straight edges,
the combinatorics of the Delaunay triangulation is al-
ready optimal.)

4 Special Arc Triangles

An arc triangle V is termed a w-triangle if the sum
of its interior angles is . In the isoparametric ap-
proach to finite element methods [10], based on the
fact that m-triangles are images of straight triangles
under a Mébius transformation, an approximation by
conformal (angle-preserving) Bézier patches can be
obtained, when the sum of angles is optimized to-
wards 7. Moreover, if the angle sum is even equal
to 7, simple inverse geometry mappings can be con-
structed. We omit details (and proofs) in this version.

Property 1 Let V be some arc triangle. The follow-
ing three properties are equivalent.

(a) V is a w-triangle.

(b) The three supporting circles of V intersect in a
common point exterior to V.

(c) V is the image of a straight line triangle under
a unique Mébius transformation.

Property 2 Any w-triangle is contained in the cir-
cumcircle of its vertices.

In view of the mentioned properties, it is worth-
while to study w-triangulations. Such triangulations
will not always exist, depending on the boundary do-
main D, and in particular the sum of its inner angles,
but they do, of course, if D is a simple polygon.

For the remainder of this section, let D be a simple
polygon, and 7 be some straight line triangulation
in D. The geometry of any arc triangulation A in D
that is combinatorially equivalent to 7 is determined
by the vector ®(A) of deviation angles ¢(a;) for the
interior arcs a; of A; see Section 2. Interpreting ®(.A)
as a point in high dimensions, we can talk of the space
of arc triangulations for 7. The next lemma is impor-
tant in view of optimizing a given m-triangulation.

Lemma 1 Let 7 have n vertices, h of which lie on
the boundary of D. The dimension of the space of
m-triangulations for T is n — h.

Lemma 1 remains true if 7 is replaced by any
m-triangulation of D. In practice, the input is most
likely a straight line triangulation, which is to be op-
timized into a w-triangulation with maximum small-
est angle. Figure 3 displays an example. The change

Figure 3: Straight line triangulation and its angle-
maximized mw-triangulation superimposed

| angle sum || Delaunay min | min arc angle | gain |
180° 18.03° 22.52° 25%
179° - 181° - 22.92° 26%
175° - 185° - 24.88° 38%
170° - 190° - 27.53° 50%
160° - 200° - 31.77° 72%
Table 1: Improvement of angles in (almost)

m-triangulations

does not appear dramatic, but observe that the small-
est angle (occurring at vertex v) almost doubles, from
9.7° to 19°. No arc flips have been applied. Table 1
shows experimental data for a larger input (500 ran-
dom points, postprocessed to keep a certain interpoint
distance as in realistic meshes). We see that the gain
reduces for larger Delaunay meshes but is still sig-
nificant, especially if the condition on the angle sum
in the triangles is relaxed from 7 to a small intervall
around that value.

5 Graph Drawing

Literature on drawing graphs nicely in the plane is
large; see e.g. [5, 14]. Most algorithms take as in-
put an abstract graph G and produce a layout of the
vertices of G such that the resulting straight line (or
orthogonal) drawing is aesthetically pleasing, and/or
satisfies certain application criteria. On the theoreti-
cal side, bounds on the achievable angular resolution
are known for various classes of graphs [7, 12], includ-
ing planar graphs.

Results for curvilinear drawings of graphs are com-
paratively sparse. See, for example, [3, 9] and refer-
ences therein, who give lower bounds and algorithms
for drawing graphs on a grid with curved edges (in-
cluding circular multiarcs), and [6] where a method
based on physical simulation is proposed. To our
knowledge, no algorithm has been given that draws
a graph with (single) circular arcs under some opti-
mization criterion. Here we actually consider a sim-

19

26th European Workshop on Computational Geometry, 2010

Eo
N Phoenix my

¢ San Francisco

Atlanta

Figure 4: IP backbone graph, straight line and opti-
mally redrawn.

pler setting, namely, for a given planar straight line
embedding of a graph G, the problem of redrawing G
with curved edges in an optimal way. In a redraw-
ing, the positions of the vertices are kept fixed. This
may be a natural demand, for instance, in certain ge-
ographical applications.

Let us describe how maximizing the smallest angle
in a circular arc redrawing of G can be achieved. It
is tempting to apply the linear optimization method
from Section 2 to G directly. This, however, bears the
risk of arc overlaps getting out of control. The way
out is to embed G in some triangulation 7 first, and
treat respective sums of angles as single entities to be
optimized. More precisely, for each angle p in G, given
by the concatenation of angles oy, ...,ax, k> 1,in T
we use the constraint

with each f3; expressed by the corresponding straight
line triangulation angle «; and its two deviation vari-
ables ¢, and ¢ as in Section 2. The quality of opti-
mization depends on the chosen triangulation, which
will be subject of future research (cf. Section 3). Also,
the entire angle vector g1, ..., 0, for G can be opti-
mized, in an iterative way as before. Additional re-
strictions may be posed, like g9; < 7 or g; < 7, in or-
der to preserve obtuse or sharp angles in G.

The adjacency graphs in Figure 4 exemplify the ef-
fect of our circular arc redrawing method. The results
seem satisfactory, in spite of the fact that vertices
are required not to move. QOur results compare well
to, e.g. [6], who use for optimization the additional
freedom of placing vertices, though at a price of high
computation cost. For our method, the number of

20

vertices of the input graph is no limitation, as far as
applications from graph drawing are concerned.

6 Future Work

Circular arc triangulations are a flexible and computa-
tionally controllable structure with potential impact
but, so far, with lack of interest from computational
geometry. They lead to simple and fast graph re-
drawing procedures, and bear novel aspects for finite
element methods. Among the open questions raised
are the convergence of the angle-increasing arc flip-
ping process in Section 3, and an extension of the
presented results to three dimensions, for tetrahedral
volumes with spherical faces. We will elaborate on
the properties of such 3D primitives and their meshes
in a forthcoming paper.

References

[1] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Juettler, M.
Oberneder, Z. Sir. Computational and structural advan-
tages of circular boundary representation. Int’l J. Compu-
tational Geometry & Applications, to appear.

[2] M. Bern, D. Eppstein. Mesh generation and optimal trian-
gulation. In: D.-Z.Du, F.Hwang (eds), Computing in Eu-
clidean Geometry, Lecture Notes Series on Computing 4,
World Scientific, 1995, 47-123.

[3] C.C. Cheng, C.A. Duncan, M.T. Goodrich, S.G. Kobourov.
Drawing planar graphs with circular arcs. Proc. 7th Int.
Symposium on Graph Drawing, 1999, Springer LNCS 1771,
2000, 117-126.

[4] L.P. Chew. Constrained Delaunay triangulations. Algorith-
mica 4 (1989), 97-108.

[5] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis. Graph
Drawing - Algorithms for the Visualization of Graphs.
Prentice Hall, 1999.

[6] B. Finkel, R. Tamassia. Curvilinar graph drawing using
the force-directed method. Proc. 12th Int. Symposium on
Graph Drawing, 2004, Springer LNCS 3383, 2004, 448-453.

[7] M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann,
F.T. Leighton, A. Symvonis, E. Welzl, G. Woginger. Draw-
ing graphs in the plane with high resolution. SIAM J. Com-
puting 22 (1993), 1035 - 1052.

[8] S. Fortune. Voronoi diagrams and Delaunay triangulations.
In: D.-Z.Du, F.Hwang (eds), Computing in Euclidean Ge-
ometry, Lecture Notes Series on Computing 4, World Sci-
entific, 1995, 225-265.

[9] M.I. Goodrich, C.G. Wagner. A framework for drawing
planar graphs with curves and polylines. J. Algorithms 37
(2000), 399-421.

[10] T.J.R Hughes. The Finite Element Method — Linear Static
and Dynamic Finite Element Analysis, Reprint, Dover
Publications, New York.

[11] D.T. Lee, A.K. Lin. Generalized Delaunay triangulation
for planar graphs. Discrete & Computational Geometry 1
(1986), 201-217.

[12] S. Malitz, A. Papakostas. On the angular resolution of
planar graphs. Proc. 24th Ann. ACM Symp. on Theory of
Computing, 1992, 527-538.

[13] J. Shewchuk. What is a good linear element? Interpola-
tion, conditioning, and quality measures. Proc. 11th Inter-
national Meshing Roundtable, 2002, 115-126.

[14] K. Sugiyama. Graph Drawing and Applications for Soft-
ware and Knowledge Engineers. World Scientific, 2002.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

3-Colorability of Pseudo-Triangulations*

Oswin Aichholzerf Franz Aurenhammer?

Thomas Hacklt

Clemens Huemer? Alexander Pilzf

Birgit Vogtenhuber!

Abstract

Deciding 3-colorability for general plane graphs is
known to be an NP-complete problem. However, for
certain classes of plane graphs, like triangulations,
polynomial time algorithms exist. We consider the
family of pseudo-triangulations (a generalization of
triangulations) and prove NP-completeness for this
class. The complexity status does not change if the
maximum face-degree is bounded to four, or pointed
pseudo-triangulations with maximum face degree five
are treated. As a complementary result, we show
that for pointed pseudo-triangulations with maximum
face-degree four, a 3-coloring always exists and can be
found in linear time.

1 Introduction

The chromatic number of a graph is the smallest num-
ber of colors needed to color its vertices so that no
two adjacent vertices share the same color. Graphs
with chromatic number 3 are said to be (vertez)
3-colorable. Determining the chromatic number of a
graph is known to be a computationally hard prob-
lem. Interestingly, deciding 3-colorability of a plane
graph is still NP-complete [9]. For the class of tri-
angulations, though, 3-colorability can be decided in
linear time; it is necessary and sufficient that every
interior (i.e., non-extreme) vertex has even degree.
Alternatively, we can use the following constructive
approach: Start with the three different colors of a
single triangle. Then the color of the third vertex of
each edge-adjacent triangle is determined. This pro-
cess is iterated until either a contradiction occurs (an
already colored vertex is forced to have a different
color) or a proper coloring is obtained.

Also for some other types of graphs the decision
problem can be solved efficiently. Beside (obvious)
graph classes like paths, cycles, trees, and quadrangu-
lations, the class of maximal outerplanar graphs (or,

*This work was initiated during the Sixth European Pseudo-
Triangulation Working Week in Ratsch an der Weinstrafle, Aus-
tria, September 2009. O. A., F. A., T. H., A. P., and B. V. were
supported by the FWF [Austrian Fonds zur Forderung der
Wissenschaftlichen Forschung] under grant S9205-N12, NFN
Industrial Geometry. Research of C. H. partially supported
by projects MEC MTM2009-07242 and Gen. Cat. DGR
2009SGR1040.

TInstitute for Software Technology, Graz University of Tech-
nology, Austria, [oaich|thackl|apilz|bvogt]@ist.tugraz.at

Hnstitute for Theoretical Computer Science, Graz Univer-
sity of Technology, Austria, auren@igi.tugraz.at

8Departament de Matematica Aplicada IV, Universitat
Politecnica de Catalunya, clemens.huemer@upc.edu

equivalently, triangulations of polygons, or of point
sets in convex position) is also 3-colorable. Elling-
ham et al. [3], and in a different formulation Diks,
Kowalik, and Kurowski [2], give a characterization of
planar graphs with isolated non-triangular faces that
are 3-colorable. Moreover, 3-colorability is linear-time
decidable for general locally connected graphs [5].
See [8] for a survey on 3-colorability.

In the present work we consider the class of pseudo-
triangulations, which generalize triangulations in sev-
eral aspects. In fact, as we shall see, this class is
rich enough to lead to a wide spectrum of color-
ing results. We show that deciding 3-colorability for
pseudo-triangulations is NP-complete. In fact, any
plane geometric graph can be reduced, with respect
to 3-coloring, to a (pointed) pseudo-triangulation.
For the special case of pointed pseudo-triangulations
with constant maximum face-degree, the problem re-
mains NP-complete if the degree bound is at least
five. As a complementary result, we prove that for
pointed pseudo-triangulations with maximum face-
degree four, a 3-coloring always exists and can be
found in linear time. Some intermediate results for a
varying number of pointed vertices are given as well.

We assume that point sets that serve as vertex sets
for geometric graphs are in general position, that is,
no three points lie on a common straight line. For a
point set S, let n = |S|, and denote with |[CH(S)]| the
number of extreme points of S.

2 (Pointed) Pseudo-Triangulations

Pseudo-triangulations are a versatile generalization
of the well-known concept of (geometric) triangula-
tions [7]. Instead of triangles, their faces are pseudo-
triangles, that is, simple polygons with exactly three
convex vertices. In a geometric straight-line graph G,
a vertex v is called pointed if there exists a line
through v such that all edges of G incident to v lie
on one side. The rank of a pseudo-triangulation is its
number of non-pointed vertices; see [1] for further de-
tails. Pseudo-triangulations with rank zero are called
pointed. These structures are of particular interest,
because they are planar Laman graphs, and are min-
imally rigid [10].

Lemma 1 Any plane geometric graph G(S) on S can

be extended to a pseudo-triangulation, T(S’), such
that:

o SC S and|S'| = O(n)

21

26th European Workshop on Computational Geometry, 2010

G
G GG G @ GG G
[o q;’}
G

@ (b)

Figure 1: (a) Transforming a plane graph into a
pseudo-triangulation. (b) Transforming a plane graph
into a pointed plane graph. Note that these gadgets
are arbitrarily flat. Colors C; to C3 indicate possible
color configurations.

o G(S) is 3-colorable if and only if T(S’) is
3-colorable

e the rank of T(S’) equals the number of non-
pointed vertices in G(S)

Proof. From [7, Theorem 2.6] it follows that, by
adding a linear number of edges, any plane geomet-
ric graph G(5) can be augmented in polynomial time
to a pseudo-triangulation T'(S) without changing the
pointedness of the underlying vertices. Instead of
adding single edges, we use gadgets like in Figure 1(a)
to connect two vertices in order to obtain a pseudo-
triangulation T'(S").

Observe that |\S’| = ©(n) holds, as one gadget adds
only a constant number of points. Also, the gadgets
can be added in a way such that they do not change
the pointedness of the involved vertices. (Under the
general position assumption, the gadgets can be made
sufficiently narrow.) As the additional vertices in-
troduced with each gadget are all pointed, it follows
that the number of non-pointed vertices remains un-
changed.

Finally, adding the gadgets does not add additional
coloring restrictions. The connected vertices might
be colored arbitrarily (identically or differently), and
still the added vertices of the gadget are 3-colorable.
Thus G(S) is 3-colorable if and only if T(S’) is
3-colorable. O

As planar graph 3-colorability is known to be NP-
complete [9], the previous lemma already leads to the
following NP-completeness result.

Theorem 2 Deciding whether a pseudo-triangu-
lation is 3-colorable is NP-complete.

Proof. By Lemma 1, we can obtain a pseudo-
triangulation T from each plane graph G such that
G is 3-colorable if and only if T is 3-colorable. As the
transformation can be done in polynomial time, and
only a linear number of edges and vertices are added,
the claimed NP-completeness result follows. O

Pointed pseudo-triangulations are an important
subclass of pseudo-triangulations. They minimize the
number of edges over all pseudo-triangulations and
thus, in some way, also the number of color restric-
tions. Nevertheless, we will show that even for this

22

restricted class, 3-colorability is NP-complete. To this
end, we prove that pointed planar graph 3-colorability
is NP-complete, from which NP-completeness of
pointed pseudo-triangulation 3-colorability follows.

Lemma 3 Deciding whether a pointed plane geomet-
ric graph is 3-colorable is NP-complete.

Proof. We show how to transform a given plane
straight-line graph G into a pointed plane straight-
line graph G’, such that G is 3-colorable if and only if
G’ is 3-colorable. W.l.o.g., assume that there are no
horizontal edges in the given embedding of G, as oth-
erwise we slightly rotate the plane. Now every non-
pointed vertex v of G is replaced by two duplicates
vy, and vr of v. The two copies are placed sufficiently
close to the left (vz) and to the right (vg) of v, re-
spectively. All edges incident to v from above are
now incident to vy, and all edges incident to v from
below are moved to vg. In addition, vy, and vg are
connected by a small construction consisting of five
edges, as shown in Figure 1(b).

By the general position assumption, the resulting
graph G’ is plane. Only a linear number of additional
vertices has been added, and all the vertices are now
pointed. Moreover, the gadget connecting vy, and vg
ensures that in a proper 3-coloring of G’ both vertices
have to get the same color. Thus G is 3-colorable if
and only if G’ is 3-colorable. NP-completeness fol-
lows as the transformation can be done in polynomial
time. (]

Combining Lemma 1 with Lemma 3 gives the fol-
lowing theorem.

Theorem 4 Deciding whether a pointed pseudo-
triangulation is 3-colorable is NP-complete.

The last result gives rise to an interesting question.
On the one hand, pointed pseudo-triangulations have
rank 0 and, as shown in Theorem 4, it is NP-complete
to decide their 3-colorability. On the other hand, tri-
angulations have maximum rank ry,q, = n—|CH(S)|,
i.e., all interior vertices are non-pointed, and, as al-
ready mentioned in the introduction, 3-colorability
can be decided in linear time. So it is natural to ask
for which rank the change from ‘easy’ to ‘intractable’
happens. With the next two theorems we make a
first step towards answering this question. (In the
following, several proofs are omitted due to space con-
straints.)

Theorem 5 For all constants ¢ > 1 and any r <
Tmaz — O(/n) it is NP-complete to decide whether a
pseudo-triangulation of rank r is 3-colorable.

Theorem 6 Whether a pseudo-triangulation T'(S) of
rank r > rpa: — O (logn) is properly 3-colorable can
be decided in polynomial time.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

3 Constant Maximum Face-Degree

In this section, we consider pseudo-triangulations
with constant maximum face-degree, that is, pseudo-
triangulations where each interior face is a pseudo-
triangle with at most a (small) constant number of
vertices. The following two statements will allow us
to transform any pseudo-triangulation with high max-
imal face-degree into one with smaller maximal face-
degree while keeping rank and colorability properties;
cf. Figure 2.

Lemma 7 Any pseudo-triangle with k > 5 vertices
can be subdivided into two pseudo-triangles of sizes
strictly less than k, by adding an interior vertex of
degree two, such that the pointedness of the involved
vertices persists.

Figure 2: Subdividing large pseudo-triangles.

Corollary 8 Every pseudo-triangulation T'(S) with
maximum face-degree k > 5 can be transformed into
a pseudo-triangulation T'(S’) with maximum face-
degree five in polynomial time such that:

e SC S and |S'| =06(n)

e T(S) is 3-colorable if and only if T'(S’) is 3-
colorable

e the rank of T'(S’) equals the rank of T'(S)

3.1 Face-Degree <5 Pseudo-Triangulations

By combining Corollary 8 with Theorem 4, we obtain
a result for pointed pseudo-triangulations with maxi-
mum face-degree five.

Corollary 9 Deciding whether a pointed pseudo-
triangulation with maximum face-degree five is
3-colorable is NP-complete.

A more general statement (that includes the previ-
ous corollary) is the following.

Theorem 10 For all constants ¢ > 1 and any rank
r < Tmaw — ©(/n) it is NP-complete to decide
whether a pseudo-triangulation of rank r and with
maximum face-degree five is 3-colorable.

3.2 Face-Degree <4 Pseudo-Triangulations

Pseudo-triangles of size larger than five can always
be subdivided as described in Lemma 7. This result
cannot be extended to smaller pseudo-triangles. In
fact, the situation changes completely if we bound
the face-degree of a pseudo-triangulation by four.

Theorem 11 Pointed pseudo-triangulations with
maximum face-degree four are 3-colorable.

Proof. To prove the theorem, we use the concept
of combinatorial (pointed) pseudo-triangulations [6].
These are combinatorial embeddings of (pointed)
pseudo-triangulations, where the edges need not be
straight lines and pointedness is not a geometric prop-
erty anymore. Instead, each pointed vertex has a
mark in one incident face, namely the one where it
is pointed to, and for each face all but three vertices
(the corners) have marks in this face. The only ex-
ception is the outer face, where all (at least three) in-
cident vertices have their mark in. Note that a given
combinatorial (pointed) pseudo-triangulation can be
embedded such that every angle with a mark is larger
than 7 and all other angles are smaller than 7 [4, Sec-
tion 5.2]. Thus, with respect to 3-colorability, combi-
natorial pointed pseudo-triangulations are equivalent
to geometric pointed pseudo-triangulations.

ﬁ/ﬁ% %#
(a (b)

Figure 3: Move operation to collapse a pseudo-
triangle (a), and a degenerate case (b).

For an interior vertex v we define a merge operation
for the pseudo-triangle V to which v is pointed. This
operation identifies v with the antipodal vertex v’
in V, by ‘moving’ v towards v’, see Figure 3(a). In
this way V collapses, but the remaining graph is still a
valid combinatorial pointed pseudo-triangulation with
one vertex, one face, and two edges less.

We iterate this process as long as we have interior
vertices. This can be done, as each such vertex is al-
ways pointed towards a pseudo-triangle of size four.
Whenever there exist interior vertices of degree two,
they are merged before other vertices, to avoid degen-
erate cases as shown in Figure 3(b). Such degeneracies
can only happen if vertex ¢ has degree two. Observe
that all arguments also hold in the degenerate case, as
we still have all relevant properties of combinatorial
pointed pseudo-triangulations. However, for simplic-
ity, we prefer to avoid degeneracies.

At the end of all merging steps, no interior vertices
are left, and we obtain a (combinatorial) triangula-
tion of a convex point set. Such triangulations are

23

26th European Workshop on Computational Geometry, 2010

Figure 4: A pseudo-triangulation with rank 1 (one
non-pointed vertex) and maximum face-degree four,
which can not be 3-colored.

well known to be 3-colorable, and we can assign their
colors in linear time.

We finally invert the above process and replicate,
in each reversed merge step, the color of the orig-
inal vertex for the duplicated vertex. This keeps
the 3-coloring valid, as these vertices are not con-
nected in the original graph. After all merge steps
are undone, the given pointed pseudo-triangulation is
3-colored.]

Note that the above proof also provides a linear
time algorithm to find a 3-coloring. The obtained
3-coloring is special in the sense that, for every interior
face of size four of the pointed pseudo-triangulation,
its reflex vertex has the same color as its antipodal
vertex. In fact, up to permutation of the three colors,
there is only one coloring with this property. This
follows from the facts that (1) a 3-coloring of a trian-
gulation of a convex point set is unique (up to per-
mutation), and (2) the merge steps used in the above
proof lead to a unique triangulation of the convex set,
independent of the order they are carried out.

Pointed pseudo-triangulations with bounded face-
degree four are a special structure concerning
3-colorability. Note that triangulations of convex
point sets also fall into that category. Investigating
the influence of the rank of a bounded face-degree four
pseudo-triangulation on 3-colorability reveals that al-
ready a rank of 1 allows pseudo-triangulations which
are not properly 3-colorable; see Figure 4. Note that
all interior vertices in this example have even degree.
So the parity property, which can be used to prove
3-colorability for triangulations, does not carry over
to pseudo-triangulations of general rank. In addition,
there exist 3-colorable examples with non-pointed in-
terior vertices of odd degree.

In fact, we can prove NP-completeness for a wide
range of ranks for maximum face-degree four pseudo-
triangulations.

Theorem 12 For all constants ¢ > 1 and any r,
O(¢/n) < r < e — O (/n), it is NP-complete
to decide whether a rank r pseudo-triangulation with
maximum face-degree four is 3-colorable.

4 Final remarks

To summarize, we have the following results for
pseudo-triangulations of maximum face-degree four:

24

e rank 0 (pointed pseudo-triangulations):
always 3-colorable.
O (¢/n):

e rank 7, © (/n) <7 < Taw —
O (logn) <7 < Tmaz:

NP-complete.
e rank r, Tpar —
decidable in polynomial time.

e rank 7ya =n — |CH(S)| (triangulations):

decideable in linear time.

For rank r pseudo-triangulations of maximum face-
degree five, and rank r pseudo-triangulations without
any face-degree bound, 3-colorability is NP-complete
as long as r < e — ©(/n). For both classes,
3-colorability is decidable in polynomial time if r >
T'maz — © (logn). Where precisely do the changes be-
tween ‘NP-complete’ and ‘polynomial time decidable’
happen? What can be said if a pseudo-triangulation
is ’almost pointed’ (small constant rank)?

5 Acknowledgments

We would like to thank the participants of the 6" Eu-
ropean Workshop on Pseudo-Triangulations, held in
Ratsch an der Weinstrafle, Austria, September 2009,
for stimulating discussions.

References

[1] O. Aichholzer, F. Aurenhammer, P. Brass, H. Krasser.
Pseudo-triangulations from surfaces and a nowvel type of
edge flip. SIAM Journal on Computing, 32, pp. 1621-1653,
2003.

(2] K. Diks, L. Kowalik, M. Kurowski. A new 3-color criterion
for planar graphs. In: L. Kucera, editor, Graph-Theoretic
Concepts in Computer Science, Lecture Notes in Computer
Science, 2573, pp. 138-149, Springer, 2002.

[3] M. N. Ellingham, H. Fleischner, M. Kochol, E. Wenger.
Colorability of planar graphs with isolated nontriangular
faces. Graphs and Combinatorics, 20(4), pp. 443-446, 2004.

[4] R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius,
H. Servatius, D. Souvaine, I. Streinu, W. Whiteley. Planar
minimally rigid graphs and pseudo-triangulations. Compu-
tational Geometry, Theory and Applications, 31, pp. 31—
61, 2005.

[6] M. Kochol. Linear algorithm for 3-coloring of locally con-
nected graphs. In: K. Jansen et al., editors, Experimental
and Efficient Algorithms, Lecture Notes in Computer Sci-
ence, 2647, pp. 191-194, Springer, 2003.

[6] D. Orden, F. Santos, B. Servatius, H. Servatius, Combi-
natorial pseudo-triangulations. Discrete Mathematics, 307,
pp. 554-566, 2007.

[7] G. Rote, F. Santos, I. Streinu, Pseudo-triangulations—a
Survey. Contemporary Mathematics, 453, pp. 343-410,
2008.

[8] R. Steinberg. The state of the three color problem. In:
J. Gimbel, J. W. Kennedy, and L. V. Quintas, editors, Quo
vadis, graph theory?: A source book for challenges and di-
rections. Annnals of Discrete Mathematics, 55, pp. 211—
248, North Holland, 1993

[9] L. Stockmeyer. Planar 3-colorability is polynomial com-
plete. SIGACT News, 5, pp. 19-25, 1973.

[10] I. Streinu. A combinatorial approach to planar non-
colliding robot arm motion planning. Proc. 415t IEEE
Symp. FOCS, pp. 443-453, 2000.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Connecting Obstacles in Vertex-Disjoint Paths

Marwan Al-Jubeh*

Diane L. Souvaine*

Abstract

Given a set of k disjoint convex polygonal obsta-
cles inside a triangular container, we add straight-line
noncrossing edges such that each obstacle has three
vertex-disjoint paths to the container. We prove com-
binatorial bounds on the minimum number of edges
that are always sufficient and sometimes necessary.

T

2

Figure 1: A triangular container with disjoint convex ob-
stacles.

1 Introduction

A given graph is said to be k-connected if it remains
connected upon deleting any k£ — 1 vertices along with
the incident edges. A k-connected graph has k vertex-
disjoint paths between any two nodes. An important
area of research in graph theory and computational
geometry is the problem of connectivity augmenta-
tion. The k-connectivity augmentation problem asks
for the minimum number of edges needed to augment
a graph to make it k-connected. Edge-connectivity
augmentation is defined analogously.

In abstract graphs, the connectivity augmentation
problem can be solved in linear time for k = 2 [4, 6],
and in polynomial time for any fixed k [5]. For a given
planar graph, the augmentation that has to preserve

*Dept. of Computer Science, Tufts University, Medford,
MA. This material is based upon work supported by the
National Science Foundation under Grant No. 0830734.
{maljub01,barequet,mishaque,dls,awins102}@cs.tufts.edu

TDept. of Computer Science, Technion, Haifa, Israel

tDept. of Mathematics, University of Calgary, AB, Canada.
cdtoth@ucalgary.ca

Gill Barequet®*
Csaba D. Téth

Mashhood Ishaque*

Andrew Winslow*

graph planarity, is called planarity-preserving aug-
mentation. Unfortunately, the problem is NP-hard
even for k = 2 [3]. For a given planar graph that has
already been embedded in the plane, if the augmen-
tation has to respect the given embedding, the aug-
mentation is said to be embedding preserving. For a
planar straight-line graph, the minimum embedding-
preserving augmentation using noncrossing straight-
line edges is NP-Hard for any 2 < k <5 [7].

There are two possible approaches to get around
the NP-Hardness of the augmentation problem:
(i) approximation algorithms (e.g., there is a 2-
approximation algorithm for planarity-preserving
connectivity augmentation for k¥ = 2, which runs in
O(nlogn) time [3]); and (4) proving combinatorial
bounds on the number of new edges in terms of the
number of vertices (e.g., Al-Jubeh et al. [2] show
that 2n — 2 new edges are always sufficient and some-
times necessary for the embedding-preserving 3-edge-
connectivity augmentation of a planar straight line
graph with n vertices if augmentation is possible).
T6th and Valtr [8] characterized the planar straight
line graphs that can be augmented to 3-connectivity.
These graphs are called 3-augmentable. It remains an
open problem what is the minimum number of new
edges that are sufficient for the 3-connectivity aug-
mentation of every 3-augmentable planar straight line
graphs with n vertices.

In this paper we consider a special type of augmen-
tation problem (see the formulation below) and pro-
vide combinatorial bounds on the minimum number
of necessary and sufficient new edges.

Figure 2: Adding noncrossing straight-line edges so as
to make each obstacle connected by three vertex-disjoint
paths to the triangular container.

25

26th European Workshop on Computational Geometry, 2010

1.1 Problem Definition

Given a set of k disjoint convex polygonal obstacles
inside a triangular container, add straight-line non-
crossing edges such that each obstacle has 3 vertex-
disjoint paths to the three vertices of the container.
The three paths should start at distinct vertices of the
obstacle and end at distinct vertices of the container.
They can use the edges of the obstacles arbitrarily.

1.2 When is Augmentation Possible?

If the obstacles are not convex, it might not be pos-
sible at all to add edges such that each obstacle has
three vertex-disjoint paths to the container. In Fig-
ure 3 the inner-most obstacle “sees” only three other
vertices, all of which belong to the same obstacle.
Since it is not possible to route three vertex disjoint
paths along the same obstacle without adding edges
in the interior of the obstacle, this example is not aug-
mentable.

Figure 3: Non-convex obstacles may not be connected to
the boundary by three vertex-disjoint paths.

For a set of disjoint convex obstacles inside the
triangular container, every triangulation of the free
space around the obstacles is a 3-connected graph [8].
It is easy to see that there are three vertex-disjoint
paths from every obstacle to the container along the
edges of a triangulation. For any particular obsta-
cle, add a new internal node p and connect it to the
boundary of the obstacle at three distinct vertices.
Similarly, add a node ¢ outside the triangular con-
tainer and add the three edges connecting g to the
corners of the container. It can be easily verified
that the new graph is still 3-connected, which implies
that there are three vertex-disjoint paths from p to g.
Hence, there are three vertex-disjoint paths that start
at distinct vertices of the obstacle and end at distinct
vertices of the container. These three paths can be
determined using any max-flow algorithm [1].

Although a triangulation contains the desired aug-
mentation as a subgraph, it may contain too many
edges. In this paper we show how to perform this
augmentation by using much fewer edges.

26

Figure 4: A triangulation of the free space around convex
obstacles in a triangular container is a 3-connected graph,
and it contains the desired augmentation as a subgraph.

1.3 Our Results

e For k convex obstacles, where k can be arbitrar-
ily large, 3k — 1 edges are sometimes necessary
(Section 2).

e For k convex obstacles, where k can be arbitrarily
large but each obstacle has at most s sides, 3k —

’;:} edges are sometimes necessary (Section 2).

e For Lk convex obstacles, 3k edges are always
enough (Section 3).

Once each obstacle has three vertex-disjoint paths
to the container, we can get a 3-connected planar
graph by adding an edge for each degree-2 vertex [2].

2 Lower Bound Constructions

When there is only one convex obstacle, three edges
are obviously required (and sufficient) for connecting
it to the container. However, for k (an arbitrarily-
large k) convex obstacles, at least 3k — 1 edges are
necessary in the worst case. Our lower bound con-
struction is depicted in Figure 5. It includes one large
convex obstacle which hides one small obstacle be-
hind each side (except the base), such that each small
obstacle can “see” only three different vertices (the
top vertex of the container and two adjacent vertices
of the large obstacle). Thus, we need three edges for
each small obstacle and only two edges for the larger
obstacle, connecting its two bottom vertices to the
two endpoints of the base of the container.

The large obstacle in the above construction is a
convex k-gon, and so the lower bound 3k — 1 does
not hold if the every obstacle has at most s sides,
for some fixed 3 < s < k. In that case we use a
similar construction, in which a big s-sided obstacle
hides s — 1 smaller obstacles behind all its sides ex-
cept one, and the construction is repeated recursively.
This construction corresponds to a complete tree with

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

L AN

Figure 5: k convex obstacles, edges needed: 3k — 1.

branching factor s — 1, in which the smaller obstacles
are the children of a larger obstacle. For a fixed value
of s, we set h as the height of the complete (s —1)-ary
tree. Thus, the number of obstacles,

(s—1)h -1
T2 M

can be as high as we desire. The number of leaves
in the tree is (s — 1)"~1. A simple manipulation of
Equation 1 shows that this number equals k£ — ’::}
Hence, the number of internal nodes in the tree is ’;j .
For the 3-vertex-disjoint path augmentation, each leaf
obstacle needs three edges and each non-leaf obstacle
needs two edges. The total number of edges required

is, thus,

k—1 k—1 k-1
A IRV W (A RN Y A
3<k 8—1>+ (s—l) 3k s—1’

which ranges from %k + % to 3k —1for 3<s<k.

k:

Figure 6: Construction for triangular obstacles.

3 The Upper Bound

We now prove that 3k edges are always sufficient
for making the given set of obstacles O 3-vertex-
connected to the triangular container C. Initially,
there exists a triangulation T of the free space inside
C that is the 3-connected, which is not always true for
non-convex containers. The algorithm recurses such
that each subproblem is on a polygonal container P
with 3-connected triangulation (Lemmas 1 and 2).
We designate the three corners of the C with the
colors red (vg), green (vg), and blue (vg). Each ob-
stacle is charged up to three times, once for each color.

An obstacle is marked to indicate its connection to a
particular colored corner of the container. If a path
to a designated vertex goes through another obstacle,
then the latter obstacle is charged for one of the edges.
For each edge at least one obstacle is charged, and no
obstacle is charged more than thrice, which implies
that the entire process adds at most 3k edges. The
procedure AUGMENT implements this process, which
is invoked by a call AUGMENT(C,vg,vg,vB).

Figure 7: Vertex-disjoint paths from the obstacle o.

Algorithm 1 AUGMENT(P, vg, vg, VB)

Pick an arbitrary obstacle o inside P.
Find three vertex-disjoint paths nr, 7g, and 7 to
the vertices vg, vg, and vp, respectively.
for all paths m;, where i ¢ {R,G, B} do
7m; = SHORTENPATH(;)
for all edges e along the path m; from o to v; do
Mark the obstacle incident to e for v;
if e is a part of some obstacle boundary then
Go to next edge.
else if e in incident to the boundary of P then
Add the edge e and exit loop.
else if ¢ in incident to the vertex v; then
Add the edge e and exit loop.
else if e is incident to an marked obstacle
then
Add the edge e and exit loop.
else
Add the edge e.
end if
end for
end for
HANDLESUBPROBLEM(P, 0, TR, T¢)
HANDLESUBPROBLEM(P, 0, Tr, 7)
HANDLESUBPROBLEM(P, 0, g, ¢)

Lemma 1 For a polygon P such that every triangu-
lation of P contains a 2-cut C; then all the designated
vertices on P are not on the same side of Cj.

Proof. As a result of the subroutine SHORTENPATH,
the polygonal boundary on the either side of any 2-cut
cannot consist of only one path. Since there are al-
ways two vertex disjoint paths forming the polygonal

27

26th European Workshop on Computational Geometry, 2010

Figure 8: Recursing on the subproblems. Empty circles
denote designated vertices in subproblems.

Figure 9: Shortening a vertex disjoint path.

Algorithm 2 SHORTENPATH(7)

Let {v1,va,...,0mn} be the vertices in path .
while for some ¢ < j — 1, v; and v; see each other
do
Let P’ be closed polygon formed by 7 and the line
segment v;v;. Assume we are allowed to travel
along 7.
Let 7; ; be shortest geodesic path between v; and
v; inside P’.
Replace the portion of m between v; and v; by
T3+
Exit loop when 7 stops changing.
end while
return w

boundary, there must a designated vertex or a vertex
of the obstacle o present. (I

Lemma 2 Given three vertex-disjoint paths from an
obstacle to vgr, vg, and vp, the path to vg cannot
touch the boundary of the polygon P between the
vertices vg and vg.

Proof. The lemma follows from the fact that the
three paths are vertex disjoint. (Il

4 Open problems

e Close the gap between the lower and upper
bounds. We conjecture that the lower bound is
the correct one. Hence, give an augmentation
algorithm that adds only 3k — % edges.

28

Algorithm 3 HANDLESUBPROBLEM(P, 0, m;, ;)

Obstacle o together with 7; and 7; creates a closed
polygon P’ inside P
Let v;, v; be the designated vertices of the paths m;
and 7;.
Let l € {R,G,B}\ {4,j}.
Designate a vertex on the obstacle o as v;.
if There is a 3-connected triangulation of P’ then
AUGMENT(P’, v;,v;,v;)
else
Let C; be the leftmost 2-cut.
Let P; be the polygon created by C}.
Let vg be one of the designated vertices the right
of the C; (w.lLo.g).
Designate the two vertices of the 2-cut as Vi and
Vi
AUGMENT(Py, vg,vG,vB)
HANDLESUBPROBLEM(P \ P, Cy,m;, 7j)
end if

e Provide combinatorial bounds for 3-connectivity
augmentation of 2-regular graphs.

e Similarly, set combinatorial bounds for 3-
connectivity augmentation of a set of line seg-
ments (a 1-regular graph).

Acknowledgements. We would like to thank anony-
mous reviewers for their useful suggestions.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and
James B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, February 1993.

[2] Marwan Al-Jubeh, Mashhood Ishaque, Krist6f Rédei,
Diane L. Souvaine, and Csaba D. Téth. Tri-edge-
connectivity augmentation for planar straight line
graphs. In ISAAC, pages 902-912, 2009.

[3] P. O. Bex, Goos Kant, and Hans L. Bodlaender. Pla-
nar graph augmentation problems. In WADS, pages
286—298, 1991.

[4] Kapali P. Eswaran and Robert Endre Tarjan. Aug-
mentation problems. SIAM J. Comput., 5(4):653-665,
1976.

[5] Bill Jackson and Tibor Jorddn. Independence free
graphs and vertex connectivity augmentation. J.
Comb. Theory Ser. B, 94(1):31-77, 2005.

[6] J4n Plesnik. Minimum block containing a given graph.
Archiv der Mathematik, 27(1):668-672, 1976.

[7] Ignaz Rutter and Alexander Wolff. Augmenting the
connectivity of planar and geometric graphs. Flec-
tronic Notes in Discrete Mathematics, 31:53-56, 2008.

[8] Csaba D. T6th and Pavel Valtr. Augmenting the edge
connectivity of planar straight line graphs to three. In
XIIT Spanish Meeting on Comput. Geom., 2009.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Blocking Coloured Point Sets*

Greg Aloupis' Brad Ballinger?

Sébastien Collette?

Stefan Langerman¥ Attila Pérl

David R. Wood**

1 Introduction

This paper studies problems related to visibility and
blocking in sets of coloured points in the plane. A
point x blocks two points v and w if x is in the in-
terior of the line segment vw. Let P be a finite set
of points in the plane. Two points v and w are vis-
ible with respect to P if no point in P blocks v and
w. The wvisibility graph of P has vertex set P, where
two distinct points v, w € P are adjacent if and only
if they are visible with respect to P. A point set B
blocks P if PN B = () and for all distinct v,w € P
there is a point in B that blocks v and w. That is, no
two points in P are visible with respect to P U B, or
alternatively, P is an independent set in the visibility
graph of P U B.

A set of points P is k-blocked if each point in P is
assigned one of k colours, such that each pair of points
v,w € P are visible with respect to P if and only if v
and w are coloured differently. Thus v and w are as-
signed the same colour if and only if some other point
in P blocks v and w. We say P is {ny, ..., nx }-blocked
if it is k-blocked and for some labelling of the colours
by the integers [k] := {1,2,...,k}, the i-th colour
class has exactly n; points, for each i € [k]. Equiva-
lently, P is {nq,...,ng}-blocked if the visibility graph
of P is the complete k-partite graph K(ni,...,ng).
See Figure [I] for an example.

The following fundamental conjecture regarding k-
blocked point sets is the focus of this paper.

Conjecture 1 For each integer k there is an integer
n such that every k-blocked set has at most n points.

*Initiated at the 2009 Bellairs Workshop on Computational
Geometry. The authors are grateful to Godfried Toussaint and
Erik Demaine for organising the workshop, and to the other
participants for providing a stimulating working environment.

TInstitute of Information Science, Academia Sinica, Taipei,
Taiwan (aloupis.greg@gmail.com).

fDepartment of Mathematics, Humboldt State University,
Arcata, California, U.S.A (bjb86@humboldt.edu).

8Chargé de Recherches du F.R.S.-FNRS. Département
d’Informatique, Université Libre de Bruxelles, Brussels, Bel-
gium (sebastien.collette@ulb.ac.be).

IMaitre de Recherches du F.R.S.-FNRS, Département
d’Informatique, Université Libre de Bruxelles, Brussels, Bel-
gium (stefan.langerman@ulb.ac.be).

IDepartment of Mathematics, Western Kentucky Univer-
sity, Bowling Green, Kentucky, U.S.A. (attila.por@wku.edu).

**Dept. of Mathematics & Statistics, The University of Mel-
bourne, Melbourne, Australia (woodd@unimelb.edu.au). QEII
Research Fellow supported by the Australian Research Council.

Figure 1: A {3,3,3,3}-blocked point set.

A k-set is a multiset of k positive integers. A
k-set {ni,...,ni} is representable if there is an
{n1,...,ni}-blocked point set. As illustrated in Fig-
ure [2| it follows from the characterisation of 2- and
3-colourable visibility graphs by Kéra et al. [6] that
{1,1} and {1,2} are the only representable 2-sets,
and that {1,1,1}, {1,1,2}, {1,2,2} and {2,2,2} are
the only representable 3-sets. In particular, every 2-
blocked point set has at most 3 points, and every 3-
blocked point set has at most 6 points. This proves
Conjecture [1] for £ < 3. Later we prove Conjecture

for k = 4.
(/\ /N
(1,1,1) 1,1,

& z% Q;Qé EE
(1,2,2) (1,2,2)

Figure 2: The 2-blocked and 3-blocked point sets.

29

26th European Workshop on Computational Geometry, 2010

This paper makes the following contributions. Sec-
tion [2] introduces some background motivation. Sec-
tion [3] describes methods for constructing k-blocked
sets from a given (k — 1)-blocked set. These meth-
ods lead to a characterisation of representable k-sets
when each colour class has at most three points. Sec-
tion [4] studies the k = 4 case in more detail. In par-
ticular, we characterise the representable 4-sets, and
conclude that the example in Figure [I] is in fact the
largest 4-blocked point set. Section[f]introduces a spe-
cial class of k-blocked sets (so-called midpoint-blocked
sets) that lead to a construction of the largest known
k-blocked sets for infinitely many values of k.

Also note the following easily proved properties.

Lemma 1 ([2]) At most three points are collinear in
every k-blocked point set.

Lemma 2 ([2]) Each colour class in a k-blocked
point set is in general position (no three collinear).

2 Some Background Motivation

Much recent research on blockers began with the fol-
lowing conjecture by Kéra et al. [0].

Conjecture 2 (Big-Line-Big-Clique Conjecture
For all integers t and { there is an integer n such that
for every finite set P of at least n points in the plane:

e P contains ¢ collinear points, or

e P contains t pairwise visible points (that is, the
visibility graph of P contains a t-clique).

Conjecture [2]is true for ¢t < 5, but is open for ¢t > 6
or £ > 4; see [10,1]. Jan Kara suggested the following
weakening of Conjecture

Conjecture 3 ([10]) For all integers t and ¢ there is
an integer n such that for every finite set P of at least
n points in the plane:

e P contains ¢ collinear points, or

e the chromatic number of the visibility graph of
P is at least t.

Clearly Conjecture [implies Conjecture

Proposition 3 Conjecture[dwith¢ = 4 and t = k+1
implies Conjecture

Proof. Assume Conjecture [3| holds for { =4 and ¢t =
k+1. Suppose P is a k-blocked set of at least n points.
By Lemmal[l] at most three points are collinear. Thus
the first conclusion of Conjecture [3] does not hold.
Since the visibility graph of P is k-colourable, the
second conclusion of Conjecture[3]does not hold. This
contradiction proves that every k-blocked set has less
than n points, and Conjecture [I] holds. O

30

[6])

Since Conjecture [2] holds for ¢ < 5, Conjecture
holds for k < 4. Let b(n) be the minimum integer
such that some set of n points in the plane in general
position is blocked by some set of b(n) points. Linear
lower bounds on b(n) are known [7, [3], but many au-
thors have conjectured or stated as an open problem
that b(n) is super-linear.

Conjecture 4 ([7, 9} 3, 10]) 2

— 00 as m — 00.

Pér and Wood [10] proved that Conjecture[d]implies
Conjecture 3] and thus implies Conjecture That
Conjecture [I] is implied by a number of other well-
known conjectures, yet remains challenging, adds to
its interest.

3 k-Blocked Sets with Small Colour Classes

We now describe some methods for building blocked
point sets from smaller blocked point sets.

Lemma 4 Let G be a visibility graph. Let i €
{1,2,3}. Furthermore suppose that if i > 2 then
V(G) # 0, and if i = 3 then not all the vertices of
G are collinear. Let G; be the graph obtained from G
by adding an independent set of i new vertices, each
adjacent to every vertex in G. Then G1, G5, and Gj3
are visibility graphs.

Proof. For distinct points p and ¢, let pg denote the
ray that is (1) contained in the line through p and g,
(2) starting at p, and (3) not containing ¢g. Let £ be
the union of the set of lines containing at least two
vertices in G.

i = 1: Since L is the union of finitely many lines,
there is a point p € L. Thus p is visible from every
vertex of G. By adding a new vertex at p, we obtain
a representation of G as a visibility graph.

1 = 2: Let p be a point not in £. Let v be a vertex
of G. Each line in £ intersects vp in at most one point.
Thus vp \ £ # 0. Let ¢ be a point in vp \ £. Thus p
and ¢ are visible from every vertex of G, but p and ¢
are blocked by v. By adding new vertices at p and g,
we obtain a representation of Gy as a visibility graph.

t = 3: Let u,v,w be non-collinear vertices in G.
Let p be a point not in £ and not in the convex hull
of {u,v,w}. Without loss of generality, wo N pw # 0.
There are infinitely many pairs of points ¢ € up and
r € vp such that w blocks ¢ and r. Thus there are
such ¢ and r both not in £. By construction, u blocks
p and ¢, and v blocks p and r. By adding new vertices
at p, ¢ and r, we obtain a representation of G3 as a
visibility graph. O

We now characterise the representable (> 4)-sets,
assuming each colour class has at most three points.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Proposition 5 A k-set {n1,...,ny} is representable
whenever k > 4 and each n; < 3, except for {1,3,3,3}
which is not representable [2].

Proof. We say {ni,...,nx} contains
{ni,...,mi—1,ni41,...,nx} for each i € [k]. We
proceed by induction on k. If {nj,...,n;} contains
a representable (k — 1)-set, then {nj,...,n;} is
also representable by Lemma (Since k > 4 the
assumptions in Lemma [| hold.) Now assume that
every (k — 1)-set contained in {nq,...,nk} is not rep-
resentable. By induction, we may assume that & < 5.
Moreover, if k = 5 then {nj,...,ns} must contain
{1,3,3,3} (since by induction all other 4-sets are
representable). Similarly, if & = 4 then {n1,...,n4}
must contain {1,1,3}, {1,2,3}, {1,3,3}, {2,2,3},
{2,3,3} or {3,3,3} (since {1,1,1}, {1,1,2}, {1,2,2}
and {2,2,2} are representable). The following table
describes the construction in each case.

{1,1,1,z} contains {1,1,1}
{1,1,2,z} contains {1,1,2}
{1,1,3,3} Figure |1| minus {r1,g3,73,91}
{1,2,2,z} contains {1, 2,2}
{1,2,3,3} Figureminus {91,93,73}
{2,2,2,z} contains {2,2,2}
{2,2,3,3} Figure (1| minus {gs,r3}
{2,3,3,3} Figure [1| minus g3
{1,1,3,3,3} contains {1,1,3,3}
{1,2,3,3,3} contains {1,2,3,3}
{1,3,3,3,3} contains {3,3,3,3}

4 4-Blocked Point Sets

As shown in Section [2] Conjecture [I] holds for k£ <
4. That is, every 4-blocked set has bounded size.
An explicit bound of 27° follows from a result of
Abel et al. [1], which can be improved to 257 using a
recent result by Dumitrescu et al. [3]; see [2]. Before
characterising all representable 4-sets, we give a sim-
ple proof that every 4-blocked point set has bounded
size.

Proposition 6 Every 4-blocked set has at most 36
points.

Proof. Let P be a 4-blocked set. Suppose that
|P| > 37. Let S be the largest colour class. Thus
|S| > 10. By Lemma S is in general position. By a
theorem of Harborth [4], some 5-point subset K C S'is
the vertex-set of an empty convex pentagon conv(K).
Let T := PN (conv(K)— K). Since conv(K) is empty
with respect to S, each point in 7" is not in S. Thus
T is 3-blocked. K needs at least 8 blockers (5 block-
ers for the edges on the boundary of conv(K), and 3
blockers for the chords of conv(K)). Thus |T| > 8.
But every 3-blocked set has at most 6 points, which
is a contradiction. Hence |P| < 36. O

Theorem 7 A 4-set {a,b, c,d} is representable if and
only if:

e {a,b,c,d) = (4,2,2,1}, or
e {a,b,c,d) = (4,2,2,2}, or
e all of a,b,c,d < 3 except for {3,3,3,1}

Proof Sketch. Figure |3| shows {4,2,2,1}-blocked
and {4, 2,2, 2}-blocked point sets. When a,b,¢,d < 3,
the required constructions are described in Propo-
sition [} Now we prove the converse. Let P be
a 4-blocked point set. We prove [2] that if some
colour class S contains a 4-point subset K, such that
conv(K) is a convex quadrilateral that is empty with
respect to S, then P is {4,2,2,1}-blocked. Moreover,
if some colour class S has at least five points, then by
Lemma [2] and a theorem of Esther Klein, S contains
such a subset K—implying P is {4,2,2,1}-blocked,
which is a contradiction. Hence each colour class has
at most four points. Let S be a largest colour class. If
S consists of four points in convex position, then P is
{4,2,2,1}-blocked (just set K := §). If S consists of
four points in nonconvex position, then we prove [2]
that P is {4,2,2,2}-blocked. Otherwise |S| < 3, and
we are done by Proposition O

Figure 3: {4,2,2 1}-blocked and {4, 2,2, 2}-blocked
point sets.

Corollary 8 Every 4-blocked set has at most 12
points, and there is a 4-blocked set with 12 points.

5 Midpoint-Blocked Point Sets

A k-blocked point set P is k-midpoint-blocked if for
each monochromatic pair of distinct points v,w € P
the midpoint of vw is in P. Of course, the midpoint
of 7w blocks v and w. A point set P is {n1,...,ng}-
midpoint-blocked if it is {nq,...,ny}-blocked and k-
midpoint-blocked. For example, the point set in Fig-
ure (1] is {3, 3, 3, 3}-midpoint-blocked.

Another interesting example is the projectiorEI of
[3]7. With d = 1 this point set is {2, 1}-blocked, with
d =21t is {4,2,2,1}-blocked, and with d = 3 it is
{8,4,4,4,2,2,2,1}-blocked. In general, each set of

1If G is the visibility graph of some point set P C R%, then
G is the visibility graph of some projection of P to R2.

31

26th European Workshop on Computational Geometry, 2010

points with exactly the same set of coordinates equal
to 2 is a colour class, there are 29~% colour classes
of points with exactly ¢ coordinates equal to 2, and
3]% is {(%) x 2* : i € [0, d]}-midpoint-blocked and 2?-
midpoint-blocked.

Herndndez-Barrera et al. [B] defined m(n) to be
the minimum number of midpoints determined by
some set of n points in general position in the plane,
and proved that m(n) < cn'°223 = cpl585- This
upper bound was improved by Pach [8] (and later
by Matousek [7]) to m(n) < ncV°8". Herndndez-
Barrera et al. [5] conjectured that m(n) is super-
linear, which was verified by Pach [8]; that is, % —
oo as n — oo. Pér and Wood [I0] proved the fol-
lowing more precise version: For some ¢ > 0, for
all € > 0 there is an integer N(e) such that m(n) >
en(logn)t/(3+9) for all n > N(e).

Theorem 9 For each k there is an integer n such that
every k-midpoint-blocked set has at most n points.
More precisely, there is an absolute constant ¢ and
for each € > 0 there is an an integer N(e), such that
for all k, every k-midpoint-blocked set has at most
k max{N (¢), c*=D*"} points.

Proof. Let P be k-midpoint-blocked set of n points.
We may assume that # > N(e). Let S be a set of
exactly s := [%] monochromatic points in P. Thus
S is in general position by Lemma [2| And for every
pair of distinct points v, w € S the midpoint of 7w is
in P — 8. Thus cZ(log 2)1/G+) < m(s) <n—s <
n(1—). Hence (log %)Y/ 3+<) < (k — 1)/c, implying

n < k2((k=1)/e)*** The result follows. O

We now construct k-midpoint-blocked point sets
with a ‘large’ number of points. The method is based
on the following product of point sets P and (). Let
(v, Y») be the coordinates of each v € P U Q. Let
P x @ be the point set {(v,w): v € P,w € @} where
(v, w) is at (X4, Yy, Ty, Yo) in 4-dimensional space. For
brevity we do not distinguish between a point in R*
and its image in an occlusion-free projection of the
visibility graph of P x @ into R2.

Lemma 10 If P is a {ny,...,ng }-midpoint-blocked
point set and Q is a {my,...,my}-midpoint-blocked
point set, then P x Q is {n;m; : i € [k],j € [{]}-
midpoint-blocked.

Proof. Colour each point (v,w) in P x @ by the pair
(col(v),col(w)). There are n;m; points for the (i, 7)-
th colour class. It is straightforward to verify that two
points in P x @ are blocked if and only if they have
the same colour. Thus P x @ is blocked. Since every
blocker is a midpoint, P x) is midpoint-blocked. [

Say P is a k-midpoint blocked set of n points. By
Lemma the i-fold product P := Px---x Pisa k'-
blocked set of n' = (k%)!°&: ™ points. Taking P to be

32

the {3, 3,3, 3}-midpoint-blocked point set in Figure|[]
we obtain the following result, which describes the
largest known construction of k-blocked point sets.

Theorem 11 For all k a power of 4, there is a k-
blocked set of k%8412 = k179 points.

References

[1] Zachary Abel, Brad Ballinger, Prosenjit Bose,
Sébastien Collette, Vida Dujmovi¢, Ferran Hur-
tado, Scott D. Kominers, Stefan Langerman, At-
tila Pér, and David R. Wood. Every large point
set contains many collinear points or an empty
pentagon. In Proc. 21st Canadian Conference on
Computational Geometry (CCCG ’09), pages 99—
102, 2009. http://arxiv.org/abs/0904.0262.

[2] Greg Aloupis, Brad Ballinger, Sébastien Collette,
Stefan Langerman, Attila Pér, and David R.
Wood. Blocking coloured point sets, 2010. http:
//arxiv.org/abs/1002.0190

[3] Adrian Dumitrescu, Jdnos Pach, and Géza Té6th.
A note on blocking visibility between points. Ge-
ombinatorics, 19(1):67-73, 2009. http://www.cs.
uwm. edu/faculty/ad/blocking.pdf.

[4] Heiko Harborth. Konvexe Fiinfecke in ebenen
Punktmengen. Elem. Math., 33(5):116-118, 1978.

[5] Antonio Herndndez-Barrera, Ferran Hurtado,
Jorge Urrutia, and Carlos Zamora. On the mid-
points of a plane point set. Manuscript, 2001.

[6] Jan Kéra, Attila Pér, and David R. Wood. On the
chromatic number of the visibility graph of a set
of points in the plane. Discrete Comput. Geom.,
34(3):497-506, 2005.

[7] Jiti Matousek. Blocking visibility for points
in general position. Discrete Comput. Geom.,
42(2):219-223, 2009.

[8] Janos Pach. Midpoints of segments induced
by a point set. Geombinatorics, 13(2):98-
105, 2003. http://www.math.nyu.edu/~pach/
publications/midpoint.ps

[9] Rom Pinchasi. On some unrelated problems
about planar arrangements of lines. In Work-
shop II: Combinatorial Geometry. Combinatorics.
UCLA. 2009. http://11011110.1ivejournal.
com/184816.html.

[10] Attila Pér and David R. Wood. On visibil-
ity and blockers. 2009. http://arxiv.org/abs/
0912.1150.

http://arxiv.org/abs/0904.0262
http://arxiv.org/abs/1002.0190
http://arxiv.org/abs/1002.0190
http://www.cs.uwm.edu/faculty/ad/blocking.pdf
http://www.cs.uwm.edu/faculty/ad/blocking.pdf
http://www.math.nyu.edu/~pach/publications/midpoint.ps
http://www.math.nyu.edu/~pach/publications/midpoint.ps
http://11011110.livejournal.com/184816.html
http://11011110.livejournal.com/184816.html
http://arxiv.org/abs/0912.1150
http://arxiv.org/abs/0912.1150

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Computing the depth of an arrangement of axis-aligned rectangles
in parallel”

Helmut Altt

Abstract

We consider the problem of computing the depth of
the arrangement of n axis-aligned rectangles in the
plane, which is the maximum number of rectangles
containing a common point. For this problem we give
a sequential O(nlogn) time algorithm, and a parallel
algorithm with running time O(log® n) in the classical
PRAM model. We also describe how to adopt the par-
allelization to a shared memory machine model with
a fixed number of processing units.

1 Introduction

In this paper we consider a basic geometric problem:
how to compute the depth of the arrangement of n
axis-aligned rectangles in R?. The depth of a point
p is defined as the number of rectangles containing p,
and the depth of the arrangement is the maximum
depth over all points in R?, or, equivalently, it is the
maximum number of rectangles that contain a com-
mon point.

We describe a parallel algorithm for this problem
for a shared memory parallel machine model. The
algorithm has a running time O(log? n) and total work
O(nlog®n) in the classical EREW-PRAM model. We
also describe how to adopt the parallelization to a
more realistic assumption of having a fixed number
k of processing units in a shared memory machine,
which fits better the modern multi-core processors.

The current trend in the microprocessor industry
is to increase the performance in computing not by
increasing the CPU clock rates but by multiple CPU
cores working on shared memory and common cache.
This trend in the hardware development makes the de-
sign of parallel algorithms once again an active topic
in the algorithmic community.

In this paper we first describe a sequential
O(nlogn) time algorithm for computing the depth
of the arrangement of axis-aligned rectangles in the
plane. Namely, we construct a balanced search tree
on the z-coordinates of the corners of rectangles and
then perform a plane sweep along the y-axis, while
updating the box coverage information in the tree.

*This research was performed in scope of the DFG-project
“Parallel algorithms in computational geometry with focus on
shape matching” under the contract number AL 253/7-1.

TInstitute of Computer Science, Freie Universitiat Berlin,
{alt,scharf}@mi.fu-berlin.de

Ludmila Scharf*

To our knowledge no O(nlogn) algorithm for the
depth problem has been given before explicitly, al-
though the result is somehow “folklore” knowledge in
the computational geometry community. In fact, the
scheme of algorithms given for solving Klee’s mea-
sure problem (KMP), i.e., computing the volume of
the union of n axis-parallel boxes, can be used for
computing the depth of arrangements. For the two-
dimensional KMP Bentley described but did not pub-
lish such an algorithm [2] the idea of which is given in
[6], however. Our algorithm is similar to some extent.
We develop and describe it in detail, mostly in or-
der to derive from it in Section 3 the efficient parallel
algorithm for the problem.

For the applications of the depth computation prob-
lem we mention two examples: One is a geometric
pattern matching problem. For two m-point sets A
and B in R? finding a transformation minimizing the
directed L .-Hausdorff distance from A to B can be
reduced to finding the depth in an arrangement of
O(m?) boxes. Another example is a clustering prob-
lem: For a given set of n points in R? and a given
radius r find a L..-disk of radius r containing the
largest number of points, that is, the densest cluster
of radius r. This clustering problem is dual to de-
termining the deepest point in the arrangement of n
boxes with side length 2r.

For general shape (algebraic) regions, not just axis-
aligned rectangles, there is no better algorithm known
for computing the depth of their arrangement than to
construct the complete arrangement and then to tra-
verse it. For arrangements of disks the problem is
known to be 3-SUM hard [1], so sub-quadratic algo-
rithms are not likely to exist. For an arrangement
of axis-aligned boxes in arbitrary dimension d Chan
[3] describes a sequential algorithm with running time
O((n%2/10g?? 1 n) log??logn) for d > 3.

2 Sequential Algorithm

In this section we describe the sequential algorithm
for computing the depth of the arrangement of axis-
aligned rectangles.

The general idea is the following: For a given set
of n axis-aligned rectangles we build a balanced bi-
nary search tree 7' on the x-coordinates of the verti-
cal sides of the rectangles, so that all z-coordinates
are in the leaves of the tree. Let x1,xo,..., %2, be
the z-coordinates of the vertical sides of the rectan-

33

26th European Workshop on Computational Geometry, 2010

gles in sorted order. With the leaf labeled with z;,
i=1,...,2n — 1, we associate the interval [x;, Z;41).
The last leaf, labeled with x5, is associated with the
interval [zo,,xo,]. With an internal node v we asso-
ciate the union of the intervals of its children. Space
requirement for the tree is linear in the number of
rectangles.

Next we perform a top-down sweep along the y-axis.
Each sweepline event, i.e., a y-coordinate of the top
or bottom of a rectangle, has two z-coordinates a and
b of the vertical sides of the corresponding rectangle
and an event value d associated with it. The event
value is d = 1 if it is the top of the rectangle (the
rectangle is “opened”) and d = —1 if it is the bottom
(the rectangle is “closed”).

To process a sweepline event we traverse the tree T’
from the root node to the leaves labeled a and b. In
the nodes of the tree we want to count the number of
rectangles covering the associated z-interval, and to
update this information with each y-event. Of course,
we cannot store this information directly and update
it for all covered nodes for each rectangle, since that
could make up to linear time per update.

Instead, we maintain in every internal node v for
the current state of the sweepline in counters [and
r the number of rectangles covering the interval of
the left and right child of v that were opened minus
the number of ones closed since the last traversal of
that child. Additionally, counters [,, and r,, store
the maximum value of the | and r counters, respec-
tively, since the last traversal of the corresponding
child node. Every leaf node contains counters ¢ and
Cm, which keep track of the current and maximum
coverage of the associated interval during the sweep.

The information in the counters is exactly as de-
scribed above when v is updated. For subsequent
events that do not traverse v the information may
get outdated. Thus, the counters of v store the up-
dates that happened between the last traversal of the
corresponding child node and the last traversal of v.

During each traversal of v by one of the searches
the counter values are propagated from v to its child
on the search path in temporary counters ¢ and t,,,
which are initially set to 0. I.e., once we updated v
as described below and move to its left (right) child,
t and t,, are set to the values of v.l and v.l,, (v.r and
v.Ty), and then v.l, v.ly, (v.r, v.ry) are reset to 0.
Thus, when we enter the child node w the counter ¢ is
the additive change since the last update of w of the
number of open rectangles that completely cover the
interval of w; t,, is either the maximum value of that
change between the last update of w and the current
event, or 0 if the additive updates were all negative.

An update of an internal node v is performed
slightly differently depending on whether both z-
coordinates a and b associated with the event are con-
tained in the subtree rooted at v (see Procedure 1:

34

SEARCHBOTH), or the search paths for a and b split
earlier in the tree and the subtree of v contains only a
(see Procedure 2: SEARCHLEFT) or only b (procedure
SEARCHRIGHT).

If both a and b are contained in the subtree rooted
at v we need to update the counters of v only with the
values propagated from the parent node. For [and r
we simply add the value of ¢. The max-counters (I,
and r,,) are set to the maximum of their old value,
and the sum of the old counter (I or r, resp.) and ¢,,.
If the paths to a and b split in the node v, we perform
two separate searches in the left and right subtrees.

Procedure 1 : SEarcHBoTH (v, a, b, t, t,,)

1 0.l = max(v.ly, v.0 + ty,)

2 V.1 = max(v.ry, 0.1 + ty)
svl=vl+t

4 vr=vr+t

5 if a < b <wv.x then

6 SEARCHBOTH (v.left, a, b, v.l, v.l;,)
7 vl=wvl, =0

8 if v.x < a < b then

9 SEARCHBOTH (v.right, a, b, v.r, v.ry)
10 V. =0Ty =0
11 if a <v.x < b then
12 SEARCHLEFT(v.left, a, v.l, v.iy,)
13 SEARCHRIGHT (v.right, b, v.r, v.r,,)
14 vl=wvl, =vr=vr,=0

After the path split we know that the current rect-
angle spans all intervals of the right subtrees of the
left search path, i.e., path to a, and all intervals of
the left subtrees of the right search path, i.e., path to
b. Therefore, for a node v on the left (right) search
path we also add the event value d to the counter r
(I). When we reach the leaves containing a and b we
can update the current and maximum depth of the
associated intervals.

Procedure 2 : SEARCHLEFT (v, 21, t, t,)

1 if 21 <w.x and v is an internal node then

2 VT = MAX (VT 0.1 + by, v + 4+ d)

3 vr=vr+t+d

4 SEARCHLEFT(v.left, x1, v.l + ¢,

5 max (v, v.l + t,,))

6 vl=wvl, =0

7 if 1 > v.x then

8 V.l = max(v.dy,, vl + ty,); vil=vl+t
9 SEARCHLEFT(v.right, x1, v.r 4+ t,
10 max(v.7m, 0.1 + ty))
11 v =07y, =0

12 if 1 = v.x and v is a leaf then
13 Cm =max (¢, ¢+ tm,c+t+d);e=c+t+d

After all sweepline events have been processed, the
depth of the arrangement is determined as the maxi-
mum of the ¢, counters of the leaf nodes.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

The correctness of the algorithm is based on the
following observation: Once we reach the bottom of a
rectangle, the counter c,, in the leaf node labeled with
the z-coordinate of its left vertical boundary contains
the maximum coverage of the associated z-interval be-
tween the highest y-coordinate and the y-coordinate
of the bottom of the rectangle. Since, clearly, every
maximally covered cell has a left vertical boundary
that is a part of a left boundary of a rectangle, and
thus covers at least one leaf interval, we capture at
least one cell with maximum depth this way.

If we want not only to compute the depth, but also
get a point with maximum depth, we can additionally
store a y-coordinate for each max-counter. This y-
coordinate has to be updated with the y-value of that
event which results in the counter update.

The time needed to construct the tree and to sort
the y-events is O(nlogn). Each of the 2n events is
processed in O(logn) time.

Theorem 1 summarizes the result of this section:
Theorem 1 The depth of an arrangement of n axis-
aligned rectangles in R? can be computed in time
O(nlogn) with O(n) additional memory.

3 Parallel Algorithm

To enable a parallel execution of the algorithm we
maintain so-called “history lists” in the nodes of the
tree T. A history list of a node v contains an en-
try for each event of the sweepline that traverses the
node v, i.e., for each y-coordinate associated with z-
coordinates a and b, such that a or b is contained in
the subtree rooted at v.

A history entry « of an internal node contains its
“timestamp” — the y-coordinate, the corresponding x-
values, the event value d and the counters I, 7, l,,, 7m,
as described in Section 2, and reset-flags p;, p.. The
reset flags indicate whether the values of the left or
right counters, respectively, “survive” until the next
event: The value of p;/p, is 0 if the event of o causes
the traversal of the left/right subtree, since in this
case the counter values are propagated to the subtree
and will be reset in the node v. Otherwise, the value
is 1. Additionally, every history event has a pointer to
the corresponding event, i.e., the event with the same
y-coordinate, in the parent node. A history entry of
a leaf node contains only its y-coordinate, the event
value d, and two counters ¢ and c,,.

Every y-event appears in at most two nodes of each
level of the tree and requires constant space. Thus,
the space for the tree is O(nlogn).

All information of a history event, except for the
counter values [, l,,,r,7mn, is known and can be set
during the tree construction. Now we can “fill out”
the counter values in the history lists starting with the
root node down to the leaves. The left/right counters
in all root node events are set to 0. For an internal
node v let a?) be the i-th history entry of v. Let ¢(*)

and t%) denote the values of r» and r,, of the corre-
sponding history entry of the parent node of v if v is
a right child of its parent node, and values of [and [,
otherwise. If a(? contains both z-coordinates a and

b associated with y(? then set
1@ — 7G=1) .pl(i—l) +¢@
15,3 = max{l(’ . l(i_l), 1G=1) -pl(

P = =)

(D) :max{rgfnpgfl), (i=1) pli= 1>+t<>}’

D) 44

where the values with the high-index (i — 1) denote
the values of the history event preceding o(?).

Also if a history event a(®) of a node v contains only
a, and a is in the right subtree of v, or if a(”) contains
only b, and b is in the left subtree of v, the counters are
set as above. That is, the values from the parent node
v are propagated to the corresponding child node but
the interval associated with the child is not completely
covered by the rectangle causing the event, and thus,
we do not need to consider the event value d.

In case a'? contains only a, and a is in the left
subtree of v, then the complete right subtree is cov-
ered by the current rectangle. Therefore, the right
counters are incremented by the event value d*):

P — (=1 =) 4y | g0) (5)
riy) = max {r%’l)pﬁ’”, D pD 140, r“’} (6)

The left counters are updated as in equations (1), (2).
In case o” contains only b, and b is in the right sub-
tree of v the left counters must be adjusted analo-
gously and the right counters are updated as in equa-
tions (3), (4). The counters ¢ and ¢,, of the leaf nodes
are updated analogously.

Then, after all events have been processed, each
leaf node stores the maximal coverage of its associated
interval up to the position where the (last) rectangle
with the corresponding vertical side was closed.

The depth of the arrangement is then the maximum
over the ¢, counters of the leaves.

So we could build the tree T and then traverse it

level-by-level starting from the root node to the leaves,
and node-by-node within one level, setting the coun-
ters in all history events. Thus, we would have a se-
quential algorithm with running time in O(nlogn) as
before but with O(nlogn) memory usage.
Parallel implementation on a PRAM. For the
parallel algorithm we assume that there are O(n)
processors on a EREW-PRAM available. Then sort-
ing of the corner points of the rectangles once by y-
coordinates and once by z-coordinates can be per-
formed in O(logn) time, i.e., O(nlogn) total work,
using, for example, the sorting algorithm by Cole [4].
The tree T without the history lists can be build
straightforwardly in time O(logn).

35

26th European Workshop on Computational Geometry, 2010

The unsorted history lists for each level of the tree
can be constructed in constant time per level: We as-
sign one processor to every history event. Every pro-
cessor writes an entry for its event to the history lists
of the nodes on the paths from the corresponding two
leaves to the root. The entries of the history lists have
correctly set timestamps (the y-coordinates), pointers
to the parent entries, the event value d, and, for the
internal nodes, the reset switches p;, p,.. The counter
values remain open.

The total size of the history lists in one level is at
most 2n. Therefore, the total time needed to sort
the history lists of one level is O(logn). Then, for
the complete tree, the construction time of the sorted
history lists is O(log®n).

The computation of the left/right counters in the
event entries is performed level-by-level starting with
the root node down to the leaves. The computation
of the counters [and r(® according to equations
(1),(3),(5) corresponds to a prefix sum computation:
Consider the left counter of the i-th history entry of a
node v. Let j be the highest index < ¢ with pl(]) =0.
Then the value of IV is the sum 37, _ . (t®) +d®),
where d®) is set to 0 if the computation of [(F+1)
follows equation (1). Thus, if we can subdivide the
l-counters of a history list into subsequences corre-
sponding to blocks of ones terminated by a zero of
the p;-switches, then we can in a first step set each
1@ to ¢t or t() +d® respectively, and then perform
parallel prefix sum computations on the subsequences.
We omit the details about the subdivision into sub-
sequences, which again can be performed using the
parallel prefix sum computation.

The r-counter values are computed analogously.
Prefix sum computation can be performed in O(logn)
time [5].The total size of all prefix sum lists of one level
is O(n). So we need O(log®n) time in total.

For the computation of the max-counters according
to equations (2), (4) or (6), e.g., for 7“7(73), we need the
values &Y, @D ¢, and possibly 1. All of these
values, except for ry(,il_l), are computed by now. Thus,
we can compute the prefix maxima analogously to a
prefix sum.

We summarize the preceding sketch of the parallel

algorithm and its analysis:
Theorem 2 The depth of an arrangement of n axis-
aligned rectangles in R?> can be computed on a
CREW-PRAM with O(n) processing units in time
O(log?n).

Parallel implementation for a fixed number &
of processors with shared memory: Sorting of
the - and y-coordinates of the vertical and horizontal
sides of the rectangles can obviously be performed on
a k-processor machine in time O(3 logn).

Then we have to split the work performed by the
algorithm between k processors. For this purpose we

36

split the tree construction into k£ subtrees, each con-
taining at most [2n/k] a-coordinates. Each of the
subtrees is constructed by one processor sequentially.
Afterwards, the k subtrees are combined into a single
tree by adding a tree of height [log k] on top of the
subtrees. The tree construction includes the history
lists except for the values of the counters r, I, ry,, L
in the internal nodes, and the counters ¢, ¢, in the
leaves.

For the computation of the counters in the history
lists we apply the same idea: for the top tree we ap-
ply parallel prefix sum computation by processing the
history lists in blocks of at most k elements. There
are O(n/k) such blocks in each level, and each block
is processed in O(log k) time. Thus, the [logk] levels
of the top tree can be processed in O(% log? k) time.
For the k subtrees we apply the sequential algorithm
to find the maximum depth in each subtree. The size
of the subtrees is O(n/k), thus, the time for the re-
maining levels is O(% logn). The total time is then
O(2(log” k + logn)).

Summarizing, we have:

Corollary 3 The depth of an arrangement of n
axis-parallel rectangles can be computed in paral-
lel by k processors with shared memory in time
O(n/k(log? k + logn)).

4 Future Work

Although the depth computation of a set of rectangles
in R? is an interesting problem on its own, we plan
to develop parallel algorithms for higher dimensional
depth computation. Further, we are interested in an
implementation of the algorithm presented here, and
possibly algorithms for higher dimensional problems,
and in their experimental evaluation. The implemen-
tations should be performed for currently available
parallel hardware platforms, such as multicore CPUs
and general purpose GPUs.

References

[1] B. Aronov and S. Har-Peled. On approximating
the depth and related problems. SIAM J. Comput.,
38(3):899-921, 2008.

[2] J. L. Bentley. Algorithms for Klee’s rectangle prob-
lems. Unpublished notes, 1977.

[3] T. M. Chan. A (slightly) faster algorithm for Klee’s
measure problem. In SoCG 08 , p. 94-040, 2008.

[4] R. Cole. Parallel merge sort. SIAM J. Comput.,
17(4):770-785, 1988.

[5] D. W. Hillis and G. L. Steele. Data parallel algorithms.
Communications of the ACM, 1986.

[6] J. van Leeuwen and D. Wood. The measure prob-
lem for rectangular ranges in d-space. J. Algorithms,
2(3):282-300, 1981.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Even Triangulation of Planar Set of Points with Steiner Points

Victor Alvarez*

Abstract

Let P C R? be a set of n points of which & are interior
points. Let us call a triangulation T" of P even if all its
vertices have even degree, and pseudo-even if at least
the k interior vertices have even degree. (Pseudo-)
Even triangulations have one nice property; their ver-
tices can be 3-colored, see [2, 3, 4]. Since one can
easily check that for some sets of points, such trian-
gulation do not exist, we show an algorithm that con-
structs a set S of at most [(k + 2)/3] Steiner points
(extra points) along with a pseudo-even triangulation
Tof PUS=V(T).

1 Introduction

Let P C R? be a set of n points. Let us for a moment
suppose that along with P, we are given a parity, even
or odd, for each of its n points. Given a triangulation
T of P, we say that a vertex v of T is happy if and
only if v has a degree of the parity that was originally
set for v. If a vertex is not happy then we will say that
it is unhappy. The problem of finding a triangulation
of P that maximizes the number of happy vertices has
recently got some attention. In [1], Aichholzer et al.
showed that one can always find a triangulation that
makes at least roughly 2n/3 vertices happy, and they
also showed a configuration of points and parities that
will make at least n/108 vertices unhappy, regardless
of the chosen triangulation.

In this paper we attack a problem with the same
spirit, however, we use a different paradigm to solve
it since the result of Aichholzer et al. does not ensure
in general a solution. Let P C R? be as before and as-
sume that 0 < k < n — 3 points are inside the convex
hull Conv(P) of P, i.e. there are k interior points.
In our setting, only those k interior points will have
a parity assigned and it will be the same for each one
of them, namely, even. Now, we look for a triangu-
lation that makes all those k interior vertices happy.
We will call such triangulations pseudo-even, or sim-
ply even in the case that also the vertices of Conuv(P)
happen to have even degree. It is already known that
a maximal planar graph is 3-colorable if and only if
it is at least pseudo-even, see [4] for this characteriza-

*Universitat des Saarlandes, Saarbriicken, Germany.
alvarez@cs.uni-sb.de. Supported by Graduiertenkolleg of the
Deutsche Forschung Gemeinschaft (DFG) of Germany and par-
tially supported by CONACYT-DAAD of México.

tion and [2, 3] for a general reference on 3-colorable
planar graphs. So pseudo-even triangulations have
at least one interesting property and we can also see
this problem as that of embedding 3-colorable planar
graphs on set of points. As one can easily check that
for some sets of points, a pseudo-even triangulation do
not exist, we will introduce extra points, also known
as Steiner points, and then we will consider the ques-
tions: how many Steiner points are sufficient and how
many are necessary to get a pseudo-even triangula-
tion T such that P C V(T')? While we still have no
answer for the latter question, we will present a non-
trivial solution for the former, namely, we will show
an algorithm with the following properties:

(i) Its output triangulation T is pseudo-even and
V(T)=PUS.

(ii) IS| < [(k +2)/3).

(iii) At most two Steiner points of S fall on
Conv(P).

Note that, as T' is a pseudo-even triangulation, the
Steiner points of S that are interior must also get even
degree.

This paper is divided as follows: in Section 2 we
show our construction and in Section 3 we close with
some interesting observations.

2 Points in general position

Let us quickly recall that given a polygon P, a vertex
of P is called reflex if the internal angle is larger than
180 degrees and we will call it convex otherwise.

The main result of this section is the following:

Theorem 1 Let P C R? be a set of n points such
that k of those points are interior points. Then we
can always obtain a pseudo-even triangulation adding
at most | (k + 2)/3] Steiner points to P, of which at
most two fall on Conv(P).

Before showing the actual construction let us give
the general idea. As it was pointed out in the intro-
duction, we can talk about 3-colorable maximal pla-
nar graphs and pseudo-even triangulation unambigu-
ously. Therefore, our idea to get a pseudo-even trian-
gulation is to actually embed a 3-colorable maximal
planar graph on P with the help of at most | (k+2)/3]
Steiner points. So we will use a 3-coloration as a mea-
sure of the correctness of our algorithm. Having de-
fined what we will actually aim at, let us start with
our construction.

37

26th European Workshop on Computational Geometry, 2010

Proof. Let us fix a vertex v € Conv(P) such that
v has the lowest y-coordinate among all points in P.
Using v as a pivot, we will sort each interior point of
P by its slope with respect to v. Let p1,...,pg, be a
labeling, from left to right with respect to this angular
order, of the internal points of P. Let pg, px+1 be the
left and right neighbors of v on Conv(P) respectively.

We construct a simple polygon P from P\ {v} as
follows: we add each edge p;p;y1, for 0 < i < k. We
call this the lower part of P and we will denote it
by L(P). Also, we consider the edges of Conv(P) \
{pov, pr+1v} and we call this the upper part of P and
we will denote it by U(P).

Next we will triangulate P as follows: we will scan
L(P) from left to right and we will consider the largest
chains formed by convex vertices. Note that for each
chain, the left and right endpoints must be reflex ver-
tices of P, see to the left in Figure 1. Now, for each
chain, we will make adjacent its two endpoints and
we will use its lowest convex vertex as a pivot to tri-
angulate the resulting convex polygon in case that it
has more than three vertices. These convex polygons
can be thought as “ears” that can be cut from P on
L(P). The rest of P, outside these “ears”, can be tri-
angulated in any way. See to the right in Figure 1.
If there is no convex vertex of P in L(P), then the
triangulation of P is arbitrary.

Figure 1: To the left we have the polygon P on n — 1
vertices in light gray. The convex polygons formed by
scanning L(P) from left to right are shown in dashed.
Note that each pair of consecutive convex polygons
shares at most one vertex. To the right we see a tri-
angulation T(P) of P. The dashed edges are the only
ones that are not arbitrary.

Let T'('P) be the aforementioned triangulation of P.
We know that we can 3-color it, see for example [5],
and note that the only point yet to be colored is v. We
will show how to color v while keeping a 3-coloration
of T(P) by using Steiner points.

From this point on, our construction is done by
case analysis. Note that as T'(P) is already 3-colored,
if all the interior vertices of P are colored by only two
colors, say i +1,i+2, 1 < i < 3!, we could use color i
for v without violating the 3-coloration of T'(P), and
hence, using the straight-line segments that connect

L Arithmetic taken modulo three

38

v with each vertex of L(P), we obtain a pseudo-even
triangulation T'(P).

However, in general it is not going to happen that
the interior vertices can be colored using only two
colors, hence we need to do something else in such
cases. We will proceed in a line-sweep fashion from
Do to prr1 with respect to the angular order given by
.

Let us fix the color of v as the color of the small-
est chromatic class in the lower part L(P) of P using
the 3-coloration of T'(P), say that color is ¢ without
loss of generality, 1 < i < 3. Note that the points in
L(P) with color i are the ones causing trouble to com-
plete the desired triangulation, hence we will handle
those points depending on their kind in P, namely if
they are reflex or convex vertices of P. We will keep
the invariant that, by the time we are processing an
interior point p;, all interior points to the left have al-
ready even degree. Also note that by this time, if the
degree of p; is odd it is because p;11 has color 7, other-
wise we could join v and p;41 and hence the conflict
is somewhere to the left or even in P, which would
contradict our invariant or the valid 3-coloration of
P.

Let us start now with our case analysis, we will
assume that we are currently processing the interior
point p;, 1 < j < k.

(1) Point p; of color, say i + 1, and pj+1 of color
i is a reflex vertex. Note that if p;;o has color ¢ + 2,
then we could introduce the edge p;p;+2, as pj+1 has
already even degree in T'(P). Hence we will assume
that p; and p;12 have the same color.

As pj4o is of color ¢ + 1, then we need to complete
the degree of both p; and p;j;1 as both degrees are
odd. Here we will introduce one Steiner point s of
color i + 2 that will be adjacent, without introduc-
ing any crossing, to p;,p;+1,Pj+2,v, hence of even
degree and we will add the straight-line segment be-
tween p;42 and v, move to pj4o and continue. See to
the left in Figure 2

(2) Point p; again of color ¢ + 1 and p;41 of color
i is a convex vertex. Again see that if p;1o is of color
i+ 1, as before, we introduce one Steiner point s of
color 7 4+ 2, and exatly the same set of adjacencies as
in the case when p;11 is reflex. See in the middle in
Figure 2.

So let us assume that pjio has color ¢ + 2. Note
that, as pj;1 is a convex vertex of P, it must be part
of one of the convex polygons we first got when P got
triangulated, after all remember that the triangula-
tion T'(P) is in general not arbitrary. We have now
the following sub-cases:

(2.1) The vertex pj41 was used as a pivot in the tri-
angulation of P. Consider the convex chain C' formed
by the points p;,pjt1,Pj+2,-..,P1, Where p; is a re-
flex vertex. See to the right in Figure 2. Note as
well that since p;41 was used as a pivot, all the edges

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Figure 2: The point p; is currently being processed.
Point p;j41 is of the same color ¢ of v. If p; and pj4o
have the same color, then one Steiner point suffices
to be able to move to p;12. To the right, p; and pj4o
have different colors and p; 1 is a convex vertex that
was used as a pivot to triangulate the convex polygon
it is part of in P.

Pj+1Pj+2, - - -5 Pj+1P1 are present.

Now we distinguish between the following cases:

(2.1.1) Point p; is of color i + 1, p;41 is of color ¢
and p;4o is of color i + 2.

We know that the union of all the triangles that
share p;;1 as a vertex forms a convex polygon C. We
will change all the adjacencies inside C as follows:

Instead of taking p;;1 as the pivot that is adjacent
to all vertices in C we will take p;—;. Now we re-
color p;—1 with color ¢ and we will change the color of
Dj+1:Pj42,---,Pi—1 t014+2,i+1, ..., i+2respectively.
Note that no other color needs to be changed.

Finally we will introduce two Steiner points si, so
of color 7 4 2,7 4 1 respectively and we will make the
following adjacencies:

(i) s1 gets adjacent to p;—1,pi, pr+1 and so.

(ii) s2 gets adjacent to pi—2,pi—1, 51, Pi+1, Pit2, V-

Additionally we introduce the edges
Dj+17,...,p1—2v and ppov. See to the left and
in the middle of Figure 3.

Look that the previous construction can always be
done without introducing any crossing. Moreover,
note that with two Steiner points we complete the
even degree of each point in the region p;,...,pi42
in which there were originally two points of color i.
Thus we can move to p;4+2 and continue.

(2.1.2) Point p; and p;+1 as before and pj4o is of
color 7 + 1.

We will proceed as before except that this time, the
adjacencies of s1, so are as follows:

(i) s1 gets adjacent to s2, pi—1, P, Pi+1, Pi+2 and v.

(ii) s2 gets adjacent to p;_2,p;—1, $1 and v.

As before, we also introduce the adjacencies
D417, ..., Ppi—2v and p;1ov. Again, every even degree
is now completed and we can move to p;12. See to
the right in Figure 3 for the final configuration.

(2.1.3) Point p; as before and p;41 is of color i+ 2.

Note that in this case, from p; to p;41 we are in
presence of only one vertex of color i, namely p;;1,

Figure 3: If p; 41 was used as a pivot to triangulate a
convex polygon that can be cut from P, then we can
use p;—1 as the new pivot without changing the color
of p; or anything to its left. Note that p, must be
necessarily a reflex vertex of P. In the middle we see
the final configuration in the case that p;41 is of color
1 and pjyo is of color ¢ + 2. To the right we see the
final configuration when p;41 is of color ¢ and p;42 is
of color 7 + 1.

thus we will introduce only one Steiner point s;.

We will proceed as before with C and note that
this time p;—; and p;41 have different colors, namely
1 and ¢ + 2 respectively. Hence the degree of p; is
already even and since p; is a reflex vertex of P, we
can introduce the adjacency p;—1p;+1. Now we make
s1 adjacent to p;_o,pi—1,pi+1 and v and finally we
introduce the adjacencies p;1v,...,p—2v and pi1v.

Note that again each even degree in p;,...,pi41 is

completed and hence we can move to p;4+1 and con-
tinue. See to the left in Figure 4 for the final config-
uration.

Figure 4: To the left we see the final configuration in
the case that p;y; was a pivot of color ¢ and p;4; is
of color 7+ 2. In the middle and to the right we have
that, if p;41 of color ¢ was not a pivot and its neighbors
have different color from each other, then one of them
must necessarily be a pivot, in this case pj;2. So we
have to go back and remove some adjacencies that will
allow us to introduce the Steiner points appropriately.

Note that the following three cases are also possible:

(2.1.4) Point p; is of color i + 2, p;41 is of color ¢
and p;yo is of color ¢ + 1.

(2.1.5) Point p; and p;4+1 as before and p;4o is of
color 7 + 2.

(2.1.6) Point p; as before and p;41 is of color i + 1.

However, those cases are essentially the same as

39

26th European Workshop on Computational Geometry, 2010

the ones explained, so we would proceed in exactly
the same way but we will exchange the color of the
Steiner points we are introducing. The details are left
for the reader.

(2.2) In this case pj11 of color i was not used as a
pivot and it just takes part in a convex polygon where
the pivot p;io is of color 7 + 2. This restriction in
colors arises from the fact that we are assuming that
the triangle p;,pj+1,pj+2 € T(P) is well-colored, as
explained in the beginning of case (2).

Since the edge p;v is currently in the triangulation
being built, there is one triangle ¢ using it. Let ¢ &
{p;, v} be the third vertex of such a triangle t. Note
that ¢ lies to the left of the edge p;jv and hence it
already has even degree, moreover, the color of ¢ is
1+ 2. Now we have the following two cases:

(2.2.1) The vertex ¢ is a Steiner point or the
quadrilateral @ = q,p;,pj+1,v is convex. Let us con-
sider only the case that @ is convex, if it is not the
case then ¢ is a Steiner point and it can be moved as
pleased to make @) convex without affecting anything.
Thus we will flip the edge p;v for the edge gp;+1 and
introduce one Steiner point s of color i + 1 inside @
with its incidences to the vertices of @), see in the
middle of Figure 4.

(2.2.2) If ¢ is not a Steiner point and @ is non-
convex, then it is not hard to see that the only possible
case is ¢ = pj_2, and p;_; is a reflex vertex of P of
color 7. Note then that the edge e = p;_op; must be
present in the triangulation and that p;_; is adjacent
to no Steiner point. Hence we will remove e and we
will introduce one Steiner point s; of color ¢ 4+ 2 that
is adjacent to pj_1,p;,Pj+1,52, where so is another
new Steiner point of color ¢ + 1 that is adjacent to
Pj—2,Pj—1,51,Pj+1,Pj+2, . We can now move to Dj+2
and continue. See to the right in Figure 4.

Note that the color ¢ of v was chosen as the color of
the smallest chromatic class in L(P) and note that its
cardinality can be at most | (k+2)/3]. Also note that
in our analysis, we assumed that the current point
p; that we are processing is neither pg nor pp4q of
Conv(P). So in the case that those two extreme ver-
tices are of color ¢ we will introduce two Steiner points
of color different that ¢ that will subdivide the edges of
Conv(P) that connect pg and piy, with v, and hence
removing any possible conflict at that stage. As we in-
troduce one Steiner point per element of the smallest
chromatic class in L(P) the total number of Steiner
points is [(k + 2)/3] and the result follows.

O

3 Conclusions and Discussion

We have presented an algorithm that produces a
pseudo-even triangulation adding at most |(k+2)/3]
Steiner points to a given point set P C R2. It is im-
portant to note that at most two Steiner points lie

40

on Conv(P) and hence our construction keeps many
extent measures of P, i.e. diameter, width, etc. If we
do not care about modifying Conv(P) or the position
of the Steiner points, then only two Steiner points far
away from Conv(P) would do the job, say one at oo
and the other at —oo. Albeit being this construction
possible, we do not know why it would be interesting
to use it, since the output set of points does not look
anything like the one that was given as the input.

For the sake of completeness it is also interesting
to discuss what happens when P is in convex position
and we look this time for an even triangulation. In [4]
it was proven that if 7" is an even triangulation, then
|Conv(V(T))] = 0 mod 3. The other direction can
be easily proven by induction, so we do not see the
necessity of writing down the details. Hence, given P
in convex position, we can obtain an even triangula-
tion T' adding at most two Steiner points such that
V(T) remains in convex position.

We are aware that our technique could be push fur-
ther to obtain a smaller number of Steiner points,
probably |(k +2)/6] might be doable and we already
started working out the details. Nevertheless, what it
has been rather frustrating is the fact that we have not
been able to come up with a lower bound on the num-
ber of Steiner points and actually, everything points
to the fact that really few Steiner points might suffice,
this number might even be constant! Finding a simple
algorithm that uses fewer Steiner points, and finding
a lower bound for this number seem interesting and
challenging.

Acknowledgement

We thank Marco Heredia and Jorge Urrutia for having
suggested the even triangulation problem in first place
and for valuable discussions. We also thank Raimund
Seidel for valuable comments.

References

[1] O. Aichholzer, T. Hackl, M. Hoffmann, A. Pilz, G.
Rote, B. Speckmann and B. Vogtenhuber. Plane
Graphs with Parity Constraints. WADS ’09: Proceed-
ings of the 11th International Symposium on Algo-
rithms and Data Structures, (2009), 13-24.

[2] P. J. Heawood, On the Four-color Map Theorem.
Quart. J. Pure Math. 29, (1898), 270-285.

[3] R. Steinberg, The State of the Three-color Problem.
Quo Vadis, Graph Theory?, Annals of Discrete Math-
ematics, 55 (1993), 211-248.

[4] K,. Diks L. Kowalik M. Kurowski, A New 3-color Cri-
terion for Planar Graphs. LNCS 2573 (2002), 138-
149.

[5] S. Fisk, A Short Proof of Chvdtal’s Watchman The-
orem. J. Combinatorial Theory, Series B. 18, (1978),
374.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Separability of Point Sets by k-Level Linear Classification Trees

Esther M. Arkin* Delia Garijof

Abstract

Let R and B be sets of red and blue points in the
plane in general position. We study the problem of
computing a k-level binary space partition (BSP) tree
to classify /separate R and B, such that the tree de-
fines a linear decision at each internal node and each
leaf of the tree corresponds to a (convex) cell of the
partition that contains only red or only blue points.

1 Introduction

Consider a set of n points in the plane in general po-
sition. Each point is either “red” or “blue”. We let
R denote the set of red points and let B denote the
set of blue points. We study the separability of R
and B by a k-level binary space partition tree. We
say that R and B are separated by a k-level binary
space partition tree, T', if each region in the partition
of the plane induced by T is monochromatic (contains
only points of R or only points of B). The separat-
ing k-level tree T' is a recursive partition of the plane
into monochromatic and disjoint convex regions using
(up to) 2% — 1 separating straight cuts (lines, rays or
segments). Such a tree T of height k (i.e., with k lev-
els) can be used as a classification tree for red/blue
points; we can classify, in time O(k), a new point as
“red” or “blue” based on the color associated with the
cell (corresponding to a leaf in the tree) in which it is
located. See Figure 1.

Figure 1: A separating 2-level tree.

*Applied Mathematics and Statistics, State Univer-
sity of New York, Stony Brook, NY, 11794-3600, USA,
{estie, jsbm}@ams.sunysb.edu

TDepartamento de Matemética Aplicada I, Universidad de
Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain,
{dgarijo,almar}Qus.es

IDepartament de Matematica Aplicada II, Universitat
Politécnica de Catalunya, Jordi Girona 1, 08034 Barcelona,
Spain, carlos.seara@upc.edu

Alberto Marquez?

Joseph S. B. Mitchell* Carlos Searat

Related work. The separating k-level tree generalizes
simple separability criteria that have been previously
studied. The most basic separability criteria for R and
B is that of linear separability, which corresponds to
a separating 1-level tree: there exists a line separat-
ing R and B. Linear separability can be decided in
linear time [8]. For sets R and B that are not lin-
early separable, generalizations include the following
separability criteria: a strip (two parallel lines, par-
titioning the plane into three regions), a wedge (two
rays with common origin, partitioning the plane into
two regions), a double wedge (two intersecting lines),
or three parallel lines. All of these criteria can be de-
cided, and corresponding partitions computed, in op-
timal ©(nlogn) time [1, 2, 6, 7]. (Note that if R and
B are strip separable, then they are also wedge sepa-
rable.) Strip, wedge, double-wedge, or three parallel
lines separability criteria are special cases of separa-
bility by a 2-level tree.

Separability by multiple parallel lines is a special
case of separability by a k-level tree; in particular,
m = 2¥ — 1 parallel lines can be a associated with a
(height-balanced) k-level tree. The minimum number
of parallel lines needed to separate R and B can be
computed in O(n?logn) time [2]. If R and B are
the vertices of a regular n-gon, |n/2] is a tight upper
bound for the number of parallel lines, and, given the
minimum number of separating lines, their common
orientation can be computed in O(nlogn) time [3].

Other separability criteria have also been studied.
Given any disjoint point sets, R and B, there al-
ways exists a separating polygonal chain, which can be
computed in O(nlogn) time. Computing a minimum-
link separating polygonal chain that turns alterna-
tively left and right by a constant angle o > /2
can be done in O(nlogn) time [6]. Separability by
m parallel lines is a special case of separability by a
monotone m-link polygonal chain. The problem of de-
termining a minimum-link separating polygonal chain
of R and B is NP-complete [5]. Edelsbrunner and
Preparata [4] solved, in time O(nlogn), the special
case of computing a minimum-edge convex polygon
separating R and B (if a convex separator exists);
their time bound was shown to be optimal in [1].

Outline of the paper. We initiate the study of separa-
bility by k-level trees by considering first the special
case of k = 2, separability by a 2-level tree. Sec-
tion 2 is devoted to a special case of 2-level separabil-
ity, that of separability by a zigzag, which corresponds

41

26th European Workshop on Computational Geometry, 2010

to 2-level tree partitioining such that monochromatic
cells of the same color are adjacent (Figure 2). In
Section 3 we study the general version of 2-level tree
separability, including the generalizations to three or
four distinct colors of point sets (instead of just two,
red and blue). In Section 4 we consider k-level tree
separability and possible configurations of points with
O(log n)-level trees. Section 5 is devoted to separabil-
ity by k-level trees whose partitioning cuts are axis-
parallel.

2 Zigzag Separability

In this section we consider the zigzag separability
problem: Determine whether the sets R and B are
separable by a zigzag Z = ({1, s, {2), which is a sim-
ple, nonconvex 3-link polygonal chain formed by two
rays {1, {3 and a segment s joining the origins of the
rays (Figure 2). Let ¢, be the line containing the
segment s, and let £ (£,) be the line containing the
ray ¢1 (¢2). We can assume that the simpler known
special cases of separability have already been tested;
specifically, we assume that R and B are not separa-
ble by a line, strip, wedge, or convex polygonal chain,
each which can be decided in O(nlogn) time. Thus,
under this condition, the following lemma is straight-
forward, where CH(X) denotes the convex hull of a
point set X.

Figure 2: A separating zigzag.

Lemma 1 Let R and B be zigzag separable but not
separable by a line, strip, wedge, or convex polygon.
Then, CH(R) contains at least one blue point, and
CH(B) contains at least one red point.

A separating zigzag Z = ({1,s,03) defines four
wedges that partition R U B into four subsets, de-
noted by Ri, Rs, By, and By, where Ry = R — Ry
and By = B — By; all four subsets are non-empty,
since R and B are not wedge separable. Let a (8)
be the angle defined by ¢, and ¢; (¢3). Two opti-
mal separating zigzags are considered: either a zigzag
maximizing min{«, 8}, called the most convexr sepa-
rating zigzag (approximating linear separability), or a
zigzag that minimizes max{«, 3} (approximating sep-
arability by three parallel lines).

42

Lemma 2 Let Z = (¢4, s, {2) be the most convex sep-
arating zigzag for R and B. Then each of the two
rays, and the segment of Z pass through two points
of different colors. Moreover, either ¢} is an interior
supporting line of CH(Ry) and CH(B), or ¢, is an
interior supporting line of CH(B3) and CH(R).

Lemma 3 Let R and B be zigzag separable and let
I r be the number of intersections between pairs of
edges of CH(B) and CH(R). Then Ip r € {0,2,4,6}.

Let R; (Br) be the subset of red (blue) interior
points of CH(B) (CH(R)). By Lemma 1, |R;| > 1
and IB[| > 1. IfIB’R = 6, let Rll, R/Q, and Rg (Bi7 Bé,
and Bj) be the three disjoint subsets of red (blue) ex-
terior points of CH(B) (CH(R)). These eight subsets
and their respective convex hulls can be computed in
O(nlogn) time (Figure 3).

Figure 3: Subsets of red and blue points for Ig r = 6.

Lemma 4 Let Z = ({1,s,¢2) be the most convex
separating zigzag of R and B. Then (s is a sup-
porting line of some of the following eight convex
polygons: CH(R;), CH(By), CH(R}), CH(R)),
CH(RL), CH(BY}), CH(BY), and CH(BY).

Lemma 4 provides the key tool to design the follow-
ing O(nlogn) time algorithm for computing a sepa-
rating zigzag Z = ({1, s, {3) for R and B (if it exists).

Z1GZAG-ALGORITHM

Input: R and B

Output: a separating zigzag Z = ({1, s,{3), or re-
port that none exists

1. Compute CH(R), CH(B), R;, B;, CH(Ry),
CH(By), and Ippr. Check whether Ipp €
{0,2,4,6}, and compute the intersecting edges
of CH(R) and CH(B). Check that CH(Ry) or
CH(Bj) are monochromatic. For Ry = {r} and
Br = {b}, do as follows: If r € CH(R) and
b € CH(B), then R and B are zigzag separable
and it is easy to see how to compute the sepa-
rating zigzag. Analogously if r € CH(R) and b
is interior to CH(B) or vice versa. From now on
assume that |Ry| > 2 or |B| > 2.

2. Let P be any of the polygons: CH(R;), CH(By),
CH(R}), CH(Ry), CH(Rg), CH(By), CH(By),

N~

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

or CH(BY), with their interior points. Do the
following:

(a) Sort the points in (RU B) — P by a coun-
terclockwise rotational sweep over P with
an oriented supporting line ¢, according to
Lemma 4.

(b) Do a second rotational sweep over P.
Each time ¢, hits a red or blue point of
(R U B) — P, maintain and update the
convex hulls CH(Rs), CH(B;) (CH(Ry),
CH(B5)) of the red and blue points on the
left (right) side of £ in O(logn) time [9].
In O(log n) time, check the linear separabil-
ity between CH (R3) and CH(By), and be-
tween CH(R;) and CH(B3), and compute
their respective supporting lines (Figure 4).
In the affirmative case, a separating zigzag
is found.

Figure 4: Supporting lines between monochromatic
convex hulls.

To prove the Q(nlogn) time lower bound for decid-
ing the zigzag separability, we reduce the strip separa-
bility problem [1] to the zigzag separability problem.

Theorem 5 Computing a separating zigzag for R
and B requires ©(nlogn) time.

3 Separability by a 2-Level Tree

We turn now to the problem of computing a separat-
ing 2-level tree T = ({1, £y, {3) for R and B, where ¢y,
{1, and {5 are the oriented line, the ray on the left side
of ¢y, and the ray on the right side of ¢y, respectively
(recall Figure 1). Let £; (¢5) be the line containing ¢;
(£2). Denote by m(¥) the slope of £. Let p (¢q) be the
intersection point of £y and £ (¢2). T splits the plane
into four convex regions.

Criteria. The following criteria provide a system-
atic classification of the separating 2-level trees: (1)
m(€o) > 0, m(£y) < 0, or £y is horizontal or vertical.
(2) Relative position of p and ¢ along ¢y: p =< ¢ or
q = p. (3) Slopes of ¢; and ¢ with respect to £y. (4)
Different color assignments to the convex regions.

Classification. We reduce to the following cases:
(1) Slope of £y: we only consider the m(£y) > 0 case.

The configuration of points where m(¢y) < 0 can be
analyzed by rotating this configuration by 90 degrees
and applying the m(€y) > 0 case (Figure 5); the case
£y vertical is symmetric to the £y horizontal case, by
a 90-degree rotation. (2) Relative position of p and
q: we only study the case ¢ < p. By applying sym-
metry with respect to a vertical line, followed by a
90-degree rotation, we get the case p < ¢ (Figure 5).
(3) If two consecutive regions have the same color, it
corresponds to some of the following criteria: linear,
zigzag (p # q), or wedge separability (p = ¢) which
can be solved in O(nlogn) time [1, 6, 7]. Thus, we
assume that the colors alternate, £y has positive slope
or is horizontal, and q < p.

m(ly) >0

Figure 6: Configurations for m(fy) > 0 and q =< p.

For an easier analysis of the point configurations
we refine the four cases in Figure 5 for ¢ < p into
the seven cases in Figure 6 which can be reduced as
follows: case (d) is obtained from case (b) by a 180-
degree rotation; case (e) is obtained from case (c¢) by
a 180-degree rotation; and case (g), where ¢, intersect
41, is obtained from case (f), where ¢] intersect ¢s, by
a 180-degree rotation. Thus, we only consider the four
types (1), (2), (3), and (4) of 2-level trees in Figure 7
with a concrete assignment of colors. For types (2),
(3), and (4), the line ¢} always intersects (2.

We design algorithms for the types of 2-level trees
T = (¢1,4y,¢3) illustrated in Figure 7. From now on,
we assume that R and B are not separable by a line,
wedge, strip, zigzag, or convex polygonal chain. The
following lemma is straightforward.

43

26th European Workshop on Computational Geometry, 2010

Figure 7: The 4 types of 2-level trees up to symmetry.

Lemma 6 If R and B are separable by a 2-level tree,
then Ip r € {0,2,4,6}, where Ip g is the number of
intersections between pairs of edges of CH(B) and
CH(R).

In the full paper we prove:

Lemma 7 If R and B are separable by a 2-level tree
T = (€o,¢1,¥¢2), then it holds that ¢y is a supporting
line of CH(R;) or CH(R3), and ¢} (¢}) is a common
supporting line of CH(Ry) and CH(B;) (CH(R2)
and CH(Bs)).

An overview of algorithm is: Compute a line that
classifies /separates one of the point sets (say R) into
subsets R; and Rs, and use this classification to look
for a classification of B into subsets B; and By accord-
ing to a 2-level tree. We present an O(nlogn) time
algorithm for 2-level trees of type (1), and we show
an O(n?) time algorithm for 2-level trees of types (2),
(3), and (4).

Theorem 8 Computing all the separating 2-level
trees for R and B can be done in O(n?) time and
space.

In the full paper we consider also 3 or 4 colors:

Theorem 9 A separating 2-level tree for three col-
ored sets of n points can be computed in O(nlogn)
time. For four colored sets of n points it can be com-
puted in O(n) time.

4 k-Level Trees

We consider separating (k > 3)-level trees for R and
B. A separating O(logn)-level tree for R and B can
be computed using the ham-sandwich cut theorem as
follows: Compute a line yielding an equitable bipar-
tition By U Ry, Bo U Ry of B U R, then proceed re-
cursively on each part until we get monochromatic
subsets. At the end we get a k-level tree for n = 2%,
Since n < 200087 L is O(logn).

A k-level tree produces a subdivision of the plane
into monochromatic convex cells, bounded by at most

k lines. From the (%) lines we get ((g)) = O(n9")
cells. ITn O(n®®) time we can compute all the cells
and check which are monochromatic. Then, we use a

44

dynamic programming algorithm to compute a min-
imum k-level tree for R and B in O(n®®)) time.
This yields a quasi-polynomial time algorithm (since
k= O(logn)).

Theorem 10 A separating k-level tree for R and B
can be computed in O(n®®)) time.

On the other hand, there exist point configurations
such that the depth of the minimum k-level tree is
k = Q(logn). See the full paper.

5 Separability With Axis-Parallel Partitions
In the full paper we prove:

Theorem 11 A separating axis-parallel lines 2-level
tree for R and B can be computed in ©(n) time.

Acknowledgments

D. Garijo and A. Mérquez are partially supported by
projects MTM2008-05866-C03-01, P06-FQM-01649 and
2008/FQM-164. E. Arkin and J. Mitchell are partially
supported by the National Science Foundation (CCF-
0729019). C. Seara is partially supported by projects
MTM2009-07242 and Gen. Cat. DGR2009GR1040.

References

[1] E. M. Arkin, F. Hurtado, J. S. B. Mitchell, C. Seara,
and S. S. Skiena. Some lower bounds on geometric
separability problems. Internat. J. Comput. Geome-
try and App. 16(1):1-26, 2006.

[2] E. M. Arkin, F. Hurtado, J. S. B. Mitchell, C. Seara,
and S. S. Skiena. Some separability problems in the
plane. FuroCG, 2000, pp. 51-54.

[3] T. Asano, J. Hershberger, J. Pach, E. Sontag, D. Sou-
vaine, and S. Suri. Separating bi-chromatic points by
parallel lines. Proc. 2nd Canadian Conf. on Compu-
tational Geometry, 1990, pp. 46—49.

[4] H. Edelsbrunner and F. P. Preparata. Minimum
polygonal separation. Information and Computation
77:218-232, 1988.

[5] S. Fekete. On the complexity of min-link red-blue sep-
aration problem. Manuscript, 1992.

[6] F. Hurtado, M. Mora, P. A. Ramos, and C. Seara.
Separability by two lines and by nearly-straight
polygonal chains. Discrete Applied Math. 144:110—
122, 2004.

[7] F. Hurtado, M. Noy, P. A. Ramos, and C. Seara.
Separating objects in the plane by wedges and strips.
Discrete Applied Math. 109:109-138, 2000.

[8] N. Megiddo. Linear-time algorithms for linear pro-
gramming in R® and related problems. SIAM J. Com-
puting 12(4):759-776, 1983.

[9] F. P. Preparata and M. I. Shamos, Computacional
Geometry, An Introduction, Springer-Verlag, 1988.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Order types of segments in floorplan partitions

Andrei Asinowski® Gill Barequet!

Abstract

Floorplan partitions, whose generation is a critical
stage in e.g. integrated circuit layout and in archi-
tectural design, give rise to several interesting or-
ders. Ackerman, Barequet and Pinter studied the or-
ders induced by the neighborhood relations between
rectangles forming a partition, and obtained a natu-
ral bijection between them and Baxter permutations
(that can be described as (2-41-3,3-14-2)-avoiding
permutations). In the present paper, we study or-
ders induced by the neighborhood relations between
segments forming such partitions, and show a natu-
ral bijection between these order types and another
family of permutations, namely of those avoiding
(2-14-3,3-41-2), and investigate related questions.

1 Introduction: Neighborhood relations between
rectangles; R-permutations

In [1], Ackerman, Barequet and Pinter studied floor-
plan partitions and a representation of neighborhood
relations between rectangles in such partitions in
terms of permutation patterns.

A floorplan partition is a partition of a rectangle
into smaller interior-disjoint rectangles. It is required
that segments forming the partition do not cross, and
a meeting of segments can have one of the following
forms: -, 1, -, T (but not +). In particular, this
implies that if the number of segments in a floorplan
partition P is n, then the number of rectangles in P
isn+1.

Neighborhood relations of rectangles forming the
partition are defined as follows. A rectangle A is a
left-neighbor of B if there is a vertical segment in the
partition that contains the right side of A and the left
side of B. A relation A is to the left of B, denoted by
A « B, is defined to be the transitive closure of the
relation A is a left neighbor of B. We denote: A « B
if A=Bor A< B.

*Department of Mathematics, Technion - Israel Institute of
Technology. E-mail andrei@tx.technion.ac.il.

TDepartment of Computer Science, Technion - Israel In-
stitute of Technology, and Department of Computer Sci-
ence, Tufts University, Medford, MA 02155. E-mail bare-
quet@cs.technion.ac.il.

fDepartment of Mathematics, University of Haifa, Israel.
E-mail toufik@math.haifa.ac.il.

$Department of Computer Science, Technion - Israel Insti-
tute of Technology. E-mail pinter@cs.technion.ac.il.

Toufik Mansour? Ron Y. Pinter?

The terms A is a below-neighbor of B, and A is
below B (denoted by A | B) are defined similarly. We
also denote: A | B if A= DB or A is below B.

Two partitions are considered identical if they can
be obtained from each other by a continuous transfor-
mation that does not change neighborhood relations
of each rectangle. See Fig. [Il for an example (observe
in this figure A | D, B« ().

Figure 1: Two representations of the same floorplan
partition.

The following results are obtained in [I]. Let P be
a floorplan partition. Any two different rectangles A
and B in P are in exactly one neighborhood relation:
either A« B,or B« A,or A B, or B A. It follows
that the relations » and = between rectangles of P
defined by

Av B
A~ B

if A=B,orA< B,orA|B,
if A=B,orA< B,orBlA

are linear orders. Each of them can be used for la-
beling the rectangles of P by 1,2,...,n+ 1. For ex-
ample, in the » order, the rectangle in the lower left
corner will then be labeled 1, and the rectangle in
the upper right corner n + 1. Let R(P) be the se-
quence ai,as,...,an+1, Where a; is the label in the
% order of the rectangle which is labeled 7 in » or-
der, for all 1 <4 <n+1. Then R(P) is a permuta-
tion of [n+1] = {1,2,...,n+ 1}, we shall call it the
R-permutation corresponding to P. Loosely speak-
ing, R(P) is determined by labeling the rectangles
according to the » order, and then reading these la-
bels passing the rectangles according to the X order.
Fig. 2 shows a floorplan partition and the correspond-
ing R-permutation. The main result of [I] is a theo-
rem which states that for any floorplan partition P,
the permutation R(P) is a Baxter permutation (that
is, a (2-41-3, 3-14-2)-avoiding permutatiorl); further-
more, the correspondence P — R(P) is a natural bi-
jection: all the information about the neighborhood

1This kind of notation is discussed in Section Bl

45

26th European Workshop on Computational Geometry, 2010

5

6

4

7

¥ labeling

R(P) = 289315476

~ labeling

PN WA 0O N 0 ©
[)

i
12 3 456 7 89

Figure 2: Constructing the R-permutation corresponding to a floorplan partition.

relations between rectangles in P can be read from
R(P).

2 Neighborhood relations between segments; S-
permutations

2.1 Four orders of segments: «, |, ¥ and X

Similarly to the described above, in our work we define
and study neighborhood relations between segments
which form a floorplan partition P.

A segment A is a left neighbor of a segment B if
one of the following holds:

e A and B are vertical, and there is a rectangle of
P such that its left side is included in A and the
right side is included in B; or

e A is vertical, B is horizontal, and the left end-
point of B lies in A; or

e A is horizontal, B is vertical, and the right end-
point of A lies in B.

Several examples are shown in Fig. 3

| I | J

Figure 3: The segment A is a left neighbor of the
segment B (several cases).

A relation A is to the left of B, denoted by A < B
is the transitive closure of the relation “A is a left
neighbor of the segment B”. We denote: A « B if
A=Bor A< B.

The terms: A is a below-neighbor of B and; A is
below B (and then B is above A) (denoted by A | B),
are defined similarly. Denote: A { B if A= B or
Al B.

Similarly to the facts for the corresponding orders
between rectangles, we prove that the relations « and
{ are partial order relations, and that every two dif-
ferent segments, A and B, in a floorplan partition P,

46

are in precisely one of these relations: either A < B,
or B« A orA|lB,or B|A.

Finally, we define two relations ¥ and = between
segments of P as follows:

Avxy B
AN B

if A=B,orA< B,or A|B,
if A=B,orA< B,or Bl A.

These relations » and '\ are linear orders.

2.2 S-permutations

Let P be a floorplan partition of a rectangle with
n segments. Let S(P) be the sequence by,ba,..., b,
where b; is the label in the = order of the segment
which is labeled i in the ¥ order, for all 1 <i < n. Itis
clear that S(P) is a permutation of [n] = {1,2,...,n};
we shall call it the S-permutation of P and denote it
by S(P).

Thus, we assign a permutation to a partition in a
way similar to that from [I], but this time we use
not rectangles but segments. Note that S(P) is a
permutation of [n], while R(P) is a permutation of
[n+1].

If a segment of a floorplan partition P is labeled
7 in the » order and labeled ¢ in the X order, then
S(P)(i) = j. In other words, the grapi of S(P) has
the point (4,7) which will be denoted by Nj;.

Fig. @ shows a partition P with segments labeled
in the form (i,7) where j is the label of a segment
according to the x order, and 7 is its label according
to the ® order, and the graph of S(P).

3 Our Results

3.1 (2-14-3,3-41-2)-avoiding permutations

First we introduce a family of permutations that will
appear in the main result.

We say that a permutation @ = ajas...a, is
(2-14-3, 3-41-2)-avoiding if there are no 1 < 4y < ig <
i3 < iq < m such that i3 = is + 1 and either 7(is) <
m(i1) < w(iq) < w(iz) or w(iz) < w(ig) < 7(i1) < 7(ia).

2For , a permutation of [n], the graph of 7 is the point set

{Gm(@): ien]}.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

28| (59
€7 (6,12)
(11, 10)

(3,6) (12,11)

(7.5

9.3
[(10, 4)
(82

B PP
e . R.N
[]
[}
[}

PN WA OO N ® O
[]

1 2 3 4 5 6 7 8 9101112

7861912523410 11

Figure 4: A partition P and the corresponding S-permutation S(P).

In other words, m does not contain a subpermutation
isomorphic to 2143 or to 3412 so that the labels cor-
responding to 1 and 4 are adjacent.

This is a special case of so-called dashed notation in
permutation patterns. See [3] for a general definition
and many results concerning generalized permutation
patters.

3.2 A bijection between order types of segments
in floorplan partitions and (2-14-3,3-41-2)-
avoiding permutations

Our main result is the following two theorems:

Theorem 1 Let P be a floorplan partition. Then
S(P) is a (2-14-3, 3-41-2)-avoiding permutation.

Theorem 2 For each m, a (2-14-3,3-41-2)-avoiding
permutation of [n], there exists a floorplan partition
P with n segments such that S(P) = 7.

In other words, there is a bijection between or-
der types of segments in floorplan partitions and
(2-14-3, 3-41-2)-avoiding permutations. ~Compare
this with the result from [I] which says that there is a
bijection between order types of rectangles in floor-
plan partitions and Baxter permutations (which are
described in the dashed notation as (2-41-3, 3-14-2)-
avoiding permutations).

3.3 Relations between R-permutations to S-
permutations

Let P be a floorplan partition. We show how S(P)
is related to R(P). The following property of Baxter
permutations will be used.

Proposition 3 Let p be a Baxter permutation of
[n+1]. For each i, 1 < i < n there exists a unique
Ji, 1 <j; <n, such that:

e For i with p(i) < p(i +1) we have p(i) < j; <
p(i+1) and p~"(j;) <i < p~'(ji +1);

o for p(i) > p(i+1) we have p(i+1) < j; < p(i) and
PG+ 1) <i<pT (i)

The relation of S(P) to R(P) is the following:

Theorem 4 Let P be a floorplan partition, and let
p = R(P). For each i, let j; be as in Proposition [3
with respect to p. Then S(P) = j1,j2,---jn-

It is convenient to draw the graphs of R(P) and S(P)
on the same diagram where the points of the graph of
R(P) are in the centers of the grid squares, and the
points of the graph of S(P) are in the grid nodes, see
Fig. [l (the points of the graph of R(P) are black, the
points of the graph of S(P) are white).

3.4 Which partitions have the same S-

permutation

Let P, and P, be two floorplan partitions. We shall
see when we have S(Py) = S(P).

We first characterize the floorplan partitions whose
S-permutation is 123...n. Such a partition will be
called a (separate) ascending F-block of the size n+1.
In such a partition, all vertical segments extend from
the lower to the upper side of the border, and be-
tween a pair of adjacent vertical segments there is at
most one horizontal segment. Therefore an ascend-
ing F-block consists of several rectangles that extend
from the lower to the upper side of the boundary and
several pairs of rectangles whose union is a rectan-
gle that extends from the lower to the upper side of
the border. Fig. [l shows several F-blocks of the size
5. Descending F-blocks, which are partitions whose S-
permutation is n... 321, are similarly described. Two
F-blocks are equivalent if have the same size and if
they are both ascending or both descending.

Let now P be any floorplan partition. We define
an F-block in P as a set of rectangles in a partition,
whose union is an F-block, as defined above.

47

26th European Workshop on Computational Geometry, 2010

13 . .O ‘
@y (6,13) Lo @8 69 612 2 o 2o
@9 @7 6.1 Lo e
2, T i i PR So S i &
@n (12,12 @6 ar1o ooy I -
(7.10) SRR !
5.6) 885 !
(7,5 A s s S 1
FTTOol P P
©3 NN EEEE
(10, 5) s : S O Y
(13,12) 4,1 10, 4 5 RIS S S M
1) 83 “9 (109 . Ll e ,‘O‘,O.',
3 v @ T
o9 - 2 e
©2 1 &2 :
1 2 3 45 6 7 8 9 10 11 12 13
p=87916131032541211
@ rectangles @ segments ® 1=786191252341011

Figure 5: A partition P with labeling of rectangles (1) and with labeling of segments (2); R(P) (black points)
together with S(P) (white points).

Figure 6: Five (out of eight) ascending F-blocks for
n =4, and their R-permutations.

Theorem 5 Let P, and P> be two floorplan parti-
tions with n segments. Then S(Py) = S(P,) if and
only if P, and P> may be obtained from each other
by replacing several F-blocks by equivalent F-blocks.

3.5 Other results

Other results in this work include:

48

e Relations between rectangles and segments in a

floorplan partition. For example, we show how to
see from R(P) and S(P) what segments contain
the sides of a specified rectangle.

Enumerating issues: a generating tree for
the enumerating sequence for (2-14-3,3-41-2)-
avoiding permutations of [n] and several func-
tional equations related to its generating func-
tion. Yet the question of finding an explicit for-
mula for the number of (2-14-3, 3-41-2)-avoiding
permutations of [n] remains open.

The case of guillotine partitions. The family
of permutations which correspond to the order
types induced by segments in guillotine parti-
tions, is that of (2-14-3,3-41-2,2-4-1-3,3-1-4-2)-

avoiding permutations. The enumeration is easy
in this case.

A multidimensional generalization of the previ-
ous item: guillotine partitions of a d-dimensional
box. Here we have d— 1-dimensional cuts instead
of segments, and neighborhood relations between
them are naturally defined. We prove that the
number of order types induced by cuts in guillo-
tine partitions of a d-dimensional box with n cuts
is

n n-k . 2 y 1) .
55 oyt () (R4 Ty
k=0 j=0 J n-k-j

(A formula for the number of order types of rect-
angles in guillotine partitions of a d-dimensional
box with n cuts was found by Ackerman et al.
in [2].)

References

[1]

E. Ackerman, G. Barequet, and R. Y. Pinter.
A bijection between permutations and floorplans,
and its applications. Discrete Applied Mathemat-
ics, 154, (2006), 1674 — 1684.

E. Ackerman, G. Barequet, R. Y. Pinter, and
D. Romik. The number of guillotine partitions in
d dimensions. Information Processing Letters, 98

(2006), 162 — 167.

E. Steingrimsson. Generalized permutation pat-
terns — a short survey. To appear in: Permu-
tation Patterns, St. Andrews 2007, S. A. Lin-
ton, N. Ruskuc, V. Valter (eds.), LMS Lec-
ture Note Series, Cambridge University Press.
http://www.math.ru.is/download/
St08__Generalized_permutation.pdf

http://www.math.ru.is/download/
St08__Generalized_permutation.pdf

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

The geodesic diameter of polygonal domains

Sang Won Bae*

Abstract

This paper studies the geodesic diameter of polyg-
onal domains having h holes and n corners. For
simple polygons (i.e., h = 0), it is known that the
geodesic diameter is determined by a pair of corners
of a given polygon and can be computed in linear
time. For general polygonal domains with h > 1,
however, no algorithm for computing the geodesic di-
ameter was known prior to this paper. We present
first algorithms that compute the geodesic diameter of
a given polygonal domain in worst-case time O(n"-"3)
or O(n”(logn + h)). The algorithms are based on
new geometric observations, part of which states as
follows: the geodesic diameter of a polygonal domain
can be determined by two points in its interior, and in
that case there are at least five shortest paths between
the two points.

1 Introduction

In this paper, we address the geodesic diameter prob-
lem in polygonal domains. The geodesic distance
d(p,q) between any two points p,q in a polygonal
domain P is defined as the (Euclidean) length of a
shortest obstacle-avoiding path between p and g. The
geodesic diameter diam(P) of a polygonal domain P
is defined as diam(P) := max,epd(s,t). A pair
(s,t) of points in P that realizes the geodesic diame-
ter diam(P) is called a diametral pair. The geodesic
diameter problem is to find the value of diam(P) and
a diametral pair.

For simple polygons (i.e., h = 0), the geodesic di-
ameter has been extensively studied and fully under-
stood. Chazelle [2] provided the first O(n?)-time al-
gorithm computing the geodesic diameter of a sim-
ple polygon, and Suri [9] presented an O(n log n)-time
algorithm that solves the all-geodesic-farthest neigh-

*Department of Computer Science and Engineering,
POSTECH, swbae@postech.ac.kr. Work supported by the
Brain Korea 21 Project.

TComputer Science Department, Université Libre de Brux-
elles, mkormanc@ulb.ac.be. Work supported by the Commu-
nauté frangaise de Belgique - Actions de Recherche Concertées
(ARC).

fGraduate School of Information Science and Engineer-
ing, Tokyo Institute of Technology, okamoto@is.titech.ac. jp.
Work supported by Global COE Program “Computationism
as a Foundation for the Sciences” and Grant-in-Aid for Scien-
tific Research from Ministry of Education, Science and Culture,
Japan, and Japan Society for the Promotion of Science

Matias Korman'

Yoshio Okamotot

bors problem, computing the farthest neighbor of ev-
ery corner and thus finding the geodesic diameter. At
last, Hershberger and Suri [5] showed that the diam-
eter can be computed in linear time using their fast
matrix search technique. On the other hand, to the
best of our knowledge, no algorithm for computing
diam(P) has yet been discovered when P is a polyg-
onal domain having one or more holes (h > 1).

This fairly wide gap between simple polygons and
polygonal domains is seemingly due to the unique-
ness of the shortest path between any two points; it
is well known that there is a unique shortest path
between any two points in a simple polygon [4]. Us-
ing this uniqueness, one can show that the diameter
is indeed realized by a pair of corners in V; that is,
diam(P) = maxy, vey d(u,v) if h =0 [5, 9]. For gen-
eral polygonal domains with h > 1, however, this is
not the case. In this paper, we exhibit several ex-
amples where the diameter is realized by non-corner
points on 9P or even by interior points of P (see Fig-
ure 1). This observation also shows an immediate
difficulty in devising any exhaustive algorithm since
the search space like 9P or the whole domain P is
not discrete.

In this paper, we present the first algorithms that
compute the geodesic diameter of a given polygonal
domain in O(n™73) or O(n”(logn + h)) time in the
worst case. We also show that for small constant h
the diameter can be computed much faster.

2 Preliminaries

We are given as input a polygonal domain P with A
holes and n corners. More precisely, P consists of an
outer simple polygon in the plane R? and a set of h
(> 0) disjoint simple polygons inside the outer poly-
gon. As a subset of R?, P is the region contained in
its outer polygon ezcluding the interior of the holes;
thus P is a bounded, closed subset of R?. The bound-
ary OP of P is regarded as a series of obstacles so
that any feasible path inside P is not allowed to cross
OP. Note that some portion or the whole of a feasible
path may go along the boundary dP. The length of
a path is the sum of the Euclidean lengths of its seg-
ments. It is well known from earlier work that there
always exists a shortest (feasible) path between any
two points p,q € P [7]. The geodesic distance, de-
noted by d(p, q), is then defined to be the length of a
shortest path between p € P and q € P.

49

26th European Workshop on Computational Geometry, 2010

U3

()

Figure 1: Three polygonal domains where the geodesic diameter is determined by a pair (s*,t*) of non-corner points;
Gray-shaded regions depict the interior of the holes and dark gray segments depict the boundary 9P. Recall that P, as
a set, contains its boundary OP. (a) Both s* and t* lie on OP. There are three shortest paths between s* and ¢*. In this
polygonal domain, there are two (symmetric) diametral pairs. (b) s* € 9P\ V and t* € intP. Three triangular holes
are placed in a symmetric way. There are four shortest paths between s* and t*. (c) Both s* and ¢* lie in the interior
intP. Here, the five holes are packed like jigsaw puzzle pieces, forming narrow corridors (dark gray paths) and two empty,
regular triangles. Observe that d(ui,v1) = d(u1,v2) = d(u2,v2) = d(u2,vs) = d(us,vs) = d(us,v1). s* and t* lie at the
centers of the triangles formed by the u; and the v;, respectively. There are six shortest paths between s* and t*. More
details on this example can be found in the extended version of this paper [1].

Shortest path map. Let V be the set of all corners
of P and =(s,t) be a shortest path between s € P
and t € P. Then, it is represented as a sequence
7(s,t) = (s,v1,...,vx,t) for some vy,...,v € V;
that is, a polygonal chain through a sequence of cor-
ners [7]. Note that possibly we may have k = 0 when
d(s,t) = ||s —t||. If two paths (with possibly different
endpoints) induce the same sequence of corners, then
they are said to have the same combinatorial struc-
ture.

The shortest path map SPM(s) for a fixed s € P is
a decomposition of P into cells such that every point
in a common cell can be reached from s by shortest
paths of the same combinatorial structure. Each cell
os(v) of SPM(s) is associated with a corner v € V
or s itself, which is the last corner of n(s,t) for any
t in the cell os(v). In particular, the cell o4(s) is
the set of points ¢ such that (s,) passes through no
corner in V and thus d(s,t) = ||s — t||. Each edge of
SPM(s) is an arc on the boundary of two incident cells
os(v1) and o4(v2) and thus determined by two corners
v1,v2 € V U {s}. Similarly, each vertex of SPM(s)
is determined by at least three corners vy, vo,v3 €
V U {s}. Note that for fixed s € P a point ¢ that
locally maximizes ds(¢) := d(s,t) lies at either (1)
a vertex of SPM(s), (2) an intersection between the
boundary 0P and an edge of SPM(s), or (3) a corner
inV.

The shortest path map SPM(s) has O(n) com-
plexity can be computed in O(nlogn) time using
O(nlogn) working space [6]. For more details on
shortest path maps, see [7, 6, 8].

Path-length function. If 7(s,t) # st, then there are
two corners u,v € V such that 7(s,t) is formed as the
union of a shortest path from u to v and two segments

50

su and vt. Note that u and v are not necessarily
distinct. In order to realize such a path, we assert
that s is visible from w and ¢ is visible from v; thus,
s € VP(u) and t € VP(v), where VP(p) for any p € P
is defined to be the set of all points ¢ € P such that
pg C P. The set VP(p) is also called the wvisibility
profile of p € P [3].

We now define the path-length function
len, ,: VP(u) x VP(v) — R for any fixed pair
of corners u,v € V to be

len, (s, t) == ||s — u| + d(u,v) + ||[v —¢||.

Then, len, ,(s,t) represents the length of the path
from s to ¢t that has the fixed combinatorial struc-
ture, entering u from s and exiting v to ¢. Also, unless
d(s,t) = ||s—t|| (equivalently, s € VP(t)), the geodesic
distance d(s, t) can be expressed as the pointwise min-
imum of some path-length functions:

d(s,t) = min

len, . (s,1).
u€VP(s), vEVP(t)

Consequently, we have two possibilities for a diame-
tral pair (s*,t*); either we have d(s*,t*) = ||s* — t*||
or the pair (s*,¢*) is a local maximum of the lower
envelope of several path-length functions.

3 Properties of Geodesic-Maximal Pairs

We call a pair (s*,t*) € P x P mazximal if (s*,t*)
is a local maximum of the geodesic distance function
d. That is, (s*,¢*) is maximal if and only if there
are two neighborhoods Uy, U; C R? of s* and of t*,
respectively, such that for any s € U; NP and any
t € Uy NP we have d(s*,t*) > d(s,t). For any pair
(s,t), let II(s,t) = {m1,...,m™m} be the set of all dis-
tinct shortest paths from s to ¢, where m denotes the

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

(VV) sfeV, t'eV
(VB) s*eV, t'eB
(VI) s*eV, t"eintP implies
(BB) s* € B, t*eB
(BI) s* e B, t* € intP implies
(I1) s €intP, t* € intP implies

implies

implies

implies

[TI(s™,t*)] > 1, [Vee| > 1, V3| > 1
[TI(s™, t%)] > 2, [Vie| > 1, V3| > 2;
[TI(s*,t")| > 3, [Vs| = 1,|Vix| > 3;
|H(s*,t*)| >3, |I@ > 2, |Vt > 2;
[TI(s™, t%)] > 4, [Vie| > 2,V | > 3;
[TI(s*,t*)] > 5, [Vi=| > 3,|Vi-| > 3.

Figure 2: Necessary conditions for a pair of points to be maximal.

number of shortest paths. Let u; and v; be the first
and the last corners in V' along 7; from s to ¢, and let
Vs :={u1,...,um} and Vi :={v1,...,om}.

Let E be the set of all sides of P without their
endpoints and B be their union. Note that B = 9P\V,
the boundary of P except the corners V.

Theorem 1 Suppose that (s*,t*) is a maximal pair
in P and II(s*,t*), Vi, and Vi+ be defined as above.
The implications of Figure 2 hold. Moreover, each of
the above bounds is best possible by examples.

Due to space constraints proofs of this theorem
is omitted (and can be found in the extended ver-
sion [1]).

4 Computing the Geodesic Diameter

Since a diametral pair is in fact maximal, it falls into
one of the cases shown in Theorem 1. In order to
find a diametral pair we examine all possible scenarios
accordingly.

Cases (V—), where at least one point is a corner in
V, can be handled in O(n?logn) time by computing
SPM(v) for every v € V and traversing it to find the
farthest point from v, as discussed in Section 2. We
thus focus on Cases (BB), (BI), and (II), where a
diametral pair consists of two non-corner points.

From the computational point of view, the most
difficult case corresponds to Case (II) of Theorem 1;
in particular, the case in which |[II(s*,t*)| = |Vs«
|Vi<] = 5. For such a case we do the following: we
choose any five corners uq,...,u; € V (as a candi-
date for the set Vi+) and overlay their shortest path
maps SPM(u;). Since each SPM(u;) has O(n) com-
plexity, the overlay consists of O(n?) cells. Then, any
cell of the overlay is the intersection of five cells asso-
ciated with v1,...,v5 € V in SPM(uy),...,SPM(us),
respectively. Choosing a cell of the overlay, we get
five (possibly, not distinct) v1,...,vs and thus a con-
stant number of candidate pairs by solving the sys-
tem leny, 4, (s,t) = -+ = leny, ., (s,t). We iter-
ate this process for all possible tuples of five corners
u1, ..., us, obtaining a total of O(n7) candidate pairs

in O(n"logn) time. Note that this method also cov-
ers the case of [TI(s*,t*)| > 5. Recall that each path-
length function len,, , is an algebraic function of de-
gree at most 4. Thus, given five distinct pairs (u;, v;)
of corners, we can compute all candidate pairs (s, t) in
O(1) time by solving the system!. Indeed when five
distinct pairs (u1,v1),. .., (us,vs5) of corners in V' such
that len,, ., (s*,t*) = d(s*,t*) for any ¢ € {1,...,5}
are known, their system of equations len,, 4, (s,t) =
o+ = leny, 4 (s, t) determines a 0-dimensional zero
set corresponding to a constant number of candidate
pairs in intP xintP. The (II) case (in which |V;-| < 4)
can be handled similarly, resulting in O(n%) candidate
pairs.

In order to test the validity of each candidate pair
(s,t), we check the geodesic distance d(s,t) using a
two-point query structure of Chiang and Mitchell [3]:
for a fixed parameter 0 < § < 1 and any fixed
€ > 0, we can construct, in O(n®+199+¢) time, a data
structure that supports O(nl_‘s log n)-time two-point
shortest path queries. Then, the total running time is
O(n"logn) + O(n>T109+¢) + O(n™) x O(n'~%logn).
We set § = 1—31 to optimize the running time to
O(n”%*‘).

Also, we can use an alternative two-point query
data structure whose performance is sensitive to the
number h of holes [3]: after O(n®) preprocessing time
using O(n®) storage, two-point queries can be an-
swered in O(logn + h) time.Using this alternative
structure, the total running time of our algorithm be-
comes O(n”(logn + h)). Note that this method out-
performs the previous one when h = O(n%).

For Case (BI), we handle only the case of
[TI(s*,t*)] = 4 with |Vi«| = 3 or 4. For the subcase
with |Vi«| = 4, we choose any four corners from V
as v1,...,v4 as a candidate for Vi« and overlay their
shortest path maps SPM(v;). The overlay, together
with V', decomposes 9P into O(n) intervals. Then,
each such interval determines uq, . .., u4 as above, and
the side e; € E on which s* should lie. Now, we

1Here, we assume that fundamental operations on a con-
stant number of polynomials of constant degree with a constant
number of variables can be performed in constant time.

51

26th European Workshop on Computational Geometry, 2010

have a system of four equations on four variables:
three from the corresponding path-length functions
len,, »; which should be equalized at (s*,t*) and the
fourth from the supporting line of es;. Solving the
system, we get a constant number of candidate max-
imal pairs, again by Theorem 1 and its proof. In to-
tal, we obtain O(n®) candidate pairs. The other sub-
case with |Vi«| = 3 can be handled similarly, resulting
in O(n') candidate pairs. As above, we can exploit
two different structures for two-point queries. Conse-
quently, we can handle Case (BI) in O(n®t11%¢) or
O(n®(logn + h)) time.

In Case (BB) when s*,t* € B, we handle the case
of |TI(s*,t*)| = 3 with |Vs«| = 2 or 3. For the subcase
with |Vs«| = 3, we choose three corners as a candi-
date of Vi« and take the overlay of their shortest path
maps SPM(u;). It decomposes 0P into O(n) inter-
vals. Then, each such interval determines three cor-
ners vi, vz, v3 forming Vi« and a side e; € E on which
t* should lie. Note that we have only three equations
so far; two from the three path-length functions and
the third from the line supporting to e;. Since s* also
should lie on a side e; € E with eg # e, we need to
fix such a side ey that [, ., .5 VP(u;) intersects es. In
the worst case, the number of such sides e is O(n).
Thus, we have O(n®) candidate pairs for Case (BB);
again, the other subcase with |Vi«| = 2 contributes to
a smaller number O(n?) of candidate pairs. Testing
each candidate pair can be performed as above, result-
ing in O(n+11+¢) or O(n®(logn + h)) total running
time.

As Case (IT) being a bottleneck, we conclude the
following.

Theorem 2 Given a polygonal domain having n cor-
ners and h holes, the geodesic diameter and a di-
ametral pair can be computed in O(n™ri1+¢) or
O(n"(logn + h)) time in the worst case, where € is
any fixed positive number.

We can avoid some difficult cases when h is a small
constant based on a simple observation: if there are
two distinct shortest paths between s and ¢ in P, then
we know that there is at least one hole in the region
closed by the two paths. In general, if h < k—1, there
cannot exist two points that have k& or more distinct
shortest paths between them.

Theorem 3 Given a polygonal domain having n cor-
ners and h holes, the geodesic diameter and a diame-
tral pair can be computed in the following worst-case
time bound, depending on h.

e O(n) time, if h = 0 (by Hershberger and Suri [5]),

e O(n%logn) time, if h =1,

e O(n®logn) time, if h =2 or 3,

e O(n"(logn + h)) time, if 4 < h = O(ni1),
e O(n™117€) time, otherwise.

92

5 Concluding Remark

It is worth noting that with analysis in Section 4 the
number of geodesic-maximal pairs is shown to be at
most O(n”). On the other hand, one can easily con-
struct a simple polygon in which the number of max-
imal pairs is Q(n?). An interesting question is how
many maximal pairs are there in a polygonal domain
in the worst case.

Though we, in this paper, have focused on exact di-
ameters only, an efficient algorithm for finding an ap-
proximate diameter would be interesting. Notice that
any point s € P and its farthest point ¢ € P yield a
1-approximate diameter; that is, d(s,t) > idiam(P).
Also, based on a standard technique using a rectan-
gular grid with a specified parameter 0 < e < 1/2,
one can easily obtain a (1 — e)-approximate diame-
ter in O((% + "72) logn) time. However, breaking the
quadratic bound (in n) for the (1 — €)-approximate
diameter seems a challenge at this stage.

Acknowledgments

The authors thank Hee-Kap Ahn, Jiongxin Jin, Christian
Knauer, and Joe Mitchell for fruitful discussion.

References

[1] SSW. Bae, M. Korman and Y. Okamoto The
geodesic diameter of polygonal domains. CoRR,
abs/1001.0695, 2010.

[2] B. Chazelle. A theorem on polygon cutting with ap-
plications. In Proc. Annu. Sympos. Found. Comput.
Sci. (FOCS), pages 339-349, 1982.

[3] Y.-J. Chiang and J. S. B. Mitchell. Two-point
Euclidean shortest path queries in the plane. In
Proc. 10th ACM-SIAM Sympos. Discrete Algorithms
(SODA), pages 215-224, 1999.

[4] L. J. Guibas and J. Hershberger. Optimal shortest
path queries in a simple polygon. J. Comput. Syst.
Sci., 39(2):126-152, 1989.

[5] J. Hershberger and S. Suri. Matrix searching with the
shortest path metric. SIAM J. Comput., 26(6):1612—
1634, 1997.

[6] J. Hershberger and S. Suri. An optimal algorithm
for Euclidean shortest paths in the plane. SIAM J.
Comput., 28(6):2215-2256, 1999.

[7] J. S. B. Mitchell. Shortest paths among obstacles
in the plane. Internat. J. Comput. Geom. Appl.,
6(3):309-331, 1996.

[8] J. S. B. Mitchell. Shortest paths and networks. In
Handbook of Discrete and Computational Geometry,
chapter 27, pages 607—641. CRC Press, Inc., 2nd edi-
tion, 2004.

[9] S. Suri. The all-geodesic-furthest neighbors problem
for simple polygons. In Proc. 8rd Annu. Sympos.
Comput. Geom. (SoCG), page 64, 1987.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

On the complexity of the edge guarding problem *

Vicente H. F. Batistal

Abstract

We revisit the complexity of the edge guarding prob-
lem on polyhedral terrains. We prove that it is NP-
hard to decide whether there exists an edge set of size
k that covers all of the faces of an n-vertex triangu-
lated terrain. To such end, we introduce the notion of
(F, H)-transversals. Also, we present a family of max-
imal planar graphs on n vertices that require at least
(n — 2)/3 edge guards to be covered. This reduces
the gap between the previously known lower and up-
per bounds on the minimum edge guard set for such
graphs.

1 Introduction

Since its formulation by Victor Klee in the 1970s, the
art gallery problem has stimulated an increasing num-
ber of researchers, notably from the computational
geometry community. The original question asks for
the minimum number of guards that can patrol the in-
terior of a gallery. In its standard version, a gallery is
represented by a simple polygon and guards are placed
at fixed points belonging to this polygon. Chvatal
[4] was the first to prove that [n/3| guards are al-
ways sufficient and sometimes necessary. By using
the fact that the triangulation of a simple polygon is
3-colorable, Fisk [7] designed a simpler and elegant
demonstration for the same problem.

Several generalizations have also been studied, such
as considering polygons with holes and orthogonal
polygons, or allowing guards to patrol along areas of
different shapes. We are concerned with the problem
of guarding polyhedral terrains. A polyhedral terrain
T can be viewed as the graph of a polyhedral function
z = F(z,y), defined over the xzy-plane [5]. Given two
points u and v on T, we say that u is wisible from
v if the line segment wv does not intersect any point
strictly below T. The wisibility region of a point u
is defined by the set of points on T visible from wu.
If guards are supposed to have fixed positions, i.e.,
if they cannot move during the surveillance, they are

*This work has been partially supported by CNPq.

fDepartamento de Engenharia Civil, Universidade Fed-
eral do Rio de Janeiro, COPPE, Caixa Postal 68506, Ilha
do Fundao, Rio de Janeiro, RJ, 21945-970, Brazil. Email:
{helano, fernando}@coc.ufrj.br.

fInstituto de Computagdo, Universidade Federal Flumi-
nense, Sao Domingos, Niter6i, RJ, 24210-240, Brazil. Email:
fabioQic.uff.br.

Fernando L. B. Ribeirof

Fébio Prottif

called point guards. If we further restrict their posi-
tions to the terrain vertices only, we call them ver-
tex guards. In another interesting variety, called edge
guards, they are allowed to patrol along a straight line,
usually the terrain edges.

Early results on the hardness of guarding polyhe-
dral terrains were presented by Cole and Sharir [5],
who showed that it is NP-complete to determine the
minimum number of vertex guards that collectively
see the whole terrain. Based on such proof, Zhu [13]
showed that it is also NP-complete to compute the
smallest edge guard set. Both works, however, re-
quire the construction of elaborate terrains where a
reduction from 3-SAT is carried out. Employing re-
cent complexity achievements for the cycle transversal
problem on planar graphs, we have succeeded in de-
veloping an improved polynomial reduction that con-
structs a simpler terrain for demonstrating the NP-
hardness of the edge guarding problem.

Regarding lower and upper bounds on the num-
ber of edge guards, Everett and Rivera-Campo [6]
and Bose et al. [2] have simultaneously provided the
best known bounds so far. While any terrain can be
guarded using at most |n/3| edge guards [2, 3, 6],
the corresponding lower bound is only |(4n —4)/13]
[2]. More recently, Kauéi¢ et al. [9] have claimed to
find an inconsistency in Bose et al. [2]’s lower bound
demonstration, which would weaken it to the value of
[(2n—4)/7]. In response to [9], Bose [1] has presented
a more detailed proof ensuring that his previous result
[2] was in fact correct. Here, we also consider reduc-
ing the gap between the best known lower and upper
bounds so far. In this direction, we show a family of
maximal planar graphs on n vertices whose minimum
edge guard set is of size (n — 2)/3.

2 Preliminaries

Let G = (V,E) be an arbitrary graph, and let Gy,
G5 be two subgraphs of G. If G; and G5 are dis-
joint and there is no edge connecting both, then we
say that G1 and G are independent. A collection of
subgraphs of G is independent if their members are
pairwise independent.

Planar 3-SAT,,;. Given a 3-SAT formula ¢ in con-
junctive normal form, its incidence graph is a bipar-
tite graph Glp] := (V, E), with partitions (V_, V),
where the sets V. and V,, correspond to clauses and

593

26th European Workshop on Computational Geometry, 2010

variables in ¢, respectively. The edges in G[p] denote
inclusion between clauses and variables. If the graph
Gly] is planar, we say ¢ is a planar 3-SAT instance.
The problem of deciding whether such a formula is
satisfiable is known to be NP-complete [10].

The 3-SAT5; problem is a 3-SAT variation charac-
terized by clauses with 2 or 3 literals, whose variables
occur exactly 3 times, twice positively and once neg-
atively. The standard decision problem defined over
these formulas is still NP-complete [11]. Based on ar-
guments from [10] and [11], we can state that Planar
3-SAT5, 1 remains hard to solve:

Lemma 1 Planar 3-SATs 1 is NP-complete.

Triangle transversal. Let G be an arbitrary graph
with no loops and multiple edges, and let H be any
given family of graphs. An H-subgraph of G is an in-
duced subgraph of G isomorphic to an element of H.
Let F' be another fixed family of graphs. Then, a col-
lection X of F-subgraphs of G is an (F, H)-transversal
of G if every H-subgraph in G is intersected by mem-
bers of X. In case F' is composed by vertices only, the
set X is simply called an H-transversal.

Given a graph GG and an integer k > 0, the problem
of deciding whether G has an H-transversal of size
at most k was proved to be NP-complete [12]. Di-
chotomy results about Cj-transversals were presented
in [8] for bounded degree graphs. In this paper, we
are interested on the case where H consists only of
triangles, and F' is composed by edges, i.e., we deal
with (Csq, Cs)-transversals. For obvious reasons, these
are termed edge-triangle-transversals.

3 Main results

We use the fact that if the polyhedral surface is con-
vex then the visibility region of any vertex is limited
to its incident faces. Thus, the computation of an
edge guard set can be reduced to an edge-triangle-
transversal query on planar triangulations. First, we
show that the decision version of the edge-triangle-
transversal problem restricted to planar graphs is as
hard to solve as Planar 3-SATs. 1, which is guaran-
teed to be NP-complete by Lemma 1.

Theorem 2 The edge-triangle-transversal problem
for planar graphs is NP-complete.

Proof. Clearly, it is in NP. To prove its NP-hardness,
let F' be an instance of planar 3-SAT5; with variables
1, To, ..., x, and clauses Cq, Cy, ..., Cp,.
Variables. For each variable x;, we associate a sub-
graph G; in G, as illustrated in Fig. la. Notice that
any transversal of G; has at least 3 edges because it
has a maximum of three independent triangles. Ob-
serve that if either b; or b belongs to a transversal

o4

(b)

Figure 1: (a) Subgraph G; associated with variable z;.
(b) A schematic view of the resulting graph associated
to the Planar 3-SAT5 ¢ formula (z1 V&2 Vag) Az V
Zi’g \/.’E4) A (LCQ \Y I3 \Y i’4) A (i’l VoV i’g).

together with o, then it will be necessary to use an
additional edge, e.g., b}, so as to cover the remaining
untouched triangles. Furthermore, if a; is in the same
transversal as b}, then we can replace a; with b; with-
out changing the transversal size. The same holds for
a; and b;. Thus it is always possible to select either
sets {a;, al,al} or {b;, b},)}

The upper vertices of edges b; and b}, and any ver-
tex of edge a! are used as connectors between G; and
the F' clauses. Furthermore, if x; (resp. x;) occurs
twice in F' then edges b; and b} correspond to these
occurrences and edge a! to the occurrence of its nega-
tion z; (resp. z;).

Clauses. For each clause Cj, 7 = 1,2,...,m, con-
struct a triangle whose vertices represent its literals.
When the clause has only two literals, we simply add
an artificial vertex, since it has no influence on any
assignment of true values. To finish the reduction, let
k = 3n. Figure 1b illustrates the whole reduction.
Next, it is shown that F' is satisfiable if and only if G
has an edge-triangle-transversal of size exactly 3n.

First, suppose F' is satisfiable. Let X be an initially
empty transversal. If the variable x; occurs twice with
value true in F, we insert {b;,b},b/} into X. Other-

17 7
/

wise, we pick {a;,al,al’}. It is easy to see that every

triangle in G is covered by X and that | X| = 3n.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Now, suppose X is an edge-triangle-transversal of
G of size 3n. Since each G; has at most 3 independent
triangles and G has n independent copies of G;, the
set X is irreducible. The smallest transversal of G;
can be either {a;,al,a} or {b;,b},b/}. If the first
subset is selected, we assign true to the literals x;
occurring only once. Otherwise, we assign true to the

literals x; with double occurrence. O

Actually, Theorem 2 implies a stronger result that
says the edge-triangle-transversal problem remains
NP-complete even for planar graphs of maximum de-
gree five. It is equally interesting that it remains a
hard computational task when restricted to triangu-
lations.

Theorem 3 The edge-triangle-transversal problem
is NP-complete for maximal planar graphs.

Proof. Let G be an arbitrary planar graph. The
proof consists in transforming G into a maximal pla-
nar graph G’ whose edge-triangle-transversal is triv-
ially determined from any transversal for G.

The triangles in G are kept untouched, while all
the other faces are triangulated as follows. Let f =
(v1,v2,...,0s) be a face in G of size s > 3. We begin
by splitting f into two cycles towards a path joining
the vertices v1 and v|5/2)4+1. This path is composed by
8 edges, namely, (vi,u1), (u1,uz), ..., (U7, V| s/2)41)-
This gives rise to two cycles C),. and C; containing
[n/2| + 8 and n — [n/2] + 8 vertices each. In the
interior of cycle C; (resp. C}), we insert vertices rq
and 7o (resp. I3 and ly), which are then connected to
the vertices {v1, va, ..., v|s/241} U {u1, ua, ug, ur}
and {’ULS/QJJ’,:[’ ULS/2J+2’ ey Ul} @] {UQ, us, ..., ’U,G},
respectively. Figure 2 illustrates this construction for
4- and 5-faces. All vertices, edges, and faces created
during this step are called false. Otherwise, we call
such entities true.

Let ¢ denote the number of non-triangular faces in
G, and let G’ be a maximal planar graph resulting
from the construction process just described. Given
any positive integer k, we claim that G has an edge-
triangle-transversal of size at most & if and only if G
has an edge-triangle-transversal of size not exceeding
kE+2¢.

Suppose X is an edge-triangle-transversal for G of
size k. Let X' = X U E*, where E* is the set of all
edges of type (r1,72) and (I1,12) (see Fig. 2). We claim
that X’ is an edge-triangle-transversal of G’. First,
observe that every false face has a vertex in E*, while
the true ones are touched by elements of X. Moreover,
the following holds: |X'| < |X|+ |E*| < k + 2¢.

We shall now assume that there exists an edge-
triangle-transversal X’ for G’ of size at most k + 2/.
Clearly, even if all true edges are selected, there will
be uncovered faces (see unshaded areas in Fig. 2).
The key observation is that, in any circumstance, we

(1 V4

Vg U3
(a) 4-face.

(b) 5-face.

Figure 2: Examples of constructions of triangulations
for (a) 4-faces and (b) 5-faces. The shaded regions
indicate the sole triangles covered by edges with end
points at the outer cycle.

can always choose the edges belonging to E*. Thus,
true faces must be covered only by true edges. Hence
X = X'\ E* is a transversal of G. Since E* has
exactly 2¢ edges, the inequality | X| < k holds. O

Now, the computational complexity of the edge
guarding problem over polyhedral terrains turns out
to be easily characterizable:

Theorem 4 The edge guard problem for triangu-
lated polyhedral terrains is NP-hard.

Proof. Given a maximal planar graph G, we con-
struct a terrain T as follows. For each face f in G,
insert a point p at its centroid and connect it to the
boundary vertices of f. Then, slightly translate p by
h along the z direction, with h < 0, forming a small
pit. For convenience, the new edges are labeled false.
Otherwise they are called true.

Let X be an edge-triangle-transversal of G with size
k > 0. We claim that the collection X is an edge-
triangle-transversal of G if and only if it is also an
edge guard set for T

Since every pit in T' can be entirely seen from its
rim, the edges in X are always sufficient to cover the
whole terrain T' constructed as above. Suppose now
that X’ is an arbitrary guard set for T' returned by
some algorithm, for example, a standard greedy one.
Mark the edges in X' as true or false. Note that any
true edge in X’ covers at least the same number of
faces as a false one. Thus, it is likely that an optimal
solution for 1" consists only of true edges. Otherwise,
observe that we can always replace a false edge in X’
by any true edge incident to it. Hence X = X’ is an
edge-triangle-transversal of G. O

Lower bound. In Refs. [2] and [3], it was argued
whether it would be possible to reduce the gap be-
tween sufficiency and necessity for edge guarding
triangulated terrains. Alternatively, whether there

95

26th European Workshop on Computational Geometry, 2010

Figure 3: Planar triangulation with n = 3k+2 vertices
that requires (n — 2)/3 edge guards, where k is the
number of independent triangles.

would be a planar triangulation on 9 vertices requir-
ing exactly 3 edge guards, because the gap between
|(4n — 4)/13] and |[n/3] is only stressed for graphs
with more than 8 vertices. A brute-force solution
would be to enumerate all planar triangulations on
n vertices, to compute all possible edge guard sets for
each one of them, and check if their sizes are all above
|(4n — 4)/13]. We have observed, however, that the
two-connected planar graph presented in [2] for prov-
ing the best known lower bound so far could be tri-
angulated without the addition of new vertices, and
thus extending this result to planar triangulations:

Theorem 5 There exists a maximal planar graph on
n vertices, with n = 2 mod 3, that requires |n/3]
edge guards.

Proof. We proceed by modifying the graph presented
in [2, Fig. 6]. It is composed by k disjoint triangles ar-
ranged side-by-side, and two vertices, one above and
the other below the base line where these triangles
are placed. Additionally, we insert k — 1 edges linking
the upper and the lower vertices, passing through the
regions between pairs of consecutive triangles. The re-
sulting maximal planar graph G is composed by 3k+2
vertices, as shown in Fig. 3. Since G has a maximum
of k independent triangles, the size of any edge guard
set is at least (n — 2)/3. O

4 Conclusion

Recent results in graph theory [8] have motivated us
to provide a purely combinatorial proof for the edge
guarding problem. In fact, our results also extend to
the vertex guard version, after contracting some edges
in the gadgets we have designed.

In the proof of Theorem 2, we have produced a pla-
nar graph whose maximum degree does not exceed 5.
An interesting open question is whether there exists
an equivalent bound for maximal planar graphs.

56

Acknowledgments

We would like to thank the anonymous referees for their
careful work and helpful comments.

References

[1] P. Bose. A note on the lower bound of edge guards of
polyhedral terrains. International Journal of Com-
puter Mathematics, 86(4):577-583, 2009.

[2] P. Bose, T. Shermer, G. Toussaint, and B. Zhu.
Guarding polyhedral terrains. Computational Geom-
etry, 7(3):173-185, 1997.

[3] P. Bose, D. Kirkpatrick, and Z. Li. Worst-case-
optimal algorithms for guarding planar graphs and
polyhedral surfaces. Computational Geometry, 26(3):
209-219, 2003.

[4] V. Chvatal. A combinatorial theorem in plane geom-
etry. Journal of Combinatorial Theory, Series B, 18:
39-41, 1975.

[5] R. Cole and M. Sharir. Visibility problems for poly-
hedral terrains. Journal of Symbolic Computation, 7
(1):11 - 30, 1989.

[6] H. Everett and E. Rivera-Campo. Edge guarding
polyhedral terrains. Computational Geometry, 7(3):
201-203, 1997.

[7] S. Fisk. A short proof of Chvatal’s watchman theo-
rem. Journal of Combinatorial Theory, Series B, 24:
374, 1978.

[8] M. Groshaus, P. Hell, S. Klein, L. T. Nogueira, and
F. Protti. Cycle transversals in bounded degree
graphs. FElectronic Notes in Discrete Mathematics,
35:189 — 195, 2009.

[9] B. Kauci¢, B. Zalik, and F. Novak. On the lower
bound of edge guards of polyhedral terrains. Interna-
tional Journal of Computer Mathematics, 80(7):811—
814, 2003.

[10] D. Lichtenstein. Planar formulae and their uses.
SIAM Journal on Computing, 11(2):329-343, 1982.

[11] C. Tovey. A simplified NP-complete satisfiability
problem. Discrete Applied Mathematics, 8(1):85-89,
1984.

[12] M. Yannakakis. Node-and edge-deletion NP-
complete problems. In Proceedings of the 10th Annual
ACM Symposium on Theory of Computing, pages
253264, 1978.

[13] B. Zhu. Computational geometry in two and a half
dimensions. PhD thesis, McGill University, Montreal,
Canada, 1994.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

From invariants to predicates: example of line transversals to lines

Guillaume Batog*

Abstract

This work explores a method that reduces the design
of evaluation strategies for geometric predicates to the
computation of polynomial invariants of a group ac-
tion. We apply it to the classical problem of count-
ing line transversals to lines in P? and capture poly-
nomials previously obtained by more pedestrian ap-
proaches.

1 Introduction

In computational geometry, algorithms are often de-
signed over the reals but are implemented in floating-
point arithmetic, which may lead to inconsistent de-
cisions. To ensure correctness, refinement strategies
or exact computations can be used but they may be-
come very time—consuming, depending on the eval-
uation strategy of the decision problem or predicate.
Consider for example the problem of deciding if four
points in the plane are cocyclic. One approach is to
compute the circumscribed circle of three points and
test if the fourth point lies on it. Another approach
consists in testing the vanishing of the determinant

Ty T+t
Ty Yo x5+ Y3
T3 ys a3 +y3
ry ys x4 yi

— = =

where (z;,y;) are the coordinates of the points.
A major question is to find efficient and robust eval-
uation strategies for a given predicate.

We are here interested in strategies involving only
polynomial evaluations from the inupts of a predicate.
Robustness issues are guaranted through exact com-
putation paradigm [10] and efficiency can be improved
by using simplest possible polynomials. An imme-
diate approach to find such polynomials consists in
translating the problem into equations and extract-
ing polynomial constraints that characterize the solu-
tions of the resulting system. This has to be carried
out carefully in order to avoid polynomials of huge
degrees. Consider for example the problem of count-
ing line transversals to four lines of R? given as pairs
of points. There may be 0, 1, 2 or infinitely many
ones. Indeed, consider the ruled quadric generated by
three input lines: the fourth line intersects it in at

*LORIA-Nancy 2 Univ., VEGAS Project, batog@loria.fr

most two points or is contained in it. While the naive
approach gives polynomial of degree 24 [3], the pred-
icate can be decided with polynomials of degree at
most 12 [2]. This gap can become more substantial:
for ordering planes through a line ¢, each contain-
ing a line transversal to three lines and ¢, degree 144
in [3] collapses to degree 36 in [2]. These two ad-hoc
approaches provide polynomials whose “complexity”
strongly depends on the analytical formulation of the
problem.

A general approach mainly based on the geome-
try of the predicate would be more satisfying. From
this perspective, Petitjean [8] proposed an invariant—
based method he applied to the problem of deciding
the real intersection type of two projective planar con-
ics (four simple points, two double points, a quadru-
ple point,etc there are altogether 12 different types).
What are the symmetries of the problem? Given two
conics, observe that their intersection type is left un-
changed under any simultaneous projective transfor-
mation of the two conics. The same is true when
exchanging both conics or, more generally, replacing
their equations by linear combinations of them. All of
these symmetries are structured in a group that acts
on the set of pairs of conics: any element of the group
maps any pair of conics to another pair with the same
intersection type. All pairs of conics obtained in this
way from a fixed pair form an orbit of the group ac-
tion. Invariant theory provides polynomial invariants
that discriminate these orbits, and therefore distin-
guish intersection types.

In this work, we unfold the invariant—based method
of [8] on the problem of counting line transversals to
four linearly independent lines in P3. It provides the
same polynomial of degree 12 in [2] in a more geo-
metric manner and yields a better understand of the
geometry of the problem. In this article, we focus on
the construction of an appropriate group action and
leave apart the computation of its polynomial invari-
ants. For the latter problem, the interested reader
will find an introduction in [6] and two different tech-
niques in [4] and [5] among various existing strategies.

2 Preliminaries
Notations. The general linear group GL,, over R is

the set of real invertible matrices of size n. (By ex-
tension, GL(W) is the set of invertible linear trans-

o7

26th European Workshop on Computational Geometry, 2010

formations of the vector space W.) We denote by
P = P*(R) the real projective space of dimension n
whose points are represented by homogeneous coor-
dinates [zg : ... : x,]. (By extension, PW represents
the quotient of the vector space W by nonzero scal-
ings.) A collineation (or projective transformation)
of P" is defined by a matrix M of GL,1: it maps
[0t ... @y] to [Mxzg :...: Mzy,]. The set of hyper-
planes of P” is denoted by P™*. The duality operator
* : P" — P™ maps a point [zg : ... : x,] to the hy-
perplane defined by the equation Y jz;y; = 0. A
correlation of P™ is the composition of a collineation
with the duality operator.

2.1 Invariants of group actions

A transformation group is a subset of GL,, containing
the identity matrix and closed by multiplication. In
what follows, G will denote an abstract group but it is
sufficient to restrict to transformation groups for the
sake of understanding.

Group action. The action p of a group G on a set
X is denoted by p : G O X and is defined as follows:
all p(g) with g € G are bijections of X such that p(1)
is the identity map on X and p(gg’) = p(g) o p(g’) for
any g,¢9' € G. For example, the group of isometries
preserving a cube acts on the set of diagonals of that
cube: applying two successive isometries on the cube
induces a composition of two permutations of its di-
agonals. A linear group action of G on a vector space
W is a group action p of G on W where the bijections
p(g) on W are linear! (i.e. elements of GL(W)). We
denote it by p: G — GL(W).

Consider a fixed element z in X and form the set of
all y € Y that can be obtained from x by a map p(g)
(with g € G): this defines an orbit of p. These orbits
form a partition of X. In the previous example, there
is just one orbit because any diagonal of the cube can
be mapped to any other one by an isometry preserving
the cube. Let us give two another examples.

Ezample 1. Let G be the group of affine motions? of
the real line R and p : G O R? its action on pairs of
points defined by p(g)(z,y) = (g9(x),9(y)). Figure 1
represents the orbits of p where we restrict to differ-
ent subgroup of G. We observe that the smaller (for
inclusion) the group, the larger the number of orbits.

Ezample 2. Consider the action S5 of GLs on the
space S?(R?) of binary quadratic forms, defined by:

-1 B
S2 (f: g) (az? + 2bxy + cy?) = ax® + 2bxy + cy?

LW is a representation of the group G in other words.

2An affine motion g of R™ is represented by a matrix of
GLy+41 in the form (%181) where % 'is the translation vector of
g and M € GL,, its vector part. We define det g = det M.

58

(a) affine motions

(b) non-reversing (c) rigid motions

affine motions

Figure 1: Orbits of p from Example 1.

a= a?a + 2a9b + ¥3c
b= afa+ (ad + By)b+ ~vdc
¢ = B3%a +2B8b+ 63c

It simply consists of a change of coordinates induced
by g € GLs on the quadratic form. This action has
three orbits, depending on the number of distinct fac-
tors in which a quadratic form can be factored.

where

Invariant. Let p : G — GL(W) be a linear group
action of a transformation group G C GL,,. A homo-
geneous polynomial P on W is a (relative) invariant
for p if there exists A € Z such that

V(g.w) € Gx W P(p(g)(w)) = (det g)* P(w). (1)

Some properties of an invariant remains unchanged on
each orbit, as the previous two examples illustrate.

In Example 1, the polynomial P(z,y) = = — y is
invariant for p (with A = 1) since g(z) — g(y) =
(det g)(x — y). If we restrict G to rigid motions (for
which det g = 1), the invariant P is constant on each
orbit and its value discriminates the orbits.

In Example 2, a straightforward computation shows
that the discriminant is a polynomial invariant on

S2(R?) (with A\ = 2):
b —ac = (ad — 37)*(b* — ac).

We observe that the sign (+, —, 0) of this invariant
is constant on each orbit and it entirely characterizes
the orbits.

Covariant. A covariant for p : G — GL(W) is a
polynomial invariant C for some action p’ : G —
GL(W x (R™)™) defined by p/'(9)(w,z1,...,7m) =
(p(9)(w),g(z1),...,9(xm)). We write C' ~,, 0 for
we W if C(w,x1,...,2m,) =0 for all (x1,...,2,) €
(R™)™. By definition, either C' ~ 0 or C' = 0 on a
whole orbit.

2.2 Line geometry

Pliicker quadric. A line ¢ of P3 can be represented

by its (homogeneous) Pliicker coordinates £ = [:
-+ - : &) that fullfill the quadratic Pliicker relation
(&) = &o&s + £184 + &265 = 0. (2)

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

It is the equation of a quadric G of P° called the
Pliicker quadric. We denote by +(¢) the Pliicker coor-
dinates of a line £. For a line £ in R3, 7 = (&, &1, &) is
a direction of £ and (&3,&4,&5) the moment of ¥ with
respect to the origin of R3. A complete presentation
can be found in [9].

Span of lines. For a subset H C P?, span H is the
minimal (for inclusion) projective subspace of P° con-
taining H. We define the span of a family of lines
as the span of their Pliicker coordinates. A family of
k lines is said linearly independent if its span has di-
mension k— 1. Any set £ of lines contains a family £’
with at most six linearly independent lines and any
line of £ is linearly dependent of those of £’.

Conjugation. The quadric ¢ defines a bilinear form
© called side-operator. We can observe that two lines
¢ and ¢ meet if and only if y(£) @ v(¢') = 0 ([9]).
Given a set H of P°, we define its conjugate as

H° ={xecP’|Vhe H z®h=0}.

Geometry of quadratic forms [1, 13.3] shows that H°
is a subspace of P° of codimension dim(span H) and it
satisfies (H°)° = span H. In terms of transversality,
we immediately have

Observation 1 y~1(H° N G) is the set of line
transversals to all of the lines y~(H N G).

Transformations preserving G. We here consider G
as a homogeneous subset of R6. A transformation
M € GLg globally preserves G if and only if there
is u € R* such that ¢(Mx) = pq(x) for any = € RS
([7, V.7]). Such transformations form a group GOg(q)
called the similarity group of ¢. The subgroup of sim-
ilarities M such that © = 1 and det M = 1 is called
the rotation group of ¢ and is denoted by SOg4(q).

Since a projective transformation g maps lines to
lines and preserves incidences, it naturally induces a
bijection of G. The same is true for correlations. In
fact ([9, Theorem 2.2.1]), such a bijection extends to
a projective transformation A2g of P° where Ak M is
the k' compound matriz of the matrix M of size n
whose entries are the minors of size k of M.

Lemma 1 [9, Theorem 2.1.10] PGOgs(q) is exactly
the set of transformations of P5 induced through A3
by collineations and correlations of P3.

3 Invariant-based method step by step

In this section, we unfold the invariant—based method
for the following predicate: given the Pliicker coor-
dinates of four linearly independent lines, how many
lines intersect all of them? We denote by X the set
of inputs of a predicate.

Step 1: Find all symmetries of any kind on the in-
puts X that leave invariant the outputs of the pred-
icate and model them by a group G acting on X by
Y:GOX.

Here, the inputs of the predicate are quadruplets
(&1,...,&4) of linearly independent lines (X is an open
subset of G*). Observe first that the order in which
the input lines are considered does not matter, hence
we can consider the action ; of the permutation
group G4 on X defined by

Y1(0) (s 5 64) = (Eo1)s - -5 €oa))-

Since a projective transformation preserves inci-
dences between lines, the action of PGL4 on X de-
fined by A2 leaves the output of the predicate invari-
ant on an orbit. In other words, any change of coordi-
nates does not change the number of line transversals
to the input lines. By this process, lines are con-
sidered as intrinsic geometric objects. In the same
way, we can consider the action of correlations that
also preserves incidences between lines. According to
Lemma 1, the action of collineations and correlations
writes as ¥ : PGOg(q) O X defined by

Ya(g) (€15 64) = (9(61), -+, 9(6a))-

Altogether, we construct G = &4 x PGOg(q) and
¥ : G O X defined by ¥(o, g) = ¥1(0) o 2(g). In the
point of view of Erlangen’s program, i encodes the
geometry of “sets of four lines”, that is, we identify
two ordered families of line coordinates if they repre-
sent the same set of lines. At this step, our method
differs from other approaches based on manipulations
of coordinates, here only geometry matters.

Step 2: Construct an encoding 7 : X — Y and a
group action p : G O'Y with finitely many orbits in
m(X) and “simulating” ¢ on'Y, i.e.

V(g,z) € Gx X p(g)(n(z)) = m(¥(g)(x)).

Hence the predicate has the same output on x and z’
if m(x) and 7(z") are in the same orbit of p.

According to Observation 1, the line transversals to
an input line family = € X are exactly those of the
span H of x, that is, H° NG. Since the four lines of z
are linearly independent, H has dimension 3, thus H°
has dimension one: it is a line of P°. As G is a quadric
in P°, either H® is contained in G or H® intersects G
in at most two points. The corresponding quadrics
H NG are listed in Table 1. We observe that the
type of H N G entirely characterizes the number of
line transversals to the family z. So we consider the
encoding 7 : x — H that maps a line family z to its
span and Y the set G4 of 3-dimensional subspaces
of P5. We can show that m(X) =Y.

99

26th European Workshop on Computational Geometry, 2010

H°NG HNG qH
2 points hyperboloid (2,2)
0 point ellipsoid (3,1) or (1,3)
1 point cone (2,1) or (1,2)
. two planes
a line sharing a line (1,1)

Table 1: Types of spans of four linearly independent
lines. The third column denotes the inertia of the
restriction to H of the quadratic form ¢ given in (2).

Let us “simulate” ¢ on Y. Since 7(¢1(0)(x)) =
m(x) for any € X, the action of &4 has no effect
on Y thus we can remove this group from G. We
construct p : PGOg(q) O Gy defined by p(g) = Adg.
By Witt’s Theorem [1, 13.7.1 and 13.7.9], the orbits
of p restricted to the group PSOg(q) (Figure 2b) are
characterized by the inertia of the quadric defined by
H NG (see Table 1). Since a similarity with negative
multiplicator p change the sign of ¢ (Equation (2)),
the orbits of p (Figure 2a) are obtained by merging
the previous orbits with the same unsigned inertia.

Step 3: Use appropriate techniques to compute some
polynomial invariants of p.

Here, we consider p’ : SOg(q) — GL(R) (Y is an
homogenous subset of R1®) defined by p'(g) = Adg.
Using the symbolic method of [4], we obtain® a poly-
nomial invariant of degree 2:

A =y; + i+ Y5 — 201y10 — 2y14Y2 — 2Y3Y15
+ 2yrys + 2y1196 + 2y12Y9

and a covariant Cov(y, x, 2) defined on Y x (R®)? with
21 distinct coefficients in x, =’ of degree 2. Since A is a
homogenous polynomial of degree 2, its sign remains
unchanged up to nonzero scalings, thus is invariant
on each orbit of p : PSOg(q) © Y. Since Cov is
homogeneous, Cov is a covariant of p.

Step 4: FEwaluate the previous polynomials on some
representative of each orbit and observe if geometric
situations are discriminated.

Finally, we obtain the following algorithm for
counting line transversals to a family x of four lin-
early independent lines. We compute y = 7(z). If
A(y) > 0, there are 2 line transversals. If A(y) < 0,
there is no transversal. Otherwise, if Cov ~, 0, then
there are infinitely many transversals, else there is
only one.

3In a symbolic form, A is written as the bracket polyno-
mial [a®ab][8®ab] and Cov as [a® au][3¥ av] where o, §
are letters representing R1® = A4RS, a, b representing S2R6 (it
simulates SOg(q) C GLg) and u, v representing RS.

60

---------- Y Y
0 1
oo
o [ol
(a) G = PGOg(q) (b) G = PSOs(q)

Figure 2: Orbits of p.

4 Conclusion

For counting line transversals to four linearly indepen-
dent lines, our invariant—based method provides the
same polynomial A as [2] but polynomials of higher
degrees than in [2] to discriminate the degenerate
cases. The same technique applies for five lines and
gives rise to the same polynomial as [2]. Finally, some
polynomials involved in predicates appear as invari-
ants of group actions, that is they originate from the
geometry of the problem. They might be essential in
any evaluation strategy for a predicate, based on poly-
nomials. This point of view seems to be a promising
approach to tackle optimality questions on predicates.

References

[1] M. Berger. Geometry II. Springer, 1996.

[2] O. Devillers, M. Glisse, and S. Lazard. Predicates for
line transversals to lines and line segments in three-
dimensional space. In Proc. 2/th ACM Symp. Com-
putat. Geom., pages 174—-181, 2008.

[3] H. Everett, S. Lazard, B. Lenhart, and L. Zhang. On
the degree of standard geometric predicates for line
transversals in 3D. Computational Geometry: Theory
and Applications, 42(5):484-494, 20009.

[4] F.D. Grosshans, G.-C. Rota, and J. A. Stein. Invari-
ant Theory and Superalgebras, volume 69 of CBMS
Region. Conf. Ser. Math. AMS, 1987.

[5] E. Hubert and I. A. Kogan. Rational invariants of a
group action. Construction and rewriting. Journal of
Symbolic Computation, 42:203-217, 2007.

[6] P. J. Olver. Classical Invariant Theory, volume 44
of London Mathematical Society Student Text. Cam-
bridge University Press, 1999.

[7] D. Perrin. Cours d’algébre. Ellipses, 1996.

[8] S. Petitjean. Invariant-based characterization of the
relative position of two projectives conics. In I. Z.
Emiris, F. Sottile, and T. Theobald, editors, Non-
linear Computational Geometry, volume 151 of The
IMA Volumes in Mathematics and its Applications,
pages 189-220. Springer, 2009.

[9] H. Pottmann and J. Wallner. Computational Line
Geometry. Springer-Verlag, 2001.

[10] C. K. Yap. Robust geometric computation. In J. E.
Goodman and J. O’Rourke, editors, Handbook of Dis-

crete and Computational Geometry, chapter 41, pages
927-952. Chapmen & Hall/CRC, 2nd edition, 2004.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

On the Diameter of a Geometric Johnson Type Graph.*

J. Cano!
D. Laral

C. Bautista-Santiago®

Abstract

An island of a set S of points on the plane is a subset
I of S with the property that Conv(I)NS = I. In this
paper we introduce the (k,1)-island intersection graph
of S, J(S, k,1), as the graph whose vertex set is the set
of all islands of S of cardinality k, where two of them
are adjacent if their intersection consists of exactly [
elements. For sets of points in general position, we
show that if n is large enough with respect to k and
I, then J(S, k,1) is connected; we also give upper and
lower bounds on the diameter of this graph.

1 Introduction

Let S be a set of n points on the plane. A subset
I C S is called an island if Conv(I) NS = I. We say
that an island is a k-island if it has k elements.

Given two integers k and [we define the (k,[)-island
intersection graph of S, J(S,k,l), to be the graph
whose vertex set is the set of all k-islands of S; where
two islands are adjacent if their intersection has ex-
actly [elements.

Various problems in Combinatorial Geometry can
be restated as the problem of determining some
graph-theoretic property of J(S,k,l). For example,
the number of empty triangles in S [2, 3, 4, 7, 9] is
the number of vertices in J(S, 3,1). In [1] the following
question is posed: what is the maximum number of
empty triangles that can share an edge? This trans-
lates to the problem of determining the clique number
of J(S,3,2).

A related graph J(n,k,l) (see [5]) has long been
studied. This graph has as vertices all the subsets of
k elements of a given set of cardinality n, two of which
are adjacent if their intersection has [elements. The
particular cases of J(n, k,0) and J(n, k, k—1) are the
well known Kneser and Johnson graphs.

*Part of the work was done in the 2nd Workshop on Discrete
Geometry and its applications. Oaxaca, México, September
2009.

TInstituto de Matematicas, Universidad Nacional Auténoma
de México. {crevel,dlara,j_cano}@uxmcc2.iimas.unam.mx,
{hernan,dflores,urrutia}@matem.unam.mx, partially
supported by CONACyT (Mexico) grant CB-2007/80268.

tDepartamento de Mateméticas, Centro de Investigacién
y de Estudios Avanzados del Instituto Politécnico Nacional,
México. {ruyfabila,esarmiento}@math.cinvestav.edu.mx.

R. Fabila-Monroy*

E. Sarmiento?

D. Flores-Pefialozal

J. Urrutiat

H. Gonzalez-Aguilar®

When S is in convex position, every subset of S with
k elements is a k-island. Thus, in this case, J(S, k1)
is isomorphic to J(n,k,l). For sets of points not in
convex position, J(S,k,[) is an induced subgraph of
J(n,k,1). We may regard J(S,k,l) as a geometric
version of J(n, k,1).

The paper is organized as follows: In Section 2
we give a sufficient condition for J(S, k,1) to be con-
nected. To do so, we first consider the case when all
the points are on a line, and then the case when all but
one point are on a line. In the first case J(S,k,1) is
disconnected for all but trivial cases; somewhat sur-
prisingly, in the second case J(S,k,l) is connected
provided that n is large enough with respect to k and
l.

In Section 3, we show that when S is in general
position, J(S, k,[) contains as a subgraph the case of
all but one point on a line. We then show that every
k-island is connected by a path to this subgraph, and
thus prove that J(S, k,1) is connected when n is large
enough with respect to k£ and .

The upper bound on the diameter of J(S, k,{) im-
plied by the connectivity results, is improved in Sec-
tion 4 for the particular case when ! < k/2. In the
same section we conclude the paper by giving lower
bounds for the diameter of J(S, k,1).

We omit several proofs for lack of space. We indi-
cate that the proof of one result is omitted, with the
addition of a box at the end of its statement.

2 Collinear and almost collinear points

In this section we consider two classes of point sets:
when all the points are collinear, and when all the
points but one are on a line.

2.1 Collinear points

Let L be a set of n points on a straight line. Assume
an orientation of this line and let xq,...,x, be the
elements of L in the order induced by the line. In this
case, a k-island of L is a set of k consecutive elements
of L.

We say that a point x; € L is to the left of an island
I C L if its index 7 is smaller than the index of each
point in 1.

We now show that J(L, k,1) is the disjoint union of
paths. To see this, let P, be the subgraph of J(L, k,1)

61

26th European Workshop on Computational Geometry, 2010

1 2 3 4 5 6 7 8 9 10 11

Figure 1: Two 4-islands of L U {z}.

induced by the set of all k-islands such that the num-
ber of points of L to its left congruent to » modulo
(k—1). We label the islands in P, by A, ;, where 4, ;
is the island with i(k — 1) + r points in L to its left,
0 <r < k—1I. Clearly each k island of L is an A, ;
island, for some ¢ and r. Observe now that each k-
island of L has at most two neighbours in J(L, k,1):
one to its left and one to its right. It is easy to see
that J(L,k,1) is a union of disjoint paths: the paths
P, for 0 <r < k —1[. We thus have:

Theorem 1 The graph J(L, k,!) is the disjoint union
ofall P, (0 <r<k-—1).

Note that J(L,k,1) is connected when n = k or
l = k — 1, and disconnected otherwise. Remarkably,
the addition of one extra point makes the graph con-
nected, as we show next.

2.2 Almost collinear points

Let L be a set of n — 1 points on a straight line, and
let « be a point outside the line containing L, and let
L' := LU {z}. A k-island of L’ is either a k-island
of L, or a (k — 1)-island of L together with the point
x, see Figure 1. Note that J(L,k,1) is an induced
subgraph of J(L' k,1).

Let P, be the subgraph of J(L', k, 1) induced by the
set of all k-islands that do not contain x and have a
number of points of L to its left congruent to r modulo
(k —1). We label the islands in P, as before: The
island A, ; in P, is the one having exactly i(k — 1) +r
points to its left. Similarly, let P/, be the subgraph
of J(L',k,1) induced by the set of all k-islands that
contain r and leave a number of points of L to its
left congruent to r modulo (k —). Denote as A/ ;
the island in P/ having exactly i(k — [) + 7 points to
its left. The following lemma, given without proof,
characterizes the edges of J(L', k, 1), as can be seen in
Figure 2.

Lemma 2 In J(L' k,i):
1. A, is adjacent to A, ;41 and Alm‘+1'

2. Al is adjacent to A ;. |, and to A, 1 41, if 7 >
1, or to A1, if r =0.

Furthermore, each edge of J(L',k,l) falls in one of
these types of adjacencies.

62

The graph J(L',6,2) with |L’| = 15.
Dashed edges illustrate the path used in Theorem 3.

Figure 2:

With the previous lemma, it is easy to prove the
connectivity of J(L', k,1) for any sufficiently large n.

Theorem 3 Forn > 3k—2l—1, the graph J(L', k,1)

is connected.

Proof. Note that by Lemma 2, the subgraphs P, and
P/, 0 <r < k—1-1, are paths, and thus are con-
nected.

Observe that if n > k + (2k — 21 — 1), then the
following islands exist:

the k — [islands A, o, with 0 <r <k —1,

the kK —l—1islands A, 1, with 0 <r <k —-1-1,

the k — [islands A, with 0 <r <k —1, and

the k£ — [islands A’

r,1

with 0 <r <k —1.

Let m = A6,0A6,1A0,0A0,1 T A;c—l—1,oA;f—l—1,1Akflfw'
By Lemma 2, path 7 is in J(L',k,1), see Figure 2.
Since m contains at least one vertex of each P,
and P/, 0 < r < k — 1, it follows that J(L', k1) is
connected. O

It can be proved that the graph J(L', k1) is dis-
connected whenever n < 3k — 2l — 1. Furthermore,
the next bound on the diameter of J(L', k,1) follows
directly from Lemma 2.

Proposition 4 The diameter of J(L', k,1) is at most
nk po(k—1) + 1. O

3 Points in General Position

Let S be a set of n points in general position in the
plane and let x be its topmost point. Sort the re-
maining points by angle around z, and denote them
as xi,...,Tn_1. Note that a set of consecutive points
in this order is an island, as is a set of consecutive
elements together with x. We call both of these types
of islands projectable.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Lemma 5 The subgraph of J(S, k,1) induced by the
projectable islands contains J(L', k,l) as a subgraph.

Note that if n is large enough with respect to k
and [, then the subgraph of J(S,k,1) induced by the
projectable islands is connected (Theorem 3).

In order to show that J(S,k,!) is connected, we
exhibit a path in J(S,k,) from any island to a pro-
jectable island.

Let ¢ be the weight of x;, and define the weight of
an island with at least two elements as the difference
between the largest and the smallest indexes of its
elements (excluding x). An island of weight k — 1 is
always projectable.

Lemma 6 (Shrinking Lemma) If n > (k —1)(k —
I+ 1) + k, then every non projectable island A; has
a neighbour in J(S, k, 1), which is either a projectable
island, or an island whose weight is at most the weight
of A; minus k — .

Proof. Let A; be a k-island with its elements dis-
tinct from « being x;,, ..., x;,, (ordered also by angle
around x). Thus, m is equal to k or to k — 1 depend-
ing on whether A; contains x or not. Consider the
following intervals of S\ {x}:

{zj € S\ {z}1 < j <y},
{z; € S\{a}tim—t <j<n-—-1}

[Ilv xil+1)

(xi‘m.fl) xn—l] =

and, for every hs.t. 1<h<m-—1[1-1,

(Tin s Tipy141) {z; € S\{x}|in <j <intiy1}-

We refer to the first two intervals as end intervals.

Note that there are at most k — [+ 1 such intervals,
each containing exactly [elements of A;, and that
every element of S\ {z} is in at least one interval.

Thus, since n > (k —1)(k — 1+ 1) + k, one of these
intervals, I, must contain at least (k — [) points of
S\ A;.

If I is of the form (x4,,%,,,.,), set J =
{Zip s Tipns - Tipy } (1 =0, set J := (), and
set B to be the set of the k — [points of I\ A; closest
to Conv(J) (if I = 0, set B to be any k-island inside
I'\ A;). The k-island J U B is a neighbour of A; in
J(S, k,1), and its weight is smaller than the weight of
A; by at least k — .

If I is an end interval, then let z; and z;; be the
first and last elements in A;NI. If [z;, 2,/] contains at
least k — [elements of S\ A;, then proceed as in the
previous case. Otherwise, there are r < k—1[points of
S\ A; in I. On one hand, if I is the first interval, then
we take B to be the k — [— r previous points to z; in
SN A;. On the other hand, if I is the last interval,
then we take as B the k — [— r points after z,. Note
that in either case, [z;, ;] U B is a projectable island
adjacent to A;. |

As a consequence of Lemma 5 and Proposition 4 we
have the following result:

Theorem 7 Ifn > (k—1)(k—14+1)+k, then J(
is connected and has diameter at most
2(k—-1)+3.

=

Proof. Let A and B be k-islands. We apply Lemma
6 successively to find a sequence of consecutive
adjacent islands A := Ag,A1,..., A, and B :=
By, B1, ..., B, in which each element has weight
smaller than the previous by at least k£ — [, and the
last element is a projectable island.

Since the weight of the initial terms is at most n,
these sequences have length at most n/(k —1) + 1.

As noted in Lemma 5 the subgraph of projectable
islands contains J(L',k,l) as a subgraph. Simple
arithmetic shows that if n > (k—1)(k—1+41)+k, then
n > 3k — 2]l —2. Thus, this subgraph is connected and
has diameter at most 2=% + 2(k —) + 1 (Theorem 3
and Proposition 4).

Hence, the diameter of J(S, k, 1) is at most 2(n/(k—
)+1) (k=D+1=3" -2 +2(k—1)+3,
as claimed. O

4 Diameter

4.1 Upper Bound

Theorem 7 yields an upper bound for the diameter of
J(S,k,1). For the case when | < k/2 this bound can
be greatly improved. At the moment, in the comple-
mentary case of [> k/2, we are unable to do better
than Theorem 7.

Our general approach for finding short paths be-
tween two vertices A and B of J(S,k,1), is to use a
divide and conquer strategy; we find neighbours of A
and B and at each step of the process, we discard half
of the points.

We cannot do this indefinitely since J(S,k,[) may
be disconnected if S has few points. Just before ar-
riving at such a situation, we use Theorem 7.

The following lemma provides the divide and con-
quer part of the argument. Its proof is technical and
uses many of the same arguments as the proof of
Lemma 6.

Lemma 8 Let A and B be two k-islands of S. If
n>2(k-0k-141)4k), and I < k/2, then
there exists a semiplane H containing at most n/2
and at least (k —1)(k — 14 1) + k elements of S, with
the property that A and B, considered as vertices of

J(S,k,1), each has a neighbour contained entirely in
H. O.

Theorem 9 Ifn > 2((k—1)(k—I+1)+k) andl < k/2,

k—
then the diameter of J(S,k,l) is at most 2log,(n) —
2logy (k= 1)(k—1+1)+k)) + l+8(k—l)+7

63

26th European Workshop on Computational Geometry, 2010

Proof. Consider the following algorithm.

Let A and B be two k-islands of S. We start by
setting Ag := A, By := B, Sy := S, ng := n, and
1 =0.

While n; > 2((k —1)(k — 1+ 1) + k), we apply
Lemma 8 to S;, A;, and B;. At each step we ob-
tain the semiplane H; containing at most n;/2 and at
least (k —1)(k — 1+ 1) + k elements of S;, with the
additional property that both A; and B; have neigh-
bours A;11 and B;41 in J(S;, k,1) contained entirely
in H;. We set S;y1 := H; NS;, nip1 := |Si41], and
1:=1+ 1, and continue the iteration.

We can do this procedure at most logy(n) —
logy(((E—1)(k—14+1)+k)) — 1 times.

In the last iteration, we have a point set .S; with less
than 2((k—1)(k—1+1)+k) elements, and at least (k—
I)(k—141)+k elements. The islands A; and B, are
both contained in S;, and both are joined by paths of
length at most logy(n) —logy ((k—1)(k—1+1)+k))—1
to A and B. We apply Theorem 7 to obtain a path of
length at most 6(k — 1+ 1) + 52 +2(k — 1) + 3 from
A; to B;.

Concatenating the three paths we obtain a path of
length at most 2log,(n) — 2log, (K —1)(k—1+1) +
k))+ 575 +8(k—1)+7 from A to B in J(S,k,1). O

4.2 Lower Bound

For the lower bound we use Horton sets [6]. We follow
the notation used in [8].

Given two point sets X and Y in the plane, we
say that X is high above Y if Y is below every line
containing two elements of X. Conversely we say that
Y is deep below X if X is above any line containing
two points of Y.

Now let X be a set of n points in the plane such
that not two of them define a vertical line, and let
Z1,...,Ty be the elements of X sorted by their z-
coordinate.

Define X to be the subset of X containing the ele-
ments with even index, and X; the subset of elements
of X with odd index.

Definition 1 A finite point set H with no two of its
elements on a vertical line, is a Horton set if |H| < 1,
or the following conditions are met:

e Both Hy and H, are Horton sets.
e H, is deep below H;.
e H, is high above Hy.

Horton sets of any size were shown to exists in [6].
Thus, let H be a Horton set of n points. Since by
definition Hy and H; are Horton sets, we may speak of
Hoo, Ho1, Hip, and H1;. We will do so and in general
speak of Hp, where b is a word of 0’s and 1’s.

64

To every k-island A of H, we associate the only set
Hy, with the property that Hy contains A but Hyg and
Hyp; do not.

The following lemma follows from the definition of
H.

Lemma 10 Let A and B be two neighbouring ver-
tices in J(H, k,l), and let H, and Hy, be, respectively,
their associated sets. Then, a differs from b in at most
k — [letters. O

Theorem 11 The diameter of J(H,k,l) is at least
log,(n) + log, (k).

Proof. For the sake of clarity, assume that n is a
power of 2. If by and by are the words of length
log(n)+log(k) with only 0’s (resp. only 1's), then Hy,
and Hy, are k-islands of H; by Lemma 10, they are
at distance at least log,(n) +logy (k) in J(H, k,1). O

References

[1] 1. Barany, G. Kdrolyi, Problems and results around
the Erdés-Szekeres convex polygon theorem. In Dis-
crete and computational geometry. pp. 91-105. 2000.

[2] 1. Bérdny, P. Valtr, Planar point sets with a small
number of empty convex polygons. Studia Sci. Math.
Hungar. 41, pp. 243-266, 2004.

[3] 1. Barany, Z. Fiiredi, Empty simplices in Euclidean
space. Canad. Math. Bull. 30, pp. 436—445, 1987.

[4] A. Dumitrescu, Planar sets with few empty convex
polygons. Studia Sci. Math. Hungar. 36, pp. 93-109,
2000.

[5] C. Godsil, G. Royle, Algebraic Graph Theory. New
York. Springer Verlag, 2001

[6] J. D. Horton, Sets with no empty convex 7-gons.
Canad. Math. Bull. 26, pp. 482-484, 1983.

[7] M. Katchalski, A. Meir, On empty triangles deter-
mined by points in the plane. Acta Mathematica Hun-
garica. 51, pp.323-328, 1988.

[8] J. Matoudek, Lectures on discrete geometry. New
York. Springer Verlag, 2002.

[9] P.Valtr, On the minimum number of empty polygons
in planar point sets. Studia Sci. Math. Hungar. 30,
pp. 155-163, 1995.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Polygonal Reconstruction from Approximate Offsets”

Eric Berberich’ Dan Halperin*

Abstract

Given a polygonal shape Q with n vertices, can it be
expressed, up to a tolerance ¢ in Hausdorff distance,
as the Minkowski sum of another polygonal shape
with a disk of fixed radius? If it does, we also seek
a preferably simple solution shape P; P’s offset con-
stitutes an accurate, vertex-reduced, and smoothened
approximation of Q. We give a decision algorithm for
fixed radius in O(nlogn) time that handles any polyg-
onal shape. For convex shapes, the complexity drops
to O(n), which is also the time required to compute a
solution shape P with at most one more vertex than a
vertex-minimal one.

1 Introduction

Computing the offset of a polygon, namely points at
most some fixed distance r away from the polygon,
is a fundamental geometric operation recurring in a
variety of applications. A standard way to obtain it is
via the Minkowski sum of the polygon and a disk of
radius r, which results in a shape bounded by straight-
line segments and circular arcs. Modeling the disk in
the Minkowski sum with a (tight) polygon yields an
approximate piecewise-linear offset. Often, such an
approximation is the legacy data which a program has
to deal with — the original shape before offsetting is
unknown.

While offset computation and smoothening of
shapes have been extensively studied, we address
the (offset-)reconstruction problem, that seems not to
have been addressed in the literature: Given a polyg-
onal shape Q, is it the approximate offset of another
polygonal shape? And if so, is there a good such P
(say, one with a small number of vertices)? As offset-
ting blurs small features, a definite reconstruction of
the original shape from Q (or even of its topology) is
impossible in general. However, a good choice of P
could lead to a more compact and smooth representa-
tion of the shape given by Q.

*Work by E.B. and D.H. has been supported in part by the
German-Israeli Foundation (grant no. 969/07). Work by D.H. has
also been supported in part by the Israel Science Foundation (grant
no. 236/06) and the Hermann Minkowski—Minerva Center for Ge-
ometry at Tel Aviv University.

TMax-Planck-Institut fiir Informatik, Saarbriicken, Germany,
eric@mpi-inf.mpg.de

*Tel Aviv University, Tel Aviy,
{danha|rozapoga}@post.tau.ac.il

81ST Austria, Klosterneuburg, Austria, mkerber@ist.ac.at

Israel,

Michael Kerber® Roza Pogalnikova*

In Section 2, we present an algorithm that de-

cides for any given polygonal shape Q with n ver-
tices (possibly unbounded), and two real parameters
r,e > 0, whether Q is within Hausdorff-distance ¢
to the r-offset of some other (yet unknown) polyg-
onal shape P; if the answer is yes, we also return one
such P. It gives the exact answer after O(nlogn) op-
erations in the real-RAM model by constructing off-
sets with increasing radii three times, exploiting this
increase in a particular fashion. For convex Q we re-
duce the running time to optimal O(n) in Section 3
and also compute a P as above which even minimizes
(up to one extra vertex) the number of vertices among
all valid choices. Furthermore, P’s r-offset consti-
tutes a tangent-continuous arc spline approximation
of Q where all circular arcs have the same radius.
This abstract summarizes [2] in which we give more
details and full proofs.
Related work LEDA and CGAL contain code to
compute Minkowski sums of polygons. The latter im-
plementation also computes the exact or approximate
offset of a polygon [5].

Smoothening polygonal shapes is desirable for
NC machining. Such aims at tangent-continuous arc-
splinesconsisting of segments and circular arcs which
enable a uniform and fast processing and often allevi-
ate the problem of overheating of the machine or the
material. For purely polygonal input one can distin-
guish results using single arcs or biarcs (besides seg-
ments). Drysdale et al. [3] compute a vertex-minimal
solution not adding new vertices, while Held et al. [4]
compute approximations with arbitrary vertex place-
ments and their tolerance band might even be asym-
metric. Our reconstruction approach constrains the
solution by allowing a single radius only. It disables
tangent-continuity in general. But this can also be
seen as a relaxation: We consider our reconstruction
approach as an interesting alternative to existing ap-
proaches because on success, it yields an approxima-
tion that reflects the construction history of Q.

We also seek a vertex-minimal P whose offset is
close to Q. P is actually constrained by a set of
shapes. A related problem is to find a minimal-link
polygon that is nested between two others; see [1]
from which our approach adapts some ideas.

2 The Decision for Polygonally Bounded Sets

For a set X c R? we denote its boundary by dX and
its complement by X© := R?\ X. For a point p and

65

26th European Workshop on Computational Geometry, 2010

66

a closed X, letting d(-,-) be the Euclidean distance
function, we write d(p,X) := min{d(p,x) | x € X}.
A polygonal region X c R? has a piecewise-linear
(finite number of lines) boundary. The points where
these straight-line segments intersect are the vertices
of the polygonal region. If X is bounded, 0X is a
set of (weakly) simple polygons. For two sets X
and Y, we denote their Minkowski sum by X @Y :=
{x+y|xeX,yeY}. Forany c€ R? ve R, we write
Dy(c) := {p € R? | d(c,p) < v} for the (closed) v-
disk around ¢, and Dy, := Dy(O) for the disk centered
at the origin. The r-offset of a set X, offset(X,r), is
the Minkowski sum X & Dy.

The (symmetric) Hausdorff distance of two closed
point sets X and Y is H(X,Y) := max{max{d(x,Y) |
x € X},max{d(y,X) | y € Y}}. We say that X is ¢-
closeto Y (and Y to X) if H(X,Y) < &, which can
also be expressed alternatively:

Proposition 1 For X,Y closed, X is g-close to Y if
and only ifY C offset(X, €) and X C offset(Y, €).

Decision algorithm From now, we fixr >0, € >
0, and a polygonal region Q, and consider the follow-
ing question: Can we find a polygonal region P such
that Q and the r-offset of P have Hausdorff-distance
at most £? First of all, we can assume that r > ¢; oth-
erwise, we can choose P := Q, because offset(Q,r)
and Q have Hausdorff-distance at most €.

Definition 1 For r > 0, and X C R?, the r-inset
of X is the set inset(X,r) := offset(X®,r)¢ =
{xeR?2|D;(x) C X}.

Algorithm 1 Is there any closed polygonal region P
such that a given Q is &-close to offset(P,r)?

(1) Q¢ <« offset(Q,¢€)
(2) M« inset(Qg,r)

(3) Q — offset(M,r+¢)
(4) reurnQC Q

We next prove that Algorithm 1 correctly decides
whether Q is e-close to some r-offset of a polygo-
nal region. A first observation is that for any polyg-
onal region P, offset(P,r) C Qg if and only if P C I'.
This is an immediate consequence of the definition
of insets. This shows that for any offset(P,r) that
is e-close to Q, P must be inside . Moreover, it
shows that any choice of P C I already satisfies one
of Proposition 1’s inclusions. It is only left to check
whether Q C offset(offset(P,r), &) = offset(P,r + ¢€).

Lemma2 Q is e-close to offset(P,r) if and only if
P CMandQ C offset(P,r +¢).

To prove correctness of the algorithm, we have to
show that Q C offset(IN,r + €) already implies that
there also exists a polygonal region P C M with Q C

offset(P,r +¢). Indeed, I is not polygonal in general;
we have to study its shape closer to prove that we can
approximate it by a polygonal region, maintaining the
property that the offset remains e-close to Q.

The shape of offsets and insets For a polyg-
onal region Q, it is not hard to figure out the shape
of Q¢ = offset(Q, €): It is a 2-manifold with bound-
ary that is bounded by straight-line segments and by
circular arcs, belonging to a circle of radius €. It is
important to remark that all circular arcs are convex:

Definition2 Let X C R? be a 2-manifold with
boundary with some circular arc y bounding it. Then,
y is called concave with respect to X, if each segment
connecting two distinct points on y is not fully con-
tained in X. Otherwise, the arc is called convex.

We call X a convexly (resp. concavely) bounded
region with radius r, if 0X consists of finitely many
straight-line segments and convex (resp. concave) cir-
cular arcs that are all of radius r, interlinked at the
vertices of the region.
not necessarily convex. @

The r-offset of a polygo-
nal region P is a convexly bounded region with ra-
dius r. The heart of this section is a proof that the

same also holds if P is concavely bounded (right) with
radius smaller thanr:

Note that a convexly
bounded region (left) is

Theorem 3 Let P be a concavely bounded region
with radius rq, and let ro, > ry. Then, there is a
polygonal region B. C P such that offset(P,ry) =
offset(PL,r2). In particular, offset(P,r,) is a convexly
bounded region with radiusr.

Note that the correctness of Algorithm 1 already
follows by noticing that Qg is a convexly bounded re-
gion with radius &, and we can apply Theorem 3 to all
constructed offsets, since € <r <r +&:

Corollary 4 Algorithm 1 returns true if and only if
there exists a polygonal region P such that offset(P,r)
is e-close to Q.

We now give a sketch
of the proof of Theo-
rem 3. W.lLo.g., we as-
sume that each concave
circular arc y spans less
than half a circle. The
arc’s linear cap is the re-
gion enclosed by y and
the two lines tangent to
the circle through the endpoints of y. The extended
linear cap is the region spanned by the two tangents
just mentioned and the two normals at the endpoints.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

We iteratively replace an arc y of a concavely
bounded region P’ (starting with P) by a polyline end-
ing in the endpoints of y, such that the polyline does
neither leave P’ nor y’s linear cap, and such that other
boundary parts of P’ are not intersected. This yields a
concavely bounded region P” with one arc less.

We show that in each iteration, the r,-offsets of P/
and P” are the same. For that we consider any point
X € P\ P”, in the region that is cut off by P”, and
consider y=x'+V foran arbitrary v’ € Dy,. We show
that in each case, y can also be written by y = X" +V”,
with X" € P”, and v’ € Dy,.

The proof then proceeds by studying several cases
based on the location of the point y with respect to the
extended linear cap of y; see y1,V¥2,V3 in the previous
figure and [2] for full details of the proof.

Theorem 5 Let P be concavely bounded with ra-
dius ry having n vertices, and assume r, > ry. Then,
offset(P,r2) has O(n) vertices and it can be computed
in O(nlogn) time.

Proof. By Theorem 3, it suffices to consider a polyg-
onally bounded R _instead of P; a trapezoidal decom-
position leads to a B with O(n) vertices. The Voronoi
diagram of B ’s vertices and (open) edges can be com-
puted in O(nlogn) time and has size O(n) [6]. Ther,-
offset boundary inside a Voronoi cell is formed by the
intersection of the cell with a parallel line (for the cell
of an edge of R.) or a circle (for the cell of a vertex).
Because the offset boundary intersects any Voronoi
edge only a constant number of times, the number of
vertices (and edges) of the offset is proportional to the
number of Voronoi edges. The offset is constructed
by sweeping the collection of all the boundary curves
from all Voronoi cells, which runs in O(nlogn) be-
cause of the absence of interior intersections. O

The running time of Algorithm 1 follows by apply-
ing Theorem 5 for the first three steps. The fourth
step is easily seen to run in O(nlogn) time as well.

3 Convex Polygons

Lemma 6 IfQ is a convex polygonal region, then 1,
as computed by Algorithm 1, is also a convex polyg-
onal region, and it can be computed in O(n) time.

Proof. Q is the intersection of the halfplanes
bounded by lines that support the polygon edges. Ob-
serve that I can be constructed by shifting each such
line by r — ¢ inside the polygon, which shows that I
is convex. For the time complexity, we compute the
lower (upper) envelope for the lines supporting upper
(lower) edges of Q by dualizing the lines supporting
the edges to points and computing their upper (lower)
hull by Graham’s scan. We exploit the fact that we
already know the x-order of these points. O

The next step of Algorithm 1 would be to check
Q C offset(N,r + €). Let qi,...,qn be the ver-
tices of Q (in counterclockwise order) and define
Ki = Dr1¢(qi). The following lemma together with
Lemma 6 implies that Algorithm 2 runs in linear time.

Algorithm 2 Is there any closed polygonal region P
such that a given convex Q is e-close to offset(P,r)?
(1) Qe < offset(Q,¢)

(2) M« inset(Qg,r)

(3) return A4 (KiNM #0)

Lemma 7 Qs e-close to offset(M,r) if and only if
intersects each of the K;.

Reducing the number of vertices We assume
in the remainder of this section that offset(,r) is &-
close to Q. Since our goal is to find a possibly simple
approximation of Q, we look for a P C I'1 whose off-
set is e-close to Q, but with fewer vertices than M.
Any such P intersects each of the convex (convexly
bounded) regions k; := KiNM,i =1,...,n, of radius
r + &, which we call eyelets from now on. The con-
verse is also true: Any convex polygonal manifold
P C M that intersects all eyelets ki, ..., K, has an r-
offset that is e-close to Q.

Proposition 8 Ifoffset(P,r) is e-close to Q, and P C
P’ C 1M, then offset(P',r) is e-close to Q.

We call a polygonal region P (vertex-)minimal, if
its r-offset is e-close to Q, and there exists no other
such region with fewer vertices. Necessarily, a min-
imal P must be convex — otherwise, its convex hull
CH(P) has fewer vertices and it can be seen by Propo-
sition 8 that offset(CH(P),r) is also e-close to Q.

Lemma9 There exists a minimal polygonal region
P C I whose vertices are all on 011,

Proof. We pull each ver-
tex pi ¢ JI in direction of
the ray emanating from pi_1
towards p; until it intersects
oM in the point p{ (drag-
ging p;’s incident edges along

with it); see the enclosed illustration. For
P/ = (plv"'vpiflapi/vpiJrlv"'?pm): P g P/ g rl’
offset(P’,r) is e-close to Q by Proposition 8. O

Thus, we can restrict our search to polygons with
vertices on . We call a polygonal region P good,
if P C I, all vertices of P lie on M, and P intersects
each eyelet K1,. .., Kn.

Definition 3 For two points u,u’ € T, we denote
by [u,u'] C N all points that are met when travel-
ling along @M from u to U in counterclockwise or-
der. Likewise, we define half-open and open intervals
[u,u), (u,u'], (u,u).

67

26th European Workshop on Computational Geometry, 2010

68

Let k; = Ki N1 be g;’s eye-
let as before. We consider
Ki N AT. The portion of that
intersection set that is visi-
ble from q; (considering N as
an obstacle) defines an inter- 9\
val [vi,wi] C arn. We call v
the spot of the eyelet k. Fi-
nally, for u,u’ € 9nn, we say
that the segment uu’ is good, if
for all spots v; € (u,u), uu’ in-
tersects the corresponding eye- ® ~ . F\J’ W3
let k;. The figure on the right -
illustrates these definitions: The segment pp’ is good,
whereas pp” is not good, because v, € (p,p”), but it
does not intersect k».

[

e mmim ===

Theorem 10 Let P be a convex polygonal region
with all its vertices on dI1. Then, P is good if and
only if all its bounding edges are good.

Proof. Any spot v; of an eyelet k; either corresponds
to some vertex p,; of P, or lies inside some interval
(Pe, Pes1). Since Prpr11 is good, it intersects k;. For
the converse, assume that pypy;1 is not good, which
encloses with the interval (py, ps11) @ polygonal re-
gion RC M\ P. Hence, there is a spot v; € R such
that Pypy;1 does not intersect the eyelet ;. It follows
that the entire k; is inside R (see the above illustration,
considering pp” and K»). Thus, PNk; =0, and so P
cannot be good. O

For u € a1, we define its horizon hy € 91 as the
maximal point (when travelling from u in counter-
clockwise order on @) such that the segment uhy
is good. An example is depicted in the previous fig-
ure: The segment uhy, is tangential to K, so if going
any further than hy from u, the segment would miss
Ko and thus become non-good.

Lemma 11 Let P be a good polygonal region, and
u € drl. Then, P has a vertex p € (u,hy].

Proof. Assume that P has no such vertex, and let
P1,...,P¢ be its vertices on dI. Let p; be the ver-
tex of P such that u € (pj,pj+1). Then, also hy €
(Pj, Pj+1), because otherwise, pj;1 € (u,hy]. Since
P is good, the segment Pjpj11 is good, too. It is not
hard to see that, consequently, both pjtand Upj 7 are
good. However, the latter contradicts the maximality
of the horizon hy. O

For an arbitrary initial vertex s € dI1, we finally
specify a polygonal region PS by iteratively defining
its vertices. Set p; :=s. Forany j > 1, if the segment
P;s which would close PS, is good, stop. Otherwise,
set pj41 := hp;. Informally, we always jump to the
next horizon until we can reach sagain without miss-
ing any of the eyelets. By construction, all segments
of P® are good, so PS itself is good.

Theorem 12 Let P be a minimal polygonal region
for Q, having OPT vertices. Then, for any s € dI1,
PS has at most OPT + 1 vertices

Proof. We first prove that PS has the minimal num-
ber of vertices among all good polygonal regions that
have sas a vertex. Let s:= pq,..., pm be the vertices
of PS. There are m— 1 segments of the form p,hp,. By
Lemma 11, any good polygonal region has a vertex
inside each of the intervals (p,,hp,]. Together with
the vertex at s, this yields at least m vertices, thus PS
is indeed minimal among these polygonal regions.
Next, consider any minimal polygonal region P*.
We can assume that all its vertices are on JI by
Lemma 9. If sis not a vertex of P*, we add it to
the vertex set and obtain a polygonal region P’ with
at most OPT + 1 vertices that has sas a vertex. PS has
at most as many verticesas P, som<OPT+1. O

As each visit of an eyelet requires constant time,
the construction of a horizon is proportional to the
number of visited eyelets, and there are only linearly
many eyelets, we can state:

Theorem 13 For an arbitrary initial vertex s, P® can
be computed in O(n) time.

Additional Material In the extended version of
this paper [2] we also present a new approximation of
a polygonal shape’s r-offset by line segments and cir-
cular arcs aiming at an accurate and compact descrip-
tion. Its vertices are rational and the Hausdorff dis-
tance to the exact offset is at most some prescribed €.
In addition we discuss there some immediate exten-
sions of the algorithms presented here.

References

[1] A. Aggarwal, H. Booth, J. O’Rourke, S. Suri, and C.-
K. Yap. Finding minimal convex nested polygons. Inf.
Comput., 83(1):98-110, 1989.

[2] E. Berberich, D. Halperin, M. Kerber, and R. Pogal-
nikova. Polygonal reconstruction from approximate
offsets. Manuscript, 2009, available upon request.

[3] R. Drysdale, G. Rote, and A. Sturm. Approximation
of an open polygonal curve with a minimum number
of circular arcs and biarcs. Computational Geometry,
41(1-2):31 - 47, 2008.

[4] M. Heimlich and M. Held. Biarc approximation,
simplification and smoothing of polygonal curves by
means of Voronoi-based tolerance bands. Int. J. Com-
put. Geometry Appl., 18(3):221-250, 2008.

[5] R. Wein. Exact and approximate construction of off-
set polygons. Computer-Aided Design, 39(6):518-527,
2007.

[6] C.-K. Yap. An O(nlogn) algorithm for the Voronoi
diagram of a set of simple curve segments. Discrete &
Computational Geometry, 2:365-393, 1987.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

The Class Cover Problem with Boxes

S. Bereg* S. Cabello J.M. Diaz-Bafez?*

Abstract

In this paper we study the following problem: Given
sets R and B of red and blue points respectively on
the plane, find a minimum-cardinality set H of axis-
aligned open rectangles such that every point in B is
covered by at least one rectangle of H, and no rect-
angle of H contains a point of R. We prove the NP-
hardness of the original version of the stated problem,
and give exact or approximated algorithms depending
on the type of rectangles considered.

1 Introduction

Let R and B be sets of red and blue points respectively
on the plane. Denote S = RUB, r = |R|, and b = | B|.
The x- and y-coordinates of the point p are denoted
by x(p) and y(p) respectively. We say that a set X
is R-empty if X contains no red points. Given S,
a classical problem in data mining and classification
problems is the Class Cover problem [3]. It consists
in finding a minimum-cardinality set of R-empty disks
such that every point in B is contained in at least one
of the disks. In [3], the authors considered the case in
which the disks are centered at some point in B. They
showed that this version is NP-hard. In this paper we
consider another variation by considering axis-aligned
rectangles (i.e. boxes) as the covering objects. It can
be defined as follows:

The Boxes Class Cover problem (BCC-
problem): Given S = R U B, find a minimum-
cardinality set H of R-empty axis-aligned open rect-
angles such that every point in B is contained in at
least one rectangle of 'H.

Let H be a solution to the BCC-problem. We can

*Department of Computer Science, University of Texas
at Dallas, USA, besp@utdallas.edu. Partially supported by
project MEC MTM2009-08652.

fDepartment of Mathematics, FMF, University of Ljubl-
jana, SLOVENIA, sergio.cabello@fmf.uni-1j.si

IDepartamento Matematica Aplicada II, Universidad de
Sevilla, SPAIN, {dbanez,iventura}@us.es. Partially sup-
ported by project MEC MTM2009-08652.

§Departamento de Computacién, Universidad de La Ha-
bana, CUBA, pablo@matcom.uh.cu. Partially supported by
projects MAEC-AECID and MEC MTM2009-08652.

TDepartament de Matematica Aplicada II, Universitat
Politecnica de Catalunya, SPAIN, carlos.seara@upc.edu. Par-
tially supported by projects MEC MTM2009-07242 and Gen.
Cat. DGR2009GR1040.

I. Ventura¥

P. Pérez-Lantero § C. Seara 1

extend each box H € H until each side of H passes
through a red point or reaches infinity. Thus we will
only consider the set H* of all the R-empty open boxes
whose sides pass through red points or are in infinity.
Up to symmetry, such types of boxes are depicted in
Fig. 1.

Figure 1: Types of boxes in ‘H*. a) A rectangle, b) a
half-strip, c¢) a strip, d) a quadrant, e) a half-plane.

The outline of this paper is as follows. In Section 2 we
prove that the BCC-problem is NP-hard. In Section 3
we mention related results concerning range spaces
and epsilon-nets that give approximation algorithms.
In Section 4 we study the BCC-problem when we re-
strict the boxes to be strips or half-strips. Finally, in
Section 5, we consider the version of the BCC-problem
in which the boxes are axis-aligned squares, and prove
its NP-hardness.

2 Hardness

We prove here that the BCC-problem is NP-hard
based on a reduction from the Rectilinear Polygon
Covering problem (RPC-problem), that is defined as
follows: Given a rectilinear polygon P, find a mini-

mum cardinality set of axis-aligned rectangles whose
union is exactly P. The RPC-problem is NP-hard [5].

Theorem 1 The BCC-problem is NP-hard.

Proof. Suppose we are given a rectilinear polygon P
as an instance of the RPC-problem. Let A; be the set
of all distinct axis-parallel lines that pass through an
edge of P. For every two consecutive vertical (resp.
horizontal) lines in A;, draw a vertical (resp. hor-
izontal) line in between. Denote as Ay these addi-
tional lines. Let G be the grid defined by A; U As.
We put a red (resp. blue) point in every vertex of
G\ P (resp. G N P) (see Figure 2). Let S be the

69

26th European Workshop on Computational Geometry, 2010

Figure 2: The reduction from an instance of the RPC-
problem to an instance of the BCC-problem. Red points
are solid dots, and blue points are circles.

above set of red and blue points. Clearly, any cover-
ing set of the polygon P corresponds with a solution
to the BCC-problem on S with the same cardinality.
Conversely, any solution H for the BCC-problem on
S can be adjusted to be a covering set of P. Namely,
consider that each box in H is maximal (i.e. it can-
not be enlarged for covering more blue points) and let
H' = {BB(H) | H € H}, where BB(H) is the axis-
parallel bounding box of H N B. Every box in H' is
fully contained in P, and the union of the boxes in H’
covers P. O

3 Related results

In this section we relate our problem with e-nets. A
finite’ range space (X, R) is a pair consisting of an
underlying finite set X of objects and a finite collec-
tion R of subsets of X called ranges. Given a range
space (X,R) the SET COVER problem [6] asks for
the minimum-cardinality subset of R that covers X.
Then the BCC-problem is an instance of the SET
COVER problem in the range space (B, H*). The
dual of the SET COVER problem is the HITTING
SET problem [6]. Given the range space (X,R), its
dual range space is (R, X*) where X* = {R, |z € X}
and R is the set of all ranges in R that contains z [2].
A set cover in the primal range space is a hitting set in
its dual, and vice versa. In [2], a general approach for
finding an approximated hitting set for range spaces
is given, and it is based on finding small size subsets
called e-nets, as candidate hitting sets, and works for
range spaces with finite VC-dimension [2, 7, 9]. In
terms of our problem, an e-net is a subset B’ C B
such that any box in H* that contains ¢|B| points
covers an element of B’. In the dual space an e-
net is a subset H C H* that covers all points p of
B such that p is covered by at least ¢|H*| boxes of
‘H*. Note that the VC-dimension of our range space
(B, H*) is at most four. For range spaces with con-
stant VC-dimension, the method in [2] reports a hit-

LA range space can be infinite, but for the purpose of our
problem we only define it as finite.

70

ting set of size at most a factor of O(logc) from the
optimal size ¢. Then, since our range space (B, H*)
has constant VC-dimension (and thus the dual range
space does), the technique in [2] can be applied to
obtain an O(log ¢)-approximation algorithm for the
BCC-problem, where c is the size of an optimal cov-
ering.

4 Solving particular cases

Here we study some special cases. Namely, we con-
sider only certain boxes of H* having at most three
points on their boundary. In Subsection 4.1 we use
both horizontal and vertical strips for covering. In
Subsection 4.2 we consider only one type of half-
strips, say top-bottom half-strips, as covering rect-
angles. Finally, in Subsection 4.3 we prove that the
BCC-problem remains NP-hard if we cover with half-
strips in the four possible directions, and that there
exists a constant factor approximation algorithm.

4.1 Covering with horizontal and vertical strips

A box in H* is a strip if it does not contain red points
in two consecutive sides (see Fig. 1 ¢) and e)). Thus
we consider as covering objects vertical or horizon-
tal strips, and axis-aligned half-planes. Notice that
a covering set exists if and only if every blue point
can be covered by an axis-parallel line avoiding red
points. Also, if a blue point and a red point lie on
the same vertical (resp. horizontal) line then the blue
point can only be covered by a horizontal (resp. ver-
tical) strip. First we sort S by x-coordinate and by
y-coordinate (two orders) in O(rlogr + blogbd) time.
Preprocess in linear time the x-order to assign for each
blue point p the references r (p) and r} (p) to its pre-
vious and next red points respectively. Do the same
with the y-order to assign ry (p) and rf(p). A so-
lution does not exist if and only if there is a blue
point p such that x(p) = x(r (p)) or x(p) = x(r5 (p)),
and y(p) = y(ry (p)) or y(p) = y(ry (p)). It can be
checked in O(r + b) time. Thus suppose now that
a solution exists. We can assume that there are no
red and blue points on the same horizontal or vertical
line. Otherwise we can apply the following linear-time
preprocessing and after that, solve the same problem
for the blue points not yet covered. Given a blue
point p let H,(p) be the vertical strip bounded by
r7(p) and 7} (p), and Hp(p) be the horizontal strip
bounded by 7, (p) and 5 (p). From each non-covered
blue point p, if x(p) = x(rc (p)) or x(p) = x(r{ (p))
then include in the solution the strip Hy(p). Else,
if y(p) = y(ry (p)) or y(p) = y(r{ (p)) then include
H,(p). Consider a graph G whose set of vertices V is
the set of strips, and whose set of edges E is as fol-
lows. For each blue point p put an edge between the

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

horizontal strip Hp(p) and the vertical strip H,(p);
different blue points may define the same edge. The
graph G is bipartite, has O(r) vertices and O(b) edges,
and can be constructed in O(r + b) time. Since each
blue point is covered by exactly two strips the prob-
lem reduces to finding a Minimum Vertex Cover [6]
in G. For bipartite graphs the Vertex Cover Prob-
lem is equivalent to the Mazimum Matching Problem
because of the Konig’s theorem, and thus it can be

solved in O(y/[V]|E|) = O(y/rb) time [8].

Theorem 2 The BCC-problem can be solved in
O(rlogr + blogb + +/rb) time if we only use axis-
aligned strips as covering objects.

4.2 Covering with half-strips in one direction

A box of H* is a half-strip if it contains at most three
points on its boundary (see Fig. 1 b), ¢), d), and e)),
and is top-bottom if either contains a red point on
its top side or is a vertical strip. We give an exact
O(rlogr+ blogb+ blog r)-time algorithm based on a
simple data structure

Consider the structure of rays that is obtained by
drawing a bottom-top red ray starting at each red
point. Every time we select the highest blue point p
not yet covered, and let s, be the maximum-length
horizontal segment passing through p whose interior
does not intersect any red ray. Let p; (resp. p.) be
the red point such that the left (resp. right) endpoint
of s, is located in the ray corresponding to p; (resp.
pr). We say that p; and p, are the left and the right
red neighbors of p. We include in the solution the top-
bottom half-strip H,, whose top side is s, translated
upwards until it touches a red point or reaches the
infinite, i.e. the top-bottom half-strip in H* covering
p and the maximum number of other blue points. We
finish when all blue points are covered.

The correctness of the algorithm follows from the fact
that, if p is the blue point not yet covered that has
maximum ordinate, then the strip H, satisfies that
for any other non-covered blue point p’ not in Hy,, p
and p’ cannot be covered with the same top-bottom
half-strip. This is because any top-bottom half-strip
covering p and p’ contains at least one of the two red
neighbors of p. In the algorithm we first preprocess
S to obtain the decreasing y-order and to build two
balanced binary search trees Tp and Tk containing
respectively the blue and the red points sorted lexico-
graphically. The first one allows deletion of elements
and in the second one each node v is labeled with the
element of minimum ordinate in the subtree rooted at
v. This labeling permits us to obtain the red neigh-
bors for a given blue point p and to determine the top
side of H, both in O(logr) time. The preprocessing
time is O(rlogr 4 blogd) in total. Now for each blue

point p in the decreasing y-order such that p is not
still covered (i.e. p is in Tg) we do: find the left and
the right red neighbors p; and p, of p, determine H,
include H,, in the solution, and remove in O(k, logb)
time the k, blue points in Ts covered by H,.

Theorem 3 The BCC-problem can be solved in
O(rlogr + blogb + blogr) time if we only use half-
strips in one direction as covering objects.

4.3 Covering with half-strips

Here we study the BCC-problem when the covering
boxes are half-strips oriented in any of the four possi-
ble directions. We firstly show that this variant is also
NP-hard, and afterwards we give a constant-factor
approximation algorithm due to results in [2, 4]. We
name this version as The Half-Strip Class Cover prob-
lem (HSCC-problem), and use a reduction from the
3-SAT-problem [6] to prove that it is NP-hard.

Theorem 4 The HSCC-problem is NP-hard.

Proof. Given an instance F of the 3-SAT-problem
with ¢ variables x1,...,z; and m clauses C1,...,Cp,,
we construct an instance of the HSCC-problem as fol-
lows. Let a be a set of ¢t pairwise disjoint vertical
strips of equal width such that the i-th strip from left
to right «; represents the variable x;. Similarly, let 3
be a set of ¢t +m pairwise disjoint horizontal strips of
equal width, such that the clause C is represented by
the (¢t + j)-th strip f;4; from bottom to up. Consec-
utive strips in o and (3 are well separated. Let d; be
the dividing line of «;. We say that the part of the
interior of «; that is to the right (resp. to the left) of
d; is the true (resp. false) part of ;. For each variable
x; (1 <i<t)weputin a; NG; aset V; of red and
blue points as shown in Fig. 3 a). For each clause C}
(1 <j < m) we add a set W; of bicolored points in
the following manner. Suppose that C; involves the
variables z;, zg, and z; (1 <i < k <1 < m). Define
the lines ¢1, ¢}, la, £, ¢35, and 5, and add a set of
red points as depicted in Fig. 4. Put a blue point in
the intersection of ¢ and /3, and another one in the

! d; 5 }
. . 'y
P b b M
B; i op” B; e B; 0
,,ﬂ.,,,z;éﬂ”r . é) ° é)
7777777r777'ﬂ77 | ®] L4
o,/ ! o ! o |
14 Iy . Py
| [eF3 Qa; | | Q;
a) b) c)

Figure 3: In a) the point set V; for the variable x;. In b)
and c) the two ways of optimally covering the blue points
in V;. b) x; is equal to true, c¢) z; is equal to false.

71

26th European Workshop on Computational Geometry, 2010

iy "
5! Gl b 0 !
77777 - -0 -0--——-—-90--0--00 -0 -0 -9 -/
T Al T T T)
””” Fr——~"rO-r-----0Q-F---F-~—-—F-—~—~=——q-=—=°3---°-- é’l
/‘3 I I I I I
t+3j | | | | |
| | i O | |
I I I I I
| @ | | | "
””””” [ttt it Kl it el &y Kottt Attt R i érz
————— PN S S 1 U S Y S . S
I I I I I
| oy | | Q. | | (&%)

Figure 4: The set W; of red and blue points for the clause
Cj = (ZBZ Vap V —\1‘1).

intersection of ¢4 and the bottom boundary of B4 ;.
If x; is not negated in C; then put in the true part of
«; (otherwise in the false part) two blue points, the
first one over ¢} and the second one over the bottom
boundary of 31 ;. If z) is not negated in C; put one
blue point in the center of the intersection of 3,4, and
the true part of ay, (otherwise in the false part). Fi-
nally, if z; is not negated in C; put in the true part of
oy (otherwise in the false part) two more blue points,
one over the top boundary of $;4; and another one
over the bottom boundary.

Let S = J'_, ViU Uj=, W; be the instance of the
HSCC-problem. Note that we can cover optimally
the blue points in V; in two ways, the first one with a
right-left half-strip covering the two lowest blue points
in V; and a vertical strip covering the true part of oy
(see Fig. 3 b)), and the second one with a vertical strip
covering the false part of «; and a left-right half-strip
that covers the upper two blue points of V; (see Fig. 3
c)). We say that the first way is a true covering of
x; (i.e. z; is true), and that the second one is a false
covering of x; (i.e. w; is false). For each clause Cj
(1 < j < m) that involves the variables x;, x, and x;
(1 <i< k<1< m)we observe that if at least one
variable, say x;, is such that the covering of V; covers
the blue points in W; Ny (i.e. the value of z; makes
C; true), then at least two half-strips are needed to
cover W; \ ;. Otherwise, at least three half-strips
are needed. We claim that F is satisfiable if and only
if the blue points in S can be covered with 2t + 2m
half-strips. O

Theorem 5 There exists a polynomial-time O(1)-
approximation algorithm for the HSCC-problem.

Proof. Let Hg be the set of all half-strips in H*,
and partition Hg into the subsets Hg, and Hg, of all
vertical and horizontal half-strips, respectively. Note
that Hg, and Hg, are families of pseudo-disks. In [4],
the authors showed that if the geometric range space
(X, R) is such that R is a family of pseudo-disks, then
e-nets of size O(%) exist for the dual range space, and
that a cover of size with a factor O(1) from the op-
timal can be found in polynomial time. Therefore,
given € > 0, the dual of the range space (B,Hs,)
has (by using [4]) an (§)-net N, of size O(2). Anal-
ogously, the dual of the range space (B, Hg,) has an

72

(5)-net Ny, of size O(%) We claim that N, U N}, is an
e-net of size O(2) = O(2) for the dual of (B, Hs). In
fact, if p is a blue point covered by ¢|Hg| half-strips,
then at least 5|Hg| of them are either vertical or hor-
izontal. Thus p is covered by a half-strip in N,, U Ny

since N, and Nj, are (£)-nets. Hence, there exists,

2
by [2] and also by [4, Theorem 3.2], a polynomial-
time O(1)-approximation algorithm. O

5 The Class Cover problem with Squares

In this section we consider the variant of the BCC-
problem in which we use axis-aligned squares instead
of general rectangles as covering objects. In [1], the
following problem is studied: Given an image repre-
sented by an array of y/n x /n black-and-white pixels,
cover the black pixels with a minimum set of (possi-
bly overlapping) squares. They proved that obtaining
a solution for a polygonal binary image with holes is
NP-hard. By a reduction from it we can prove:

Theorem 6 The BCC-problem remains NP-hard if
we use squares as covering objects.

Note that a set of axis-aligned squares is a family of
pseudo-disks, thus we can give an O(1)-approximation
algorithm by using [2, 4].

References

[1] L.J. Aupperle, H.E. Corm, JM. Keil, and J.
O’Rourke. Covering Orthogonal Polygons with
Squares. In Proc. 26th Annu. Allerton Conf. on
Comm., Cont. and Comp., pp. 97-106, 1988.

[2] H. Brénnimann and M.T. Goodrich. Almost optimal
set covers in finite VC-dimension. Discrete and Com-
putational Geometry, Vol. 14, pp. 463-479, 1995.

[3] A.H. Cannon and L.J. Cowen. Approximation algo-
rithms for the class cover problem. Annals of Math.
and Art. Int., Vol. 40, pp. 215-223, 2004.

[4] K.L. Clarkson and K. Varadarajan. Improved Ap-
proximation Algorithms for Geometric Set Cover.
Disc. and Comp. Geom., Vol. 37, pp. 43-58, 2007.

[5] J. C. Culberson and R. A.Reckhow. Covering poly-
gons is hard. J. Algorithms, Vol. 17, pp. 2—44, 1994.

[6] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., NY, 1979.

[7] D. Haussler and E. Welzl. e-nets and simplex range
queries. Disc. C. G., Vol. 2, pp. 127-151, 1987.

[8] J.E. Hopcroft and R.M. Karp. An n®/? algorithm for
maximum matchings in bipartite graphs. SICOMP,
Vol. 2, pp. 225231, 1973.

[9] V.N. Vapnik and A. Ya. Cervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory Probab. Appl., Vol. 16, pp. 264—
280, 1971.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

How Alexander the Great Brought the Greeks Together
While Inflicting Minimal Damage to the Barbarians

Mark de Berg* Dirk H.P. Gerrits*

Constantinos P. Tsirogiannis*

Abstract

Let R be a finite set of red point sites in R¢ and let
B be a set of n blue point sites in RY. We want to
establish “safe” connections between the red sites by
deleting a minimum number of blue sites such that
the region controlled by the red sites is connected.
More precisely, we want to find a minimum-size sub-
set Bget € B such that the red cells in the Voronoi
diagram of R U B\ By form a connected region. For
|R| = 2 we present an optimal O(nlogn)-time algo-
rithm for d = 2, and an O(n%!)-time algorithm for
d > 3; we also show that the problem is 3suM-hard for
d = 3. Furthermore, we show that the general prob-
lem, where the number of red sites is not a constant,
is Np-hard.

1 Introduction

Let R be a set of red cities and let B be a set of
blue cities. Suppose each city controls a subset of
the space, namely the set of all points for which it
is the closest city. The red people would like to be
able to travel safely between any two points in the
red region, without having to cross through hostile
(blue) territory. This may not always be possible,
however, since the red region need not be connected.
Then some blue cities will have to be eliminated, in
order to make the red region connected. As the red
people are a friendly people, they wish to do so by
eliminating as few blue cities as possible.

In a more abstract setting, the problem above can
be formulated using Voronoi diagrams: we are given a
set R of red point sites in R? and a set B of blue point
sites in R4, and we want to find a subset Bqe € B such
that the red cells in the Voronoi diagram of RUB\ Byel
form a connected region. We call every such subset a
connectivity set, and we want to find a connectivity set
of minimum size. We call the problem of computing

*Department of Computer Science, TU Eindhoven, the
Netherlands. MdB and CPT were supported by the Nether-
lands’ Organisation for Scientific Research (NWO) under
project no. 639.023.301.

TInstitute of Theoretical Informatics, Karlsruhe Institute of
Technology (KIT), Germany

Institute of Computer Science, Universitat Wiirzburg, Ger-
many.

Amirali Khosravi*

Alexander Wolfft

Ignaz Rutter’

such a set MIN VORONOI CONNECTIVITY. We obtain
the following results:

e We solve the problem for two red sites, see Sec-
tion 2. Our algorithm runs in O(nlogn + nd~1)
time, where n is the number of blue sites and
d > 2 is the dimension of the underlying space.
We show that this is optimal for d = 2 and that
the problem is 3suM-hard for d = 3.

e We show that the general problem, where the
number of red sites is not a constant, is NP-hard,
see Section 3.

Terminology and notation. We denote the Voronoi
diagram of a set S of sites by Vor(S). We say that
two sites p,q € S are neighbors if the boundaries of
their Voronoi cells have a (d —1)-dimensional overlap.
In other words, two sites are neighbors if they share
an edge in the Delaunay graph of S.

We denote the bisector of p and ¢ by B(p,q). For
a third site r, we call the part of S(p,q) that lies
inside or on the boundary of the Voronoi cell of r
in Vor({p, q,r})—that is, the part of 3(p,q) lying at
least as close to r as to p and g—the shadow region of
r on B(p,q). We say that r covers this part of 3(p, q).

2 The Case of Two Red Sites

In this section we consider the special case that R
consists of only two sites.

Theorem 1 Let R be a set of two points in R* and
B be a set of n points in R?. Then MIN VORONOI
CONNECTIVITY can be solved in O(nlogn) time for
d =2, and in O(n¢=1) time for d > 3.

Proof. Let R = {p,q}, and let 5 := B(p,q) be the
bisector of p and ¢q. For each site b € B, the shadow
region o(b) on B is a (d — 1)-dimensional half-space
within the (d—1)-dimensional space 5. Observe that p
and q are neighbors in Vor(BU{p, ¢}) if and only if the
union of the shadow regions o (b) over all b € B does
not fully cover 5. Hence, we can solve the problem as
follows.

1. Let h(b) denote the (d — 2)-flat bounding o (b),
and let H := {h(b) : b € B}. Construct the

73

26th European Workshop on Computational Geometry, 2010

arrangement A(H) on § induced by the (d — 2)-
flats in H.

2. Compute for each cell of A(H) in how many
shadow regions it is contained. Let C' be a cell for
which this number is minimum. Report the set
Bgel of blue sites whose shadow regions cover C.

For d > 3, we can construct the (d — 1)-dimensional
arrangement in O(n?!) time [2]. For d = 2, we have
to construct a 1-dimensional arrangement. This boils
down to sorting the endpoints of the shadow regions
on 8, which takes O(nlogn) time. After constructing
the arrangement, Step 2 can be done in O(n%~1) time,
by traversing the dual graph of A(H) and maintaining
the number of shadow regions containing the cells as
we move from cell to cell in the dual graph. (]

The general algorithm can be adapted so as to handle
other types of sites. The time complexity again de-
pends on the running time of the subroutine that com-
putes the arrangement of the shadow-region bound-
aries on the bisector of the red sites.

Note that even in the plane, for some types of sites
such as disks and ellipses, a shadow regions can consist
of more than one connected component [3]. If, how-
ever, the number of connected components of each
shadow region is bounded by a constant, then the
number of intervals in the overlay of the blue shadow
regions is linear (in the case d = 2). Even if § and
the blue shadow regions are not of linear algebraic
nature, this does not affect the time complexity of
the algorithm, assuming that the necessary basic al-
gebraic computations still take constant time.

Next we show lower bounds for MIN VORONOI
CONNECTIVITY.

Theorem 2 MIN VORONOI CONNECTIVITY with
two red sites in R? is in Q(nlogn).

Proof. Consider the problem e-CLOSENESS, which is
defined as follows:
e-CLOSENESS
Input: A set X of n reals and a real € > 0.
Output: YES if there are at least two elements in
X whose distance is less than &, NO otherwise.

e-CLOSENESS has been proven to be in Q(nlogn)
for the linear decision tree model [4] and with simi-
lar arguments the same lower bound can be proven
in the fixed-order algebraic decision-tree model [1].
We shall now describe a linear-time reduction from
¢-CLOSENESS to MIN VORONOI CONNECTIVITY for
point sites in R? with |R| = 2.

Let (X,e) be an instance of e-CLOSENESS. We
create an instance of MIN VORONOI CONNECTIV-
ITY as follows. Let R = {(0,1),(0,—1)}. The bi-
sector B : y = 0 of the two red sites represents the
real axis for the instance of e-CLOSENESS. For each
£ € X we construct two blue sites such that their

74

shadow regions are the rays {(x,0) : z < & — ¢} and
{(2,0) : & > {+¢}. Clearly, our reduction takes linear
time.

The set X is a YES instance of e-CLOSENESS if and
only if MIN VORONOI CONNECTIVITY with input R
and B has a solution that eliminates less than n — 1
blue sites. (]

Point sites in 3-space. We now prove that MIN
VORONOI CONNECTIVITY in R? is 3suM-hard. The
class of 3suM-hard problems was introduced by
Gajentaan and Overmars [5]. Similar to the conjec-
tured computational intractability of NpP-hard prob-
lems, 3suM-hard problems are conjectured to not al-
low for subquadratic algorithms (depending on the
model of computation). One can show that a prob-
lem IT is 3suM-hard by giving a reduction that trans-
forms in o(n?) time instances of a known 3suM-hard
problem II’ to instances of II.

Theorem 3 MIN VORONOI CONNECTIVITY with
two red sites in R3 is 3suM-hard.

Proof. We define a strip to be the area between two
parallel lines. We consider the following problem:

STRIPS COVER BOX

Input: A set S of n strips in the plane and an
axis-parallel rectangle p.

Output: YES if the union of the strips completely
covers the area of p, NO otherwise.

STRIPS COVER BoOX is 3suM-hard [5]. We give
a linear-time reduction from STRIPS COVER BOX to
MIN VORONOI CONNECTIVITY for point sites in R3
with |R| = 2.

Let (S, p) be an instance of STRIPS COVER BOX.
We create an instance of MIN VORONOI CONNEC-
TIVITY as follows. Let R = {(0,0,1),(0,0,—1)}. The
bisector 8 : z = 0 of the two red sites represents the
plane that contains p and the strips in S.

For each edge e of p, we construct n + 1 blue sites
such that their shadow regions are identical, having
a boundary on (8 that coincides with the support line
of e, and they do not contain p. We can make multiple
sites have the same shadow region by placing them on
the perimeter of a circle that lies on a plane orthogonal
to 5. Thus, every point of 5 outside p is covered by at
least n + 1 sites. For each strip in § we construct two
blue sites such that the intersection of their shadow
regions on [coincides with the strip. Clearly, our
reduction takes linear time.

The instance (S,p) is a YES-instance for STRIPS
CovER Box if and only if any solution to MIN
VORONOI CONNECTIVITY with input R and B elim-
inates at least n + 1 blue sites. This shows that
in 3-space MIN VORONOI CONNECTIVITY is 3SUM-
hard. O

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

3 The General Case

We now investigate the complexity of the decision ver-
sion of MIN VORONOI CONNECTIVITY for point sites
in R? where we drop the restriction that |R| = 2. In
other words, we consider the following problem:

VORONOI CONNECTIVITY

Input: Two sets R and B of point sites in the
plane and a natural number k.

Output: YES if there exists a connectivity set
Bael € B with |Bgel| < k, NO otherwise.

For a given undirected graph G = (V, E) a set of
vertices C' C V is a connected vertex cover if the sub-
graph induced by C is connected and C is a vertex
cover of G, that is, C' contains at least one endpoint of
each edge of G. To show that VORONOI CONNECTIV-
ITY is NP-hard, we reduce from the following special
case of connected vertex cover, which is Np-hard [6].

PLANAR CONNECTED VERTEX COVER

Input: A planar 2-connected graph G = (V, E) of
maximum degree 4 and a positive integer k.
Output: YES if there exists a connected vertex
cover of GG that consists of at most k vertices, NO
otherwise.

The reduction. Let (G,k) be an instance of PLA-
NAR CONNECTED VERTEX COVER. Our approach is
as follows. We first construct a rectilinear embedding
of G on a grid of size polynomial in n = |V|. Then
we use the grid coordinates of the vertices of G to
place the red and blue sites. We prove that in the
induced Voronoi diagram we can connect the Voronoi
cells of the red sites by deleting at most k blue sites
if and only if G has a connected vertex cover of size
at most k.

First we compute a planar grid embedding of G us-
ing the algorithm of Tamassia and Tollis [7]. Their
linear-time algorithm maps the vertices of G to dis-
tinct points of an O(n?)-size section of the integer
grid and maps the edges of G' to non-intersecting rec-
tilinear paths over grid points. To any grid point
p = (2p, Yp) that appears in this embedding, we assign
the square [z, — 1/2,2, + 1/2] x [y, — 1/2,y, + 1/2].
Let E1(G) denote the set of grid squares occupied
by the resulting embedding of G. We subdivide each
square § € E1(G) into a grid of (2n+ 1) x (2n 4+ 1)
squares that we denote by grid(d). We denote the
set of squares of the latter, refined embedding of G
by E2(G). We place either a red or a blue site in the
center of each square of grid(9). We call such a square
a red or blue square according to the color of the site
that we placed in its center. We place the red sites
so that the red squares in F3(G) form a rectilinear
embedding of G very similar to E;(G) yet now the
vertices and the rectilinear edge paths have the thick-
ness of one square of E3(G). In Figure 1 we show the

patterns in which we place red and blue sites in the
grid squares of grid(d) for each 6 € E1(G). If 6 corre-
sponds to a vertex in G, then we place a blue site in
the center square of grid(d). We call this site a vertezx
site. If & does not correspond to a vertex, we place a
red site in this square. In each grid square in Es(G)
that is not occupied by a red site or a vertex site, we
place a blue site. Hence, on each side of a rectilinear
path of red squares, there is a “padding” of n disjoint
rectilinear paths of blue squares.

Note that in the induced Voronoi diagram no two
red neighbors of a vertex site share a common bound-
ary edge of their cells.

We denote the sets of red and blue sites that we
place into the squares of F3(G) by R(G) and B(G),
respectively. Note that in the Voronoi diagram in-
duced by R(G) and B(G), the Voronoi cells of the red
sites form one connected component for each embed-
ded edge of G. We call these components edge com-
ponents. We can construct R(G) and B(G) in time
polynomial in n.

Lemma 4 The Voronoi diagram of R(G) and B(G)
has a connectivity set of size at most k if and only if
G admits a connected vertex cover of size at most k.

Proof. “if”: Let C be a connected vertex cover of G,
and let Bgo C B(G) be the set of vertex sites that
correspond to the vertices in C. Clearly, |C| = |Bqgel|-

We argue that Bge is a connectivity set for
Vor(R(G) U B(G)). Take any two red sites s # 5.
Each of these lies on the embedding of an edge of G.
Since C'is a vertex cover, each of the two edges has an
endpoint in C. Since C is a connected vertex cover,
the graph induced by C contains a path between the
two endpoints. Consider the set of sites that lie be-
tween s and s’ on the embedding of this path plus the
two initial edges. All blue sites in this set lie in Byg.
Removing Bge from B(G) connects the Voronoi cells
of all red sites in the set, in particular, those of s
and s’. Hence Bye is a connectivity set.

“only if”: Let Bger € B(G) be a connectivity set
for Vor(R(G) U B(G)). We first assume that all sites
in By are vertex sites. Let C' be the set of vertices
in G that correspond to sites in Bgel. Then C is a
vertex cover of G. Otherwise there is at least one edge
component in Vor(R(G) U B(G) \ B4el) that has not
merged with any of the other components. The graph
induced by C' must also be connected—otherwise the
red cells in Vor(R(G) U B(G) \ Bgel) form more than
one connected component.

It remains to examine the case that Bge contains
also padding sites. We show that there is a connectiv-
ity set Blj,; € B(G) with |B),| < |Bael| that contains
more vertex sites than Bqe. (We can repeat this argu-
ment until we have only vertex sites.) Let ¢ and ¢’ be
two distinct edge components in Vor(R(G) U B(G)).

75

26th European Workshop on Computational Geometry, 2010

n sites

LIC AR AN RECEK AR AN AN)
® @ e e O 0 o o o
® @ e e O @ o o o
® e ® e 00 0 0 o
o|o|lojo|e|o|o|o|0
® @ @® e O 0 o 0 o
® @ e e O @ o @ o
® @ @® e O @ o o o
® ® ® e O @ o o o

o : Red site 3 L —

,,,,,

e : Blue site

® @ ® e O 0 o 0@ o
® @ e e O @ o o o
® ® e e O @ o o o
SRRCRR-RECRE-NN BN NN BN J
LIE AR AR AR R A AN AN)
® e o o @ o o o o
® ® e o o o o o o
® ® e o o o o o o
® & o o o o o o o
LIE AR AR AR RK A AN AN)
o|o|lo|o|jo|j0o|0|0|0O
® @ e o @ o o o o
® ® @ o o o o o o
® @ o o o 0 0o 0 o
LIE AR AR AR S K AN AN)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

I
E

. : Square containing embedding of a vertex

E] . Square traversed by embedding of an edge .

Figure 1: The coarser grid embedding F;(G) (gray shaded squares) along with the induced Voronoi diagram
of the three main possible patterns for grid(d) in the reduction of VORONOI CONNECTIVITY. The dark gray

squares correspond to the vertices of G.

Let s be a site whose cell belongs to ¢, and let s’ be a
site whose cell belongs to ¢/. We consider two cases.

First, suppose the cells of s and s’ are adjacent
in Vor(R(G) U B(G) \ Bge1). If there is no vertex site
whose cell is incident to both ¢ and ¢’ then it is easy to
see that at least 2n blue sites must be deleted so that
the cells of s and s’ become adjacent. Thus |Bge| >
2n, and we simply let B),; be the set of all n vertex
sites.

Now suppose ¢ and ¢ are both incident to the
square § € F1(G) of some vertex site s”. If the
squares in F5(G) occupied by s and s’ both lie in
grid(d) then there is at least one blue site s”’ in Bqyql
whose square lies in grid(d), too. In that case we let
Bl = (Bael \ {s"'}) U {s"}. If at least one of the
squares of s and s’ in E5(G) does not lie in grid(d)
then again |Bqel| > 2n, and we let B, be the set of
all vertex sites. In each case, we have a new connec-
tivity set Bjj, with more vertex sites than Bqe and
with |B</ie1| S |Bdel‘~ [l

We have just proved that VORONOI CONNECTIV-
ITY is NP-hard since PLANAR CONNECTED VERTEX
COVER is NP-hard. VORONOI CONNECTIVITY is in
NP since, given R and B, we can guess a potential
solution Bge with positive probability and then check
in time polynomial in |R| -+ |B| whether By is indeed
a solution by computing Vor(R U B\ Byel)-

Theorem 5 VORONOI CONNECTIVITY is NP-complete.

Remark 6 The proof of Theorem 5 also holds if the
sites in B(G) and R(G) are perturbed slightly away
from the centers of the squares in Ey(G). Hence, the
theorem is also applicable for non-degenerate distri-
butions of the input sites.

4 Concluding remarks

We have introduced the problem MIN VORONOI CON-
NECTIVITY, and shown how it can be solved in
O(nlogn + n~1) time for two red sites and n blue

76

sites in R%. The running time of our algorithm is op-
timal for d = 2, and also for d = 3 if the conjectured
lower bound for 3suM holds. Our algorithm can also
be used to compute all connectivity sets which are
minimal under inclusion. This allows us to find an op-
timal connectivity set for any constant number of red
sites: for every spanning tree of the complete graph
on the red sites, try every combination of inclusion-
minimal connectivity sets for the edges. For a non-
constant number of red sites, the problem is NP-hard.
O(|B])- and O(|R|)-approximations are not difficult,
but we haven’t come up with an O(1)-approximation.

References

[1] M. Ben-Or. Lower bounds for algebraic computa-
tion trees. Proc. 15th Annu. ACM Symp. Theory
Comput. (STOC), pp. 80-86, 1983.

[2] H. Edelsbrunner, J. O'Rouke and R. Seidel. Con-
structing arrangements of lines and hyperplanes
with applications. SIAM J. Comput., 15:341-363,
1986.

[3] I.Z. Emiris and M.I. Karavelas. The predicates of
the Apollonius diagram: Algorithmic analysis and
implementation. Comput. Geom. Theory Appl.,
33(1-2):18-57, 2006.

[4] M.L. Fredman and B. Weide. On the complexity
of computing the measure of J[a;, b;]. Commun.
ACM, 21(7):540-544, 1978

[5] A. Gajentaan and M. Overmars. On a class
of O(n?) problems in Computational Geometry.
Comput. Geom. Theory Appl., 5(3):165-185, 1995.

[6] P.K. Priyadarsini and T. Hemalatha. Connected
vertex cover in 2-connected planar graph with

maximum degree 4 is NP-complete. Int. J. Math.
Phys. Eng. Sci., 2(1):51-54, 2008

[7] R. Tamassia and I.G. Tollis. Planar grid embed-
ding in linear time. IEEE Trans. Circuits Syst.,
36(9):1230-1234, 1989.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Approximation algorithms for free-label maximization

Mark de Berg*

Abstract

Inspired by applications where moving objects have
to be labeled, we consider the following (static) point
labeling problem: given a set P of n points in the
plane and labels that are unit squares, place a label
with each point in P in such a way that the number of
free labels (labels not intersecting any other label) is
maximized. We develop efficient constant-factor ap-
proximation algorithms for this problem, as well as
PTASES, for various label-placement models.

1 Introduction

Map labeling involves associating textual labels with
certain features on a map such as cities (points), roads
(polylines), and lakes (polygons). Manually perform-
ing this task is estimated to take cartographers 50%
of the total time in creating a map [11]. It is therefore
unsurprising that map labeling was listed as an impor-
tant research area in the ACM Computational Geom-
etry Impact Task Force report [4], and has generated
a lot of algorithmic research, especially for point fea-
tures. See for instance the on-line Map Labeling Bib-
liography [15], currently containing 371 references.

Label models. A good labeling for a point set has
legible labels, and an unambiguous association be-
tween the labels and the points. The latter puts re-
strictions on the shape of labels and the way they can
be placed in relation to points. Various such label
models have been proposed, most often with labels
assumed to be axis-aligned rectangles slightly larger
than the text they contain.

In the fized-position models, every point has a finite
number of label candidates (often 4 or 8), each being a
rectangle having the point on its boundary. In partic-
ular, in the 1-position (1P) model one designated cor-
ner of the label must coincide with the point, in the 2-
position (2PH, 2PV) models there is a choice between
two adjacent corners, and the 4-position (4P) model
allows any corner of the label to coincide with the
point (see the upper-left 2x2 block in Figure 1). The
slider models, introduced by Van Kreveld et al. [14]
generalize this. In the 1l-slider (1SH, 1SV) models
one side of the label is designated, but the label may
contain the point anywhere on this side. In the 2-

*Dept. of Computer Science, TU Eindhoven, the Nether-
lands, mdberg@win.tue.nl, dirk@dirkgerrits.com

Dirk H.P. Gerrits*

slider (2SH, 2SV) models there is a choice between
two opposite sides of the label, and in the 4-slider (4S)
model the label can have the point anywhere on its
boundary (see the fourth row and column in Figure 1).
Erlebach et al. [5] introduced terminology analogous
to the slider models for fixed-position models with a
non-constant number of positions (1IMH, 1MV, 2MH,
2MV, 4M; see the third row and column in Figure 1).

V)

T k 00

y

—_

,_
D’-UH
o |

2PH 1IMH, kPH 1SH

DRI ST

optimal 1/4-approx. | 1/4-approx. | 1/4-approx.
2PV 4P 2MH 2SH

‘ ‘ PR

28

PRN S

1/4-approx. |1/16-approx. | 1/16-
1MV, kEPV 2MV

.| 1/12-approx.

(11
I
H

1/4-approx. |1/16-approx.
1SV 25V

4 4 4

A A A\

1/4-approx. | 1/12-approx.

Figure 1: The fixed-position and slider models, and
our approximation results for them for the free-label-
maximization problem (assuming unit-square labels).
The z-axis (y-axis) indicates the number of allowed
horizontal (vertical) positions for a label.

Static labeling. Intersecting labels and small font
sizes hinder legibility. The size-maximization problem
asks to label all points with pairwise non-intersecting
labels of maximum size. For a given placement of the
labels it is a fairly simple geometric task to find the
optimal scale factor, so the problem can be solved op-
timally for the 1P model. For two or more label candi-
dates the problem is APX-hard, even for unit-square
labels [6]. Constant-factor approximation algorithms
exist for various label models [6,9].

The more widely studied number-mazimization
problem asks to label a maximum-cardinality sub-
set of the n points with pairwise non-intersecting la-
bels of given dimensions. Even if all labels are unit
squares, this problem is known to be strongly NP-
hard for the 1P [7], 4P [6,10], and 4S models [14].
A generalization of this problem concerns weighted
points [12] and asks for a maximum-weight subset

7

mailto:mdberg@win.tue.nl
mailto:dirk@dirkgerrits.com

26th European Workshop on Computational Geometry, 2010

of the points to be labeled so that, for example, a
big city will more likely get a label than a small
town. For unit-height rectangular labels this prob-
lem admits a polynomial-time approximation scheme
(PTAS) for static points in all fixed-position and slider
models, both in the weighted [5, 12] and the un-
weighted case [1,14]. For arbitrary rectangles in the
unweighted case an O(1/loglogn)-approximation al-
gorithm is known for the fixed-position models [3],
but the slider models, the weighted case, and the
(non-)existence of a PTAS remain open problems.

Labeling of moving points. Mobile devices with in-
teractive displays and GPS have vastly increased both
the availability of motion data and our ability to view
them. An important aspect of displaying such data is
the association of textual labels with points of inter-
est. Yet, despite the large body of work on labeling
static points, virtually no results have been published
on labeling moving points. Been et al. [2] studied the
unweighted number-maximization problem for static
points under continuous zooming in and out by the
viewer, which can be seen as points moving on a very
specific kind of trajectories. Rostamabadi and Ghod-
si [13] studied how to quickly flip and scale the labels
of static points to avoid one moving point.

There is not only a lack of results on label-
ing moving points, but in fact the size- and
number-maximization problems are ill-suited to mov-
ing points. Continuously scaling labels under size
maximization would be hard to read, and the
(dis)appearance of a label under number maximiza-
tion can be disturbing for the viewer. We instead
propose the free-label-maximization problem, where
the labels have given dimensions (as in the number-
maximization problem), but all points need to be la-
beled (as in the size-maximization problem). Instead
of disallowing intersections, we want to maximize the
number of labels which are not intersected, and call
such labels free. Ideally, an algorithm for free-label
maximization on moving points would move the la-
bels continuously in such a way that the number of
free labels is close to the static optimum at all times.

Our results. As a first step towards this goal we
have studied the free-label-maximization problem for
static points. For unit-square labels we have devel-
oped a simple O(nlogn)-time, O(n)-space constant-
factor approximation algorithm, as well as a PTAS.
This makes free-label maximization easier than size
maximization, as the latter is APX-hard even for
unit-square labels. In contrast, techniques used for
(approximate) number maximization for unit-square
labels easily extend to unit-height labels of different
widths, which seems not to be the case for free-label
maximization. Thus the complexity of free-label max-
imization seems to fall in between that of the size- and
number-maximization problems.

78

We present our constant-factor approximation al-
gorithm in the next section, leaving our PTAS to the
full version of this paper. The algorithm’s approxima-
tion guarantees for the various label models are listed
in Figure 1. We prove them for the 2PH, 4P, 1SH,
2SH, and 4S label models, the other models being
analogous. We assume that no two points have the
same x- or y-coordinate, and that labels are open sets
(their boundaries may intersect). Neither assumption
is essential, but they make our exposition simpler.

2 Constant-factor approximations for unit squares

Consider the algorithm GREEDYSWEEP, which works
as follows. Going through the points from left to right,
we label them one-by-one. We call a label candidate ¢
for a point being processed freeable if none of the pre-
viously placed labels intersect ¢, and every point still
to be labeled has at least one label candidate that does
not intersect £ or any previously placed freeable label.
We always choose a freeable label candidate if possi-
ble, and then also call the resulting label freeable. If
a point has no freeable label candidate we pick a non-
freeable label candidate that does not intersect any
previously placed freeable label (which is always pos-
sible by the definition of freeable). In case of ties, we
pick the label candidate farthest to the left. (Further
ties between equally leftmost label candidates can be
broken arbitrarily.)

Lemma 1 For the free-label-maximization problem
with unit-square labels, algorithm GREEDYSWEEP
gives a 1/4-approximation for the 2PH and 1SH mod-
els and this ratio is tight.

Proof. Let OPT be some optimal solution, and let
ALG be the solution computed by GREEDYSWEEP.
Now suppose a point p is labeled with a free label
€9 in OPT, but that the label candidate £5"" was
not freeable when p was being processed by GREEDY-
SwWEEP. Call a label candidate for a point rightmost
if it is farthest to the right of all label candidates for
that point, and define leftmost analogously. Since p
and all points that already have a label lie to the left
of every unprocessed point p’, their labels cannot in-
tersect the rightmost label candidate for p’ without
intersecting all other label candidates for p’ as well.
Thus all unprocessed points can be labeled with their
rightmost label candidate without intersecting ESPT.
Hence, éz(,)PT not being freeable must be caused by a
label é;}m (either freeable or not) that was placed ear-
lier. We note that fﬁ,LG cannot be leftmost. (If the
leftmost label candidate for a point p’ left of p inter-
sects ESPT, then all other label candidates for p’ do
as well, contradicting that égPT is free in OpPT.) That
EQ,LG is not leftmost can mean two things. Either Z;}LG

is freeable, in which case we charge ESPT to éﬁ,“;, or

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

)OPT)OPT
4 4
[— L | S | ;' -
| e [e |
! (ALG " (ALG N
. L4 (OFT o L4 (OFT |
5= P ——— = P ———-
s s s
@ E= (OPT Sl el (OPT p—— 1l
I oA P " oA P N
| 2% " “p’ |
| [l "
(OPT (OPT
P P

repeated k times

Figure 2: A labeling computed by GREEDYSWEEP for
the 2PH model, where the k + 1 labels marked E;}EG
are free. In the optimal solution the 4k labels marked
ESPT are free. Thus the 1/4-approximation is tight
for the 2PH model, and the same can be shown for
the 1SH model by moving the points closer together
horizontally.

making éﬁ,"c leftmost will cause it to intersect some
freeable label (ﬁ#G, in which case we charge fSPT to
62,90. With a careful case analysis one can argue that
at most four free labels of OPT get charged to a sin-
gle freeable label of ALG by the above scheme. Fig. 2
shows that resulting approximation ratio is tight.
We still need to consider the case where a point p
has a free label 619” in OPT that is also a freeable la-
bel candidate when p is being processed by GREEDY-
SWEEP. Then E;}LG must be a freeable label, and we
charge ZSPT to ESLG. The label EﬁLG can at most be
as far to the right as ESPT, otherwise GREEDYSWEEP

OpT
gl’

would have picked over ﬁﬁLG. One can argue that

this implies 61"}“3 will only be charged once. (]

Already for the 4P model, GREEDYSWEEP can be
as bad as an O(1/y/n)-approximation. We instead
take the best solution over running GREEDYSWEEP
several times with different sweep directions. For the
4P model we do one left-to-right sweep (as before)
and one right-to-left sweep (preferring rightmost label
candidates). For the 2SH model we do one top-to-
bottom sweep (preferring topmost label candidates)
and one bottom-to-top sweep (preferring bottommost
label candidates). For the 4S model we sweep in all
four of these directions. This yields the following:

Theorem 2 There are O(nlogn)-time and O(n)-
space algorithms for free-label maximization on n
points with unit-square labels, having the following
approximation ratios: 1/4 (tight) for the 2PH and
1SH models, 1/12 for the 2SH model, 1/16 for the 4P
model, and 1/24 for the 4S model.

Proof. We will prove the approximation ratio for the
4P model; the proofs for the 2SH and 4S models are
similar, and the ratio for the 2PH and 1SH models was
proved in Lemma 1. Let OPT be an optimal solution
for the 4P model, and consider the solution ALG com-
puted in the left-to-right sweep. We can assume that

at least half of the labels in OPT are placed in one
of the two rightmost positions. (If not, at least half
must be placed in one of the two leftmost positions
and we can instead consider the right-to-left sweep in
a completely symmetric way.) We will argue that the
rightmost free labels in OPT can be charged to free la-
bels of ALG so that no label receives more than eight
charges, yielding the stated 1/16-approximation.

Suppose p is a point with a rightmost free label
KSPT in OPT, but with a non-free label ZZ‘?"G in ALG.
At the time p was being processed, the label candi-
date E;)PT must not have been freeable, either because
some unprocessed point would inevitably get a label
intersecting Egp T, or because some processed point al-
ready had a label intersecting Egp T. We consider these
two cases separately.

(1) Suppose every label candidate of some unpro-
cessed point p’ intersects either (O or some previ-
ously placed freeable label. (This cannot occur in the
2PH and 1SH models.) Of the rightmost label can-
didates for p’ one must be topmost, say E;\,, and one
must be bottommost, say Z;)//. Since p and all points
that already have a label lie to the left of p’, if EI?PT or
a freeable label intersects a rightmost label candidate
for p/, then it also intersects the label candidate(s)
for p’ with the same y-coordinate but lying more to
the left. So if all rightmost label candidates for p’
are intersected by previously placed freeable labels,
then all label candidates for p’ are intersected by pre-
viously placed freeable labels, meaning that at least
one of them was in fact not freeable. Thus KZ?P"‘ must
intersect some rightmost label candidate of p’. This
implies that /0" does not intersect the horizontal line
through p/, for otherwise /""" would contain p’. Thus
£9PT intersects either ¢7, or £), but not both, so there
must be a freeable label E;?,%G in ALG which intersects
€Y, if £97" intersects £, or vice versa. Charge (0"
to Eﬁ,'fc. One can argue that any freeable label can be
charged at most twice this way (see Figure 3(b)).

(2) Suppose some already processed point p’ has
a label Z;?,“G (either freeable or not) that intersects
Egp T. Because Eg*’ T is rightmost, 8;}“3 cannot be left-
most. So either Kﬁ,m’ is freeable, and we charge 62”
to Z;}LG, or making Z;}LG leftmost will cause it to in-

tersect some freeable label éﬁﬁc, and we charge E;))PT
to A%, One can argue that any freeable label can be

P
charged at most six times this way for the 4P model

(see Figure 3(a)).

Combining the charges of these two cases yields at
most eight charges per free label for the 4P model,
and we argued that at least one half the free labels
in OPT could be charged, yielding the claimed 1/16-
approximation. We have not yet charged free labels
in OPT which label points that also have a free label
in ALG. One can argue that charging such labels does

79

26th European Workshop on Computational Geometry, 2010

W) ©
f;))PT (l())PT
D e
0 v 0
Zp PT : __ . [p PT
T e
75 (3
OPT li = A * OPT
& : pALG b
I v
[
f;))PT (())PT
[]
M o ALG
eight charges to £ six charges to (3

Figure 3: (b) If every ngT charged to E;*,%G is inter-
ALG

sected by labels placed later, £,);¢ is charged at most

twice. If every ESP"' charged to ES,';G

labels placed earlier, fﬁ#G is charged (a) at most six

times for the 4P model, and (c) at most four times for
the 25H and 4S models.

is intersected by

not cost us extra charges, as one of the charges to Eﬁ#c

in Figure 3(b) must disappear if 61(,),5’ T

The proofs for the 2SH and 4S models are similar,
but each free label can get at most six charges (see
Figure 3(b)—(c)). In the 2SH model every free label
in OPT is either topmost or bottommost so that we
can again charge at least half of them, but in the 4S
model a label can also be leftmost or rightmost so that
we can charge only one fourth.

With some clever use of standard data structures,
similar to the 1/2-approximation algorithm for num-
ber maximization by Van Kreveld et al. [14], GREEDY-
SWEEP can be implemented to run in O(nlogn) time
and O(n) space. We omit the details. (]

is free.

3 Conclusion

We have presented a simple and efficient constant-
factor approximation algorithm for a new variant of
the labeling problem motivated by the wish to la-
bel moving points. Our algorithm works for the
case where all labels are unit squares (or, equiva-
lently, if all labels are rectangles of the same dimen-
sions). For this case we also developed a PTAS us-
ing a variation on the “shifting technique” due to
Hochbaum and Maass [8]. Details can be found in
the full version of this paper. The cases of labels
being unit-height rectangles or arbitrary rectangles
are still open. For the number-maximization prob-
lem these cases allow, respectively, a PTAS and an
O(1/loglog n)-approximation, and it would be inter-
esting to see if these results can be matched. If not,
the free-label-maximization problem is strictly harder
than the number-maximization problem, while easier
than the size-maximization problem. The weighted
version of the free-label-maximization problem is an-
other interesting direction for future research.

80

References

(1

2l

4]

5]

(7l

(8]

(9]

[10]

(11]

(12]

(13]

(14]

(15]

P. Agarwal, M. van Kreveld, and S. Suri. Label
placement by maximum independent set in rectan-
gles. Comput. Geom. Theory Appl., 11:209-218, 1998.

K. Been, M. Néllenburg, S.-H. Poon, and A. Wolff.
Optimizing active ranges for consistent dynamic map
labeling. Comput. Geom. Theory Appl., 43(3):312—
328, 2010.

P. Chalermsook and J. Chuzhoy. Maximum inde-
pendent set of rectangles. In C. Mathieu, editor,
Proc. 20th ACM-SIAM Sympos. on Discrete Algo-
rithms (SODA’09), pages 892-901, New York, 2009.

B. Chagzelle and 36 co-authors. Application challenges
to computational geometry: CG impact task force
report. Technical Report TR-~521-96, Princeton Uni-
versity, 1996.

T. Erlebach, T. Hagerup, K. Jansen, M. Minzlaff, and
A. Wolff. Trimming of graphs, with an application to
point labeling. In S. Albers and P. Weil, editors, Proc.
25th Internat. Sympos. Theoretical Aspects Comput.
Sci. (STACS’08), pages 265-276, Bordeaux, 2008.

M. Formann and F. Wagner. A packing problem
with applications to lettering of maps. In Proc. 7th
Annu. ACM Sympos. Comput. Geom. (SoCG’91),
pages 281-288, North Conway, 1991.

R. Fowler, M. Paterson, and S. Tanimoto. Optimal
packing and covering in the plane are NP-complete.
Information Processing Letters, 12:133-137, 1981.

D. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems in image
processing and VLSI. Journal of the ACM, 32(1):130—
136, 1985.

M. Jiang, S. Bereg, Z. Qin, and B. Zhu. New
bounds on map labeling with circular labels. In Proc.
15th Annu. Internat. Sympos. Algorithms Comput.
(ISAAC’04), pages 606-617, 2004.

J. Marks and S. Shieber. The computational com-
plexity of cartographic label placement. Technical
Report TR-~05-91, Harvard CS, 1991.

J. Morrison. Computer technology and cartographic
change. In D. Taylor, editor, The Computer in
Contemporary Cartography. Johns Hopkins Univer-
sity Press, 1980.

S.-H. Poon, C.-S. Shin, T. Strijk, T. Uno, and
A. Wolff. Labeling points with weights. Algorithmica,
38(2):341-362, 2003.

F. Rostamabadi and M. Ghodsi. A fast algorithm for
updating a labeling to avoid a moving point. In Proc.
16th Canadian Conf. Comput. Geom. (CCCG’04),
pages 204-208, 2004.

M. van Kreveld, T. Strijk, and A. Wolff. Point label-
ing with sliding labels. Comput. Geom. Theory Appl.,
13:21-47, 1999.

A. Wolff and T. Strijk. The Map Labeling Bibliog-
raphy. http://liinwww.ira.uka.de/bibliography/
Theory/map.labeling.html, 2009.

http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html
http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

On Rectilinear Partitions with Minimum Stabbing Number*

Mark de Berg'

Abstract

Let S be a set of n points in R?, and let r be a pa-
rameter with 1 < » < n. A rectilinear partition for
S is a collection ¥(S) := {(S1,b1),..., (S, bt)} such
that the sets S; form a partition of S, each b; is the
bounding box of S;, and n/2r < |S;| < 2n/r for all
1 < ¢ < t. The (rectilinear) stabbing number of ¥(.S)
is the maximum, over all axis-parallel hyperplanes h,
of the number of bounding boxes used in ¥(S) that
are intersected by h. We study the problem of find-
ing an optimal rectilinear partition—a rectilinear par-
tition with minimum stabbing number—for a given
set S. We obtain the following results.

e Computing an optimal partition is NP-hard.

e There are point sets such that any partition with
disjoint bounding boxes has stabbing number
Q(r'~1/4), while the optimal partition has stab-
bing number 2.

e A 2-approximation algorithm for computing op-
timal partitions, running in polynomial time if r
is a constant.

1 Introduction

Motivation. Range searching is one of the most fun-
damental problems in computational geometry. In its
basic form it can be stated as follows: preprocess a
set S of objects in R? into a data structure such that
the objects intersecting a query range can be reported
(or counted) efficiently. A range-searching data struc-
ture that is popular in practice is the bounding-volume
hierarchy, or BVH for short. This is a tree in which
each object from S is stored in a leaf, and each inter-
nal node v stores a bounding volume b(v) of the ob-
jects in its subtree. Often the bounding volume being
used is a bounding boz: the smallest axis-aligned box
containing the objects in the subtree. When a BVH
is stored on external memory, one usually uses a B-
tree [3, Chapter 18] as underlying tree structure; the
resulting structure (with bounding boxes as bound-
ing volumes) is then called an R-tree. R-trees are one
of the most widely used external-memory data struc-
tures for spatial data, and they have been studied

*This research was supported by the Netherlands’ Or-
ganisation for Scientific Research (NWO) under project
no. 639.023.301 and project no. 612.000.631.

TDepartment of Computing Science, TU Eindhoven.
P.O. Box 513, 5600 MB Eindhoven, the Netherlands.

Amirali Khosravif

extensively—see for example the book by Manolopou-
los et al. [5]. In this paper we study a problem related
to the construction of R-trees, as explained next.
There are two main strategies to construct R-trees:
top-down and bottom-up. A top-down construction
algorithm will partition S into a number of subsets .5;,
and then recursively construct a subtree 7; for each .S;.
Thus the number of subsets corresponds to the degree
of the R-tree. When a range query with a range @ is
performed, one has to recursively search in the sub-
trees 7; for which the bounding box of S; (denoted
b;) intersects Q). Note that if b; C @, then all objects
from S stored in the subtree 7; lie inside Q); if, how-
ever, b; intersects Q) (the boundary of @) then we do
not know if the objects stored in 7; intersect). Thus
the overhead of the search algorithm is determined by
the bounding boxes intersecting 0Q. If @ is a box, as
is often the case, then the number of bounding boxes
b; intersecting 0Q is bounded, up to a factor 2d, by
the maximum number of bounding boxes intersecting
any axis-parallel plane. Thus we would like to parti-
tion S into subsets so as to minimize the number of
bounding boxes intersecting any axis-parallel plane.

Further background and problem statement. Let
S be a set of n points in R?, and let r be a pa-
rameter with 1 < r < n. A rectilinear partition
for S with respect to r is a collection ¥(S) :=
{(S1,b1),...,(St,b)} such that the sets S; form a
partition of S, each b; is the bounding box of S;, and
n/2r < |S;| < 2n/r for all 1 < i < t. Note that even
though the subsets .S; form a (disjoint) partition of S,
the bounding boxes b; need not be disjoint. The stab-
bing number of an axis-parallel plane h with respect
to U(S) is the number of boxes b; whose interior inter-
sects h, and the (rectilinear) stabbing number of ¥(S)
is the maximum stabbing number of any axis-parallel
plane h. Observe that our rectilinear partitions are
the axis-parallel counterpart of the (fine) simplicial
partitions introduced by Matousek [6].

It is easy to see that there are point sets S for
which any rectilinear partition has stabbing number
Q(r'=1/4); this is for example the case when the points
in S form a grid of size n'/® x ... x n'/4. Moreover,
any set S admits a rectilinear partition with stab-
bing number O(r'~1/4); such a rectilinear partition
can be obtained by a construction similar to a kd-tree.
Thus from a worst-case and asymptotic point of view
the problem of computing rectilinear partitions with

81

26th European Workshop on Computational Geometry, 2010

B &
&] EHE ENE B E
B B N e =

Qstabbing number 4 J

i md

stabbing number 2

Figure 1: (a) The variable gadget. The dark grey squares are barrier gadgets, and the light grey rectangles
indicate that no other bounding box can cross that strip. (b) True setting. (c) False setting.

low stabbing number is solved. However, any spe-
cific point set may admit a rectilinear partition with
a much lower stabbing number than O(r'~1/4). For
instance, if the points from S are all collinear, then
there is a rectilinear partition with stabbing number 1.
The question now arises: given a point S and a pa-
rameter r, can we compute a rectilinear partition that
is optimal for the given input set S, rather than worst-
case optimal? In other words, we want to compute a
rectilinear partition that has the minimum stabbing
number over all rectilinear partitions for S.

Our results. In Section 2 we show that already in R?,
finding an optimal partition is NP-hard. We then turn
our attention to approximation algorithms. We show
in Section 3 that algorithms only considering disjoint
partitions cannot have a good approximation ratio:
there are point sets such that any partition with dis-
joint bounding boxes has stabbing number Q(r!=1/4),
while the optimal partition has stabbing number 2.
Finally, in Section 4 we give a 2-approximation algo-
rithm for computing optimal partitions, which runs
in polynomial time if r is a constant.

2 Finding optimal rectilinear partitions is NP-hard

We prove the following problem to be NpP-hard.

OPTIMAL RECTILINEAR PARTITION

Input: A set S of n points in R? and parameters r, k.
Output: YES if S admits a rectilinear partition w.r.t. r
with stabbing number at most k, NO otherwise.

Our reduction (from 3-SAT) is similar to the proof by
Fekete et al. [4] of the NP-hardness of minimizing the
stabbing number of a matching on a planar point set.

Let U := {z1,...,2m} be a set of m boolean vari-
ables, and let C := C1 A --- A Cs be a CNF formula
defined over these variables, where each clause C; is
the disjunction of three variables. The 3-SAT prob-
lem is to decide whether such a boolean formula is

82

satisfiable; 3-SAT is Np-hard [7]. Our reduction will
be such that there is a rectilinear partition with stab-
bing number 5 for the OPTIMAL RECTILINEAR PAR-
TITION instance if and only if the 3-SAT instance is
satisfiable. We only sketch the construction, leaving
the proof of correctness to the full version of the pa-
per. We first describe the various gadgets we need,
and then explain how to put them together.

The barrier gadget. A barrier gadget is constructed
by taking a tiny square, partitioning it into 5 x 5 sub-
squares, and placing 2n/r points in each of the sub-
squares. Obviously we can partition these 25 - (2n/r)
points into 25 subsets in such a way that both the
horizontal and the vertical stabbing number of the 25
bounding boxes is 5. We need that any partitioning of
these points with stabbing number 5 in fact has hor-
izontal and vertical stabbing number at least 5. (Of
course we should take care that ”borrowing” points
from other parts of the construction is not possible,
or at least does not change the argument.) Thus no
other bounding box can cross the horizontal strip de-
fined by the lines through the top and bottom of the
square, and similarly for the vertical strip defined by
the left and right edge.

The variable gadget. Fig. 1(a) shows the variable
gadget. The three subsets in the left part of the con-
struction, and the tree subsets in the right part, each
contain n/2r points. Because of the barrier gadgets,
the points from one subset cannot be combined with
other points and must be put together into one rect-
angle in the partition. The six subsets in the middle
part of the construction each contain 4n/r points. To
make sure the stabbing number does not exceed 5,
these subsets can basically be grouped in two dif-
ferent ways. Ome grouping corresponds to setting
the variable to true, the other grouping to false—see
Fig. 1(b) and (c). Note that the gadget defines two
vertical slabs. If the variable is set to true then the

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

left slab of z; right slab of x; left slab of xj

Figure 2: A clause gadget for (z; V Z; V), and one
possible grouping of the points.

left slab has stabbing number 2 and the right slab has
stabbing number 4, otherwise the opposite is the case.

The clause gadget. A clause gadget consists of
three subsets of 4n/r points, arranged as shown in
Fig. 2, and placed in the left or right slab of the cor-
responding variables: a positive literal is placed in
the left slab, a negative lateral in the right slab. If
the stabbing number of the slab is already 4, which is
the case when the literal evaluates to false, then the
subset of 4n/r points in the clause gadget must be
grouped into two “vertical” rectangles. Hence, not all
literals in a clause can evaluate to false if the stabbing
number is to be at most 5.

The global structure. Fig. 3 shows the global struc-
ture. The variable gadgets are placed diagonally. The
clause gadgets are placed below the variables. We
also place barriers separating the clause gadgets from
each other and from the variable gadgets; these are
not shown. Finally, the gadgets for occurrences of the
same variable in different clauses should be placed
such that they are not stabbed by a common vertical
line. This concludes our sketch of the construction,
which gives the following theorem.

Theorem 1 OPTIMAL RECTILINEAR PARTITION is
NP-complete.

3 Arbitrary versus disjoint rectilinear partitions

Since computing optimal rectilinear partitions is NP-
hard, we should look at approximation algorithms.
It may be easier to develop an approximation algo-
rithm considering rectilinear partitions with disjoint

Tm []
z2[] - variable gadgets
T D
Crt -)| regions where clause
Cot : .| gadgets are placed

Figure 3: The global structure.

bounding boxes. The next theorem shows that such
an approach will not give a good approximation ratio.

Theorem 2 Let d be a constant, and assume r <
V2n. Then there is a set S of n points in R? whose
optimal rectilinear partition has stabbing number 2,
while any rectilinear partition with disjoint bounding
boxes has stabbing number Q(r'=1/4).

Proof. Let G bea (r/4)Y?x - x (r/4)"/¢ grid in R,
(We assume for simplicity that (r/4)'/¢ is an integer.)
We put each grid point in S. We call these points
black points, and we call the hyperplanes forming the
grid G black hyperplanes. Note that there are O(r)
black points. Fig. 4 shows an example for d = 2 with
r = 64. Next we refine the grid using d((r/4)"/¢ — 1)
additional axis-parallel grey hyperplanes; see Fig. 4.
At each of the new grid points—the grey dots in the
figure—we put a tiny cluster of 2n/r points, which
we also put in S. If the cluster lies on one or more
black hyperplanes, then all points from the cluster lie
in the intersection of those hyperplanes, as shown in
Fig. 4. (So far we used less than n points; the remain-
ing points can be placed far enough from the construc-
tion, not influencing the coming argument.) Next, we
rotate the whole construction slightly so that no two
points have the same coordinate in any dimension.
This rotated set is our final point set S.

To obtain a rectilinear partition with stabbing num-
ber 2, we make each of the clusters into a separate
subset S;, and we put the black points into one sep-
arate subset; the latter is allowed since r < 2n/r. (If
r < n/2r we can use some of the remaining points to
fill up the subset.) If the clusters are small enough,
then the rotation we have applied to the point set
guarantees that no axis-parallel hyperplane can inter-
sect two clusters at the same time. Hence, the stab-
bing number of this rectilinear partition is 2.

We claim that any disjoint rectilinear partition for
S has stabbing number Q(r!~1/?). To see this, ob-
serve that no subset S; in a disjoint rectilinear parti-
tion can contain two black points. Indeed, the bound-
ing box of any two black points contains at least one
full cluster and, hence, too many points. We conclude
that each black point is assigned to a different bound-
ing box. Let B be the collection of these bounding
boxes. Now consider a set H of O(r'/¢) axis-parallel
hyperplanes such that each bounding box in B inter-
sects at least one hyperplane from H. (Such a set can
be found by duplicating each of the black hyperplanes,
and moving the two duplicates of each black hyper-
plane slightly apart.) Then the total number of inter-
sections between the boxes in B and the hyperplanes
in H is r, which implies that there is a hyperplane in
H with stabbing number Q(r'~1/4), a

83

26th European Workshop on Computational Geometry, 2010

clusters =— |

Figure 4: Every rectilinear partition with disjoint
bounding boxes has stabbing number Q(/r) while
there exists a partition with stabbing number 2.

4 A 2-approximation algorithm

We present a polynomial-time algorithm that finds,
for a given set S and parameter r, a rectilinear parti-
tion with stabbing number at most twice the optimal
stabbing number. Our algorithm works as follows.

1. For 1 < i< d, let H; be a collection of 3r hyper-
planes orthogonal to the z;-axis such that there
are at most n/3r points from S in between any
two consecutive hyperplanes in H;. Let C be
the set of all boxes defined by the hyperplanes in
H :=H,U---U Hygy. Note that |C| = O(r??).

2. For each ¢ with /2 < t < 2r, proceed as follows.
Consider all O(r24) possible subsets B C C with
|B| = t. Check whether B induces a valid solu-
tion, that is, whether we can assign the points in
S to the boxes in B such that (i) each point is
assigned to a box containing it, and (ii) each box
is assigned between n/2r and 2n/r points. How
this is done will be explained later.

3. Over all sets B that induce a valid solution, take
the set with the smallest stabbing number. Re-
place each box in it with the bounding box of the
points assigned to it, and report the partition.

Lemma 3 The above algorithm reports a rectilinear
partition with stabbing number at most twice the op-
timal stabbing number.

Proof. Let ¥ := {(51,b1),...,(S,b:)} be an opti-
mal rectilinear partition for S, and let OPT denote
the stabbing number of ¥. Expand every b; in all di-
rections until each facet of b; is contained in a hyper-
plane from H. Let Bj denote the expanded box, and
let @ = {(51,51), ceay (Stygt)}- The set {51, N ,Bt}
is one of the subsets B considered in Step 2, and it
induces a valid solution. Hence, the stabbing num-
ber of the reported partition is at most the stabbing
number of V.

Now consider any axis-parallel hyperplane h. As-
sume without loss of generality that h is orthogonal

84

to the xi-axis and that h lies in between hyperplanes
hi,hiy1 € H. Let Ej be a box intersecting h. Note
that b; must intersect h; or h;11 (or both), otherwise
b; contains too few points. Hence, the h intersects at
most 2 - OPT boxes Bj. O

To implement Step 2 we construct a flow network with
node set {VUsource, Usinkt U S U B. The source node
Usource has an arc of capacity 1 to each point p € S,
each p € S has an arc of capacity 1 to every b; € B
that contains p, and each b; € B has an arc of ca-
pacity 2n/r to the sink node vgnk. The arcs from
the boxes to the sink also have (besides the upper
bound of 2n/r on the flow) a lower bound of n/2r
on the flow. The set B induces a valid rectilinear
partition if and only if there is an integer flow of n
units from vsource t0 Vsink. Such a flow problem can
be solved in O(min(V?3/2 E'/2)Elog(V?/E +2)logc)
time [1], where V' is the number of vertices in the net-
work, F is the number of edges, and c is the max-
imum capacity of any arc. We have V = O(n),
E = O(nr), and ¢ = 2n/r. Since we have to
check O(r - 749") subsets B, the running time is
O(r-r*-min(V3/2, E'/2)Elog(V?/E+2) log ¢) which
is polynomial (assuming r is a constant). Note that
by enumerating all the partitions , the running time
would already be Q(2"/2) for r = 2.

Theorem 4 Let S be a set of n points, and r a con-
stant. Then we can compute in polynomial time a
rectilinear partition with stabbing number at most
20PT, where OPT is the minimum stabbing number of
any rectilinear partition for S.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, 1993.

[2] B. Chazelle and E. Welzl. Quasi-optimal range
searching in spaces of finite VC-dimension. Discr.
Comput. Geom. 4:467-490 (1989).

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and
C. Stein. Introduction to Algorithms (2nd edition).
MIT Press and McGraw-Hill, 2001.

[4] S.P. Fekete, M.E. Liibbecke, and H. Meijer. Mini-
mizing the stabbing number of matchings, trees, and
triangulations. Discr. Comput. Geom. 40: 595-621
(2008).

[5] Y. Manolopoulos, A. Nanopoulos, Y. Theodoridis,
and A. Papadopoulos. R-trees: Theory and Applica-
tions. Series in Adv. Inf. and Knowledge Processing,
Springer, 2005.

[6] J. Matousek. Efficient partition trees. Discr. Comput.
Geom. 8:315-334 (1992).

[7] M.R. Garey, D.S. Johnson, Computers and In-
teractibility: A Guide to the Theory of NP-
Completness. W.H. Freeman and Co. (1979).

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

Finding Structures on Imprecise Points

Mark de Berg*

Abstract

An imprecise point is a point in R? of which we do
not know the location exactly; we only know for each
point a region in R? containing it. On such a set
of imprecise points, structures like the closest pair or
convex hull are not uniquely defined. This leads us
to study the following problem: Given a structure of
interest, a set R of regions and a subset C C R, we
want to determine if it is possible to place a point
in each region of R such that the points placed in
regions of C form the structure of interest. We study
this problem for the convex hull, with various types of
regions. For each variant we either give a NP-hardness
proof or a polynomial-time algorithm.

1 Introduction

Many geometric problems involve finding a structure
in a set of points in R?, such as the convex hull or the
closest pair. These structures are well defined for any
given set of points and many algorithms are available
for computing these structures efficiently [1].

Most real-world data, however, is not exact. It
often comes from finite-precision computations or
imprecise measurements, such as GPS coordinates.
Even though such data specifies coordinates for each
point, we do not know the exact location: We only
know for each point that it is within some region
around the given coordinates. This imprecision can
be modeled using a region in space for each point.
For example, discs can be used to model the impreci-
sion caused by measurement errors, whereas squares
can be used to model imprecision on the coordinates
caused by finite precision computations. The input is
then a set of regions in R?, where somewhere inside
each region a point is located. Now different place-
ments of points inside their regions can lead to dif-
ferent convex hulls and closest pairs on those points.
Thus it is not immediately clear what we want to
compute on a set of such imprecise points.

Related work. Loffler and van Kreveld [4] try to
find the placement of points which maximizes or min-

*Department of Computing Science, TU Eindhoven,
m.t.d.berg@tue.nl

TDepartment of Computing Science, TU Eindhoven,
e.mumford@tue.nl

IDepartment of Computing Science, TU Eindhoven,
m.j.m.roeloffzen@tue.nl

Elena Mumford?

Marcel Roeloffzent

imizes the area or perimeter of the convex hull. They
describe algorithms for this with running times rang-
ing from O(nlogn) to O(n'?) for various restrictions
on the input regions. They also prove NP-hardness for
finding the convex hull with the largest area and for
finding the convex hull with largest perimeter. They
did similar work for the smallest bounding box, small-
est enclosing circle, width, diameter and closest pair
of a set of imprecise points [3].

Loffler and van Kreveld [3, 4] focus on some nu-
merical values, such as the area or distance, of the
structures that can be made from a set of imprecise
points. They do not consider the combinatorial prop-
erties. This is the focus of our work: To determine if
a set of imprecise points can induce a structure with
certain combinatorial properties. For example, given
a set S of imprecise points, we want to determine if
it is possible that two given points p,q € S form the
closest pair. Next, we define this more precisely.

Problem description. The problem we study is
defined as follows. We have a structure of interest,
such as the convex hull or a closest pair, a set R of
regions in R? and a subset C C R. The question we
then want to answer is: Is it possible to place a single
point in each region of R such that the points placed
in the regions of C form the structure of interest?
We use sets of line segments, sets of squares or sets
of discs as the input set R. For different structures we
may impose additional constraints on these regions,
for example that regions have to be disjoint. For the
rest of this paper we use R to denote the input set
of regions and C to denote the given subset of R. We
focus on the convex hull as the structure of interest.

Results. We consider three variations of the convex
hull problem: the exact convex hull, subset convex hull
and superset convexr hull. In the exact convex hull
problem the points placed in regions of C should be
exactly its vertices, whereas for the subset (and super-
set) convex hull problem the points placed in regions
of C should be a subset (or superset) of the vertices.

The results for the decision problem to determine if
it is possible to place a point in each region such that
the points placed in regions of C form a given structure
are summarized in Table 1. Note that n = |C| and
k= |R|.

The results for the exact and subset convex hull
problems can be found in Sections 2 and 3. Results

85

26th European Workshop on Computational Geometry, 2010

Problem Regions Restrictions Complexity

line segments | disjoint, unit length, parallel NP-hard
PossiBLE CLOSEST PAIR squares disjoint, unit size, axis aligned | NP-hard

discs disjoint, unit size NP-hard
Exact ConvEX HULL line segments | none NP-hard
SUPERSET CONVEX HULL line segments | none NP-hard

line segments | disjoint, unit size, parallel O(k*nlogn)

line segments | disjoint, parallel O(nlogn + k%)
SuBseT CONVEX HuLL rectangles disjoint, axis aligned O(nlogn + k**°)

Table 1: Results on the decision problems.

on the superset convex hull and closest pair can be
found in the master thesis by Roeloffzen [6].

Preliminaries. Given a set R of regions, a choice
of points, one from each region of R, will be called
a placement. Unless otherwise indicated, a placement
refers to a choice of points from the regions of R.
Formally, a placement is a function 7 : R — R? that
maps each region P € R to a point 7(P) € P.

We will use calligraphic letters (R,C) to indicate
sets of regions, capital letters (P, Q) to indicate re-
gions, and lower case letters (p, ¢) to indicate points.
Furthermore when a point corresponds to a certain
region, the region and point will be indicated by the
same letter (p € P,q € Q). We denote |C| by k& and
|R| by n. Lastly if S is a set of point then CH(S)
is the convex hull of S and CHyert(S) is the set of
vertices of CH(S).

2 Exact convex hull

In this section we show that Exact CoNVEX HULL
is NP-hard for arbitrary line segments. The convex
hull problem on imprecise points is defined as follows.

Exact CoNVEX HULL
Input: A set of regions R and a subset C C R.

Output: YEs if there is a placement 7 for R such that
7(C) = CHyert(m(R)), NO otherwise.

To prove that ExacT CONVEX HULL is NP-hard
we use a reduction from 3-SAT. For a given 3-sat
formula ¢ we will construct a set R(¢) of line segments
and define a subset C(¢) C R(¢) such that EXACT
CoNVEX HULL returns YES on (R(¢),C(¢)) if and
only if ¢ is satisfiable.

Literal gadget. Literal gadgets are placed around
a circle as indicated by the grey areas in Figure 1la.
The gadgets are placed such that the literals of the
same clause are next to each other. Each gadget con-
sists of two point regions, P and @), on the endpoints
of the circle arc, a segment region A and a point region
L. A point placed at the endpoint a; of A will corre-
spond to the variable being true, and a point placed at
ay corresponds to the variable being false. All regions

86

(a) (b) o

ag A ay
~< P
7/ ~ - N
7/ - N
PRON
‘L// ~ o \
7/ P ~ N\
7/ ~ AN
P - \\\Q
O T °

Figure 1: (a) Placement of literal gadgets. (b) Non-
negated literal gadget.

except L are in C(¢); this also includes the regions in
variable and clause gadgets which are described next.
Figure 1b shows the gadget for a non-negated literal.
A negated literal has basically the same gadget except
the endpoints a; and ay switch places.

Variable gadget. We want to enforce different oc-
currences of the same variable to have the same place-
ment: either all should be in the true position (a;)
or all should be in the false position (af). We do
this by putting in line segments V; = w;v; between
consecutive occurrences in a circular manner; Fig-
ure 2a and 2b illustrate this for the three occurrences
of the variable a. The endpoints v; and w; are placed
such that any point placed on A will cause at least one
of these endpoints, v; or w;41, to be inside the convex
hull. Since V; is in C(¢) a point on it should be a ver-
tex of the convex hull. Let A,, and A; be in the literal
gadgets where v; and w; are located respectively. If a
point is placed at a;,, then a point cannot be placed
near ay; since then V; could not have a point occur-
ring as a vertex of the convex hull. Since all literals of
the same variable are connected in a circular manner
this implies that either all points are placed around
the true endpoints or all at the false endpoints.

Lemma 1 For all literal gadgets of the same variable,
either all points on the line segments A have to be
placed near the a; endpoint or they all have to be
placed near the ay endpoint.

Clauses. Consider a clause involving three literals,
a, b, c. Recall that for each of these literals we have
a gadget as in Figure 2b and recall that the point

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

b, B
(a) et NG (b) "C'Lt
a, - -
AT,
ﬁd‘ V .. P. ,,,,,,,,,,,,,
I.\ 3 ‘/2 /—|C
\ ’,’l
* e —~— P /d
-a

Figure 2: (a) Variable line segments for the variable a. (b) Non-negated literal. (c) Clause line segments.

region L should not be on the convex hull. For the
clause involving a, b, ¢ we now add two more segment
regions, C7 and C5, one going between the gadgets
for @ and b, and one going between the gadgets for b
and c—see Figure 2c. By placing the points for these
two segments inside the gadget for a (or b or ¢) we can
ensure that the point for L in a (or b or ¢) does not
show up on the convex hull, as required. However, we
only have two clause segments, so we can only enforce
this for two of the three literals a, b, c. Preventing the
region L for the third literal from showing up on the
convex hull can only be done using the A region in
that gadget, and requires that literal to be true.

Lemma 2 For each clause there is a placement that
ensures that the point L in any of the literal gadgets
of this clause is not a vertex of the convex hull if and
only if at least one literal is true.

Theorem 3 There is a placement 7 for R(¢), such
that m(C(¢)) = CHyert(m(R(9))), if and only if ¢ is
satisfiable.

Proof. If ¢ 1is satisfiable then it follows from
Lemma 1 and 2 that for the placement m, corre-
sponding to a satisfying assignment it holds that
7s(C) = CHyert(ms(R(9))). If ¢ is not satisfiable then
every possible valuation of the variables has a clause
that is false. Hence, for every placement for the literal
gadgets corresponding to such a valuation there is a
clause in which none of the literals is true. Lemma 2
implies that no correct placement is possible for that
valuation. Lemma 1 implies that other placements
for the literal gadgets, that do not correspond to a
specific valuation also do not lead to a solution. [

For every literal only a constant number of line seg-
ments is added to R(¢). These line segments can be
computed in polynomial time, so we conclude:

Theorem 4 ExacT CoNVEX HULL is NP-hard
when the input regions are arbitrary line segments.

3 Subset convex hull for vertical line segments

For SuBseT CONVEX HULL we do not require the
points placed in regions of C to be exactly the vertices
of the convex hull, but merely a subset of the vertices.

SUBSET CONVEX HULL
Input: A set of regions R and a subset C C R.

Output: YES if there is a placement 7 for R such that
m(C) € CHyert(7(R)), NO otherwise.

In this section we describe an algorithm that solves
SUBSET CONVEX HULL for the case when R is a set
of disjoint vertical line segments. Our algorithm relies
on the following observation.

Observation 1 Let m be a placement for R such
that there is a region P with w(P) € CHyert(7(R)).
If P has a point outside CH(w(R)) then we can
define a placement 7' such that CH,eri(n'(R)) =
CHyert(m(R)) U {n'(P)}. In " all points are placed
the same as in m except the point for P, which is
placed such that «'(P) ¢ CH(n(R)).

Because of this observation it suffices to look at
minimal convex hulls. A convex hull of a placement
7 is minimal if there is no placement 7’ such that

CH(7'(R)) c CH(m(R)). We look at the following
problem:

MINIMAL CONVEX HULL
Input: A set of regions R and a subset C C R.

Output: YES if there is a placement 7 such that
CH(n(R)) is minimal and for every region
P € C, either P\CH(#(R)) # 0 or n(P) €
CHyert(m(R)), NO otherwise.

Mukhopadhyay et al. [5] introduce the notions of
a bottom and top chain on a set of vertical line seg-
ments. The bottom chain is the lower boundary of
the convex hull of all upper endpoints of the line seg-
ments, whereas the top chain is the upper boundary
of the convex hull of lower endpoints. In Figure 3a
the top and bottom chains are indicated with dashed
lines for a set of vertical line segments.

87

26th European Workshop on Computational Geometry, 2010

Figure 3: (a) Top and bottom chains. Minimal convex hulls (b) where the top boundary contains part of the
top chain and (c) where it is a line between s; and s,. (d) sy (pt), st (pt) and tangent lines through p;.

With these chains we can specify every minimal
convex hull with two points, one on the leftmost line
segment S; and one on the rightmost line segment S,..
Given a point s; € S; and a point s, € S, we define
CH pnin(s1, sr) as follows. Let Cy be the vertices of the
top chain that are above the line s;s,- and C} the ver-
tices of the bottom chain that are below the line s;s,
then CHpin(s,8r) = CH(Cy U Cyp U {s1,8,}). The
proof that shows that every minimal convex hull is
equal to CH,nin(sy, sy) for some s; € S; and s, € S,
can be found in Roeloffzen’s thesis [6].

If we now represent the placement of s; on S; and of
s, on S, by parameters in [0, 1], then we can represent
every minimal convex hull by a point in [0,1]%. We
call this the solution space. In the MINIMAL CONVEX
HuLL problem we look for a minimal convex hull such
that every region P € C either contributes a vertex to
the convex hull or has some part outside. We define
constraints on s; and s, such that these constraints
are satisfied if an only if P either contributes a vertex
or has some part outside the minimal convex hull. The
constraints define an area Sp of the solution space.
The intersection of Sp over all regions P € C gives us
the area of the solution space which holds solutions
to MINIMAL CONVEX HULL.

A region P has a part outside the convex hull if the
top endpoint p; is above the convex hull or the bottom
endpoint p, is below the convex hull. If p; is below
the top chain or on it but not a vertex, then it cannot
be above the convex hull. For a top endpoint p; which
is above the top chain or a vertex on it, we define the
constraints C1—C3. To this end, define sy(p;) to be
the point on S; or the vertical extension of it, such
that the line through sy (p:) and p; is tangent to the
top chain, where the tangent point is not between
su(pt) and p;—see Figure 3d.

(C1) s; is below s4(py)
(C3) s, is below s4(pr)

(C3) pt is above the line s;s,

With these constraints the following lemma holds.
The proof is omitted here due to space limitations.

Lemma 5 The top endpoint p; of a line segment P
is above the convex hull CH (s, s,) if and only if con-

88

straints C1—C's hold, assuming p; is above the top
chain or a vertex of it.

These constraints (and symmetric ones for the lower
endpoint py) define the region Sp of the solution
space. Since each of the constraints defines a half
plane in the solution space Sp is bounded by a con-
stant number of half planes. Therefore, the intersec-
tion Sy = mPeC Sp can be found by computing
the arrangement of the half planes that define the
regions Sp and traversing that arrangement. This
can be done in O(k?) time by using a topological
sweep [2]. The half planes themselves can be com-
puted in O(logn) time, because the points sy (p;) and
str(pt) can be computed in O(logn) time.

Theorem 6 SUBSET CONVEX HULL can be solved
in O(nlogn + k?) time when the input regions in R
are parallel line segments.

References

[1] M. de Berg, O. Cheong, M. van Kreveld and
M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, 2008.

[2] H. Edelsbrunner and L. Guibas. Topologically
sweeping an arrangement. J. Comput. Syst. Sci.
38(1):165-194, 1989.

[3] M. Loffler and M. van Kreveld. Largest Bounding
Box, Smallest Diameter, and Related Problems
on Imprecise Points. In Proc. WADS, p. 446457,
2007.

[4] M. Loffler and M. van Kreveld. Largest and
Smallest Convex Hulls for Imprecise Points. Al-
gorithmica, 2008.

[5] A. Mukhopadhyay, C. Kumar, E. Greeneand and
B. Bhattacharya. On intersecting a set of parallel
line segments with a convex polygon of minimum

area. Inf. Proc. Lett. 105(2):58-64, 2008.

[6] M. Roeloffzen. Finding structures on imprecise
points. MSc thesis, TU Eindhoven, 2009,
http://www.win.tue.nl/~emumford /misc/
MRoeloffzen.pdf

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

The time-optimal helicopter trajectory is a circle segment

André Berger *

Abstract

This paper addresses the problem of determining a
time-optimal helicopter trajectory between two points
in three-dimensional space without any obstacles.
The absolute value of the helicopter speed decreases
linearly in altitude, i.e., v(y) = maxz{vo—qy, 0}, where
vg is the helicopter velocity at the ground level and ¢
is the velocity loss per one meter altitude. Although
intuitively one might think that the optimal trajec-
tory is a straight line, in most of the cases this is not
true. We show that the time-optimal trajectory is, in
fact, a circle segment. For the simplicity of the proof,
we restrict ourselves to the class of continuously dif-
ferentiable trajectories, although the circle segment is
optimal even in the class of continuous functions, a
natural assumption to any helicopter trajectory.

1 Introduction

The classical trajectory optimization problems in
computational geometry usually assume a constant
speed of the moving objects. Moreover, many fun-
damental geometric problems assume that a moving
object, a mowver, is a single point in two- or three-
dimensional space. Under these two assumptions,
length-optimal and time-optimal trajectories are the
same. Therefore, dealing with a time-optimization
problem, we can apply, for instance, the shortest-
paths algorithms; see, for instance, [1, 2]. The si-
tuation is totally different when we assume that the
speed of the mover depends on the position in the
space. In this case, length-optimal and time-optimal
trajectories can deviate from each other significantly.
In this paper we investigate one such problem.
Given a mover in three-dimensional Euclidean
space, assume that the absolute value of the mover’s
speed decreases or increases in one of the space coor-
dinates. This is the real-life setting in any helicopter
flight. The greater the altitude of the helicopter, the
less the atmospheric pressure and, consequently, the
less the air density. In turn, the reduction in air den-
sity will reduce the power available, and then, the
maximum speed of the helicopter decreases with al-
titude. Though the (concave) function of the heli-
copter’s maximum velocity in altitude is quite com-

*Department of Quantitative Economics, Maastricht Uni-
versity, Netherlands

{a.berger,a.grigoriev,n.usotskaya}@maastrichtuniversity.nl

Alexander Grigoriev *

Natalya Usotskaya *

plex and hardly admits a closed analytical form, it
is widely accepted to approximate it by linear func-
tions or piece-wise linear functions with one break-
point [3]. Therefore, we can formulate the basic heli-
copter problem as follows. Given is a source point A
and a destination point B in three-dimensional Eu-
clidean space, where, traditionally, the vertical y-axis
represents points altitudes while the z- and z-axes
represent the surface coordinates. No obstacles (also
no ground level) are present. The absolute value of
the mover’s speed decreases linearly in altitude, i.e.,
v(y) = maz{vy — qy,0}, where vy > 0 is some speed
intercept (for instance, the helicopter’s maximum ve-
locity at the ground level) and ¢ > 0 is the velocity
degradation rate. One has to find a time-optimal tra-
jectory to fly the mover (helicopter) from A to B. No-
tice that this three-dimensional problem can be easily
reduced to the two-dimensional problem. This is be-
cause the time-optimal trajectory clearly belongs to
the plane orthogonal to the surface and containing
points A and B.

The general helicopter problem reads: given points
A and B in three-dimensional Euclidean space, along
with a set of polyhedral obstacles, find a time-optimal
trajectory to fly the helicopter from A to B with-
out hitting the interior of any of the obstacles. It
is noticeable that the general helicopter problem is a
generalization of the classical three-dimensional Eu-
clidean shortest-path problem: if ¢ = 0, the prob-
lems are equivalent. It is well known that the two-
dimensional Euclidean shortest-path problem is poly-
nomially solvable [9], the three-dimensional prob-
lem is NP-hard [6], but admits polynomial time ap-
proximation schemes [1]. Notice that one can eas-
ily derive a polynomial-time approximation scheme
to the three-dimensional general helicopter problem
with obstacles by discretizing/scaling the space and
constructing a weighted complete graph, where the
edge weight is the time to travel between two vertices
(points in the discrete space) using the straight line
trajectory. The presence of obstacles can be easily
taken into account setting the edge weight to positive
infinity if the straight line between two vertices hits
interior of an obstacle. Now, we can search for the
shortest path in the obtained graph.

In the time-optimization setting, to tackle the gen-
eral problem with obstacles, one might need a com-
plete characterization of the set of optimal solutions
to the basic problem without obstacles, the set of,

89

26th European Workshop on Computational Geometry, 2010

so-called, motion primitives. A typical illustration of
lifting from motion primitives to solutions to the gen-
eral problem can be found, for example, in robotics.
In this paper we concentrate on deriving a complete
characterization for the basic helicopter problem. We
show that the trajectory following a certain circle seg-
ment with endpoints A and B is the time-optimal
trajectory in the class of continuously differentiable
functions. The proof uses Euler-Lagrange equations
from the calculus of variations. One can see this
also as a variant of the Pontryagin Maximum (Mini-
mum) Principal [10]. This type of techniques is quite
common in optimal control theory in general, and in
robotics in particular; see, e.g., [4, 5]. This paper
leaves two interesting open questions: 1) whether the
two-dimensional general helicopter problem admits a
polynomial time algorithm; and 2) whether the ba-
sic helicopter problem with piece-wise linear velocity
degradation admits a polynomial time algorithm.

2 The unique time-optimal trajectory is the circle
segment

First, we notice that if the points A(x1,y1) and
B(x2,y2) lay on the same vertical line (i.e., they share
the same z—coordinate: x1 = x3), then the optimal
trajectory is just a piece of the straight line x = x
between A and B. We omit the proof as it is straight-
forward. We also assume that ¢ > 0, for otherwise
we are in the well-studied setting of the classical Eu-
clidean shortest-path problem. Thus, from now on
we consider only the case where x1 # 2 and ¢ > 0.
We show that in this case the circle segment is the
unique time-optimal trajectory. The first observation
is about the convexity of any time-optimal trajectory.

Lemma 1 For any two points A and B in R%? N
{(z,y) :+ v, —qy > 0}, a time-optimal trajectory
between A and B is a convex function of x.

Proof. The proof is based on comparison of the
straight line segment between A and B and any con-
cave trajectory above this line. The distance to
travel along the straight line is smaller and the ve-
locity increases with the drop of altitude. Hence,
the straight line trajectory is better than any concave
function. O

Now, we are ready to present the main theorem
of this section claiming that there is a unique time-
optimal trajectory between A and B, which is a circle
segment. The concise proof of Theorem 2 relies on the
fact that we choose the polar system of coordinates
with an observation point being in the center of the
optimal circle segment.

Theorem 2 Let C' be the intersection point of the
line y = %0 and the line equidistant from A and B.

90

The segment Tap of the circle with center C' and ra-
dius R = |CA| = |CB| is the unique time-optimal
trajectory between A and B. The time needed to
travel along Tsp is

B ol
1 tan§+tan§

t tZtT =—In
o g tang — tan? g

(1)

1 b
tan 5

where 3 is the angle between C'A and the x-axis, and
~ is the angle between C'A and C'B.

C(20,90)

Figure 1: Convex trajectory T' in the polar system of
coordinates

Proof. By Lemma 1, we can restrict our search for
time-optimal trajectories to the class of convex (in x)
functions. Let T be an arbitrary continuously differ-
entiable convex trajectory between A and B. Let L be
the line equidistant from A and B. Since T is convex
in x, it is possible to observe every point of 7" from any
point C on L that lies above the line segment AB. We
consider the trajectory T in the polar system of co-
ordinates with observation point C' = (xg,yo), where
C € L is chosen in such a way that the velocity in C
is 0, ie., yo = %0.

Consider an arbitrary point D = (z,y) of the tra-
jectory T'. In the chosen polar system of coordinates,
the point D is completely determined by a and R(«),
where « is the angle between C'A and CD, and R(«)

is the length of the interval CD:

x = x9— R(a)cos(a+), (2)
y = yo— R(a)sin(a+ 7). (3)

For illustration see Figure 1.

First, we write the integral representing the time
needed to travel along 7. For a sufficiently small
piece of the trajectory, we may assume that the ve-
locity v remains constant within the piece. Let the

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

length of the piece be denoted by Ax, then the time
to travel along the piece is At ~ =%. The velocity v is
completely determined by the altltude of D = (z,y).
Therefore, by Equation (3), we have v = vy — qy =
qR(a) sin(a + (), as vo — qyo = 0 by choice of C.
From mechanics we know that for continuously dif-
ferentiable trajectories the length of the piece Az is
determined by Az = /R"?(a)+ R?>(«)Aa. There-
fore, the time needed to travel along 7" is determined
by the following integral:

/ \/R’2)+ R?(a) da

) sin a+ﬂ

- IV (ES) e

Notice, this integral is well defined as 0 < a+8 < 7
for any o € [0,7] (8 and 7 are two of the three angles
of the triangle ABC). Furthermore, for the trajectory
T we have that R(0) = R(y) = R=|CA| = |CB], as
the point C' is equidistant from A and B.

Now, we replace R(a) with the function f(a) =
In(R(«)). Since R(«) is continuously differentiable,
the function f(«) is continuously differentiable as

well. Furthermore, f'(a) =]g((S))7 and the follow-
ing boundary conditions hold: f(0) = f(v) = InR,
where R = |CA| = |CB]|. For the function f(«) the

travel time is calculated as follows:

Now, we have to find all minimizers of the func-
tional (5). The following theorem of the calculus of
variation is used:

; (4)

sin(a + ﬁ (5)

Theorem 3 ([8], p. 21; see also [7]) Given a
functional S(y) = f: F(t,y(t),y' (t))dt, where
y : [a,b] € R — X is differentiable and
y(a) = Ya,y(b) = yp, ¥ is the continuous derivative of
y and F is a real-valued function with continuous first
partial derivatives. If the function y(t) is a stationary
point of the functional S(y), then it satisfies the
equation:

Fy(t,y(t),y'(t) — — Fy (t,y(t),y'(t)) = 0. (6)

dt

Notice that the trajectory is a circle segment if and
only if the radius-vector R(«) is constant, which is
possible if and only if the function f(a) = In(R(«))
is also a constant. Therefore, we can concentrate on
Equation (5) proving that f(a) = const is the unique
minimizer of the functional.

1) We prove first that the circle segment with the
center C' and radius R = |C'4] is a time-optimal
trajectory.

Consider an arbitrary trajectory 7. f%(a) > 0
for any T, therefore, the following lower bound

exists:
b 1 /A’ do
T2 - -
q.Jo sin(a+f)

On the other hand, the last integral represents
the time needed to travel along the circle segment
T4p with the center C and radius R = |CA]|.
Therefore, the derived circle segment is at least
as good as any other trajectory.

2) Now, we show that T4p is the unique time-
optimal trajectory in the class of continuously
differentiable functions. Consider the functional

(5) with the integrand F(e, f, f') = 7211;(_0}:/:‘;?)
Suppose f(a) is a minimizer of the functional.
Therefore, the Euler-Lagrange Equation (6) holds
for f(a), because it is a mnecessary condition
for the stationary point of any functional. The

continuous partial derivatives of the integrand
F(a, f, 1) are:
Y 14 f'2 cos(a+3)

sin?(a+03) ’
F; = 0

Fpp = —1—
f V14 /2 sin(a+p3)
We obtain from Equation (6) that - (Fy) = 0.
Hence,

f/
V14 f?sin(a+ Q)
Since \/1+ f2 > 1 and sin(a + 8) > 0, (0 <

a+ B < 7), the denominator in Equation (7) is
always positive. Now, we consider three cases:

1. If const = 0, then f' =0 and f(a) = const.
Therefore, R(a) = ef(®) = const. The value
of this constant is determined by the bound-
ary condition R = |CA| = |CB|. This is ex-
actly the circle segment T4 g with the center
C and the radius R = |CA].

2. If const > 0, then f’ > 0 and the func-
tion f(«) is strictly increasing. Therefore,
f(v) > f(0). This contradicts the bound-
ary conditions f(0) = f(y) = InR. Thus,
there are no optimal trajectories, when the
constant is strictly positive.

3. If const < 0, then f’ < 0 and the func-
tion f(«) is strictly decreasing. Once again,
the contradicts the boundary conditions as
f(y) < f(0). Therefore, there are no
optimal trajectories, when the constant is
strictly negative.

= const. (7)

Summarizing all three cases, there are no other
time-optimal radius-vector functions but the cir-
cle segment T4 g with the center C and the radius
R=|CA| =|CBj.

91

26th European Workshop on Computational Geometry, 2010

The formula for the time needed to travel along the
circle segment T4 g can be easily computed as follows:

A 1/7 dox 1/fiﬂ dr
ot T o sin(a+p3) ¢ 5 sint
1St g 1 [tan ﬁ%
= — — = 71n —_— =
q »/tang 13 q tang

B ol
tan 5+ tan§

B 28
2 2

= —In
q

tan 5 — tan® 5 tan

Here, tan % and tan g can be determined in terms of
coordinates A(z1,y1) and B(x2,y2). Point C(xo,yo)
has an altitude yy = %“. Since C belongs to the line

L equidistant from A and B, we have that

Y-y, 2yl — i -yl

Tro —
T2 — X1 q 2(901 - xz)

Straightforwardly,

R=|CA| = /(z0 — 21)% + (vo — v1)?,

2 2
d:|CE|:\/(x0—x1;r$2> +(y0—y1;y2> .

/R2 _ 2 . . . —
Now, tan § = RTd. Finally, since sin 3 = %24
_ x0—x : g _ _sinB _
and cos 8 = FFFL, we derive tan§ = ; TesB =
Yo—Y1
R+zo—z1° O

3 Conclusion

In this paper we have addressed the problem of deter-
mining a time-optimal helicopter trajectory between
two points in three-dimensional Euclidean space,
where the speed of the helicopter depends on the fly-
ing altitude. We have characterized the time-optimal
trajectories which are either line or circle segments.

Two interesting research directions can be followed
using the results of this paper. First, it is an open
question whether the basic helicopter problem with
piece-wise linear velocity degradation admits a poly-
nomial time algorithm (here we have considered linear
velocity degradation).

Moreover, the time-optimal line or circle segments
are optimal if no obstacles are present. Hence, the
second open problem is whether the two-dimensional
general helicopter problem with obstacles admits a
polynomial time algorithm. As mentioned in the in-
troduction the three-dimensional problem with obsta-
cles is NP-hard as it is a generalization of the Eu-
clidean shortest-path problem with obstacles in three-
dimensional space.

Acknowledgments

We thank the organizers in advance for the tasty cookies!

92

References

(1

2l

(3]

(4]

(5]

(9]

(10]

P.K. Agarwal, S. Har-Peled, M. Sharir, and
K.R. Varadarajan. Approzimating Shortest Paths on
a Convex Polytope in Three Dimensions. JACM,
44(4), 567-584, 1997.

P.K. Agarwal, P. Raghavan, and H. Tamaki. Mo-
tion planning for a steering constrained robot through
moderate obstacles. In Proc. ACM Symposium on
Computational Geometry, 343-352, 1995.

Basic helicopter handbook. US Department of Trans-
portation, Federal Aviation Administration, Advi-
sory Circular 61-13A, 1973.

J.T. Betts. Practical Methods for Optimal Con-
trol Using Nonlinear Programming. SIAM Press,
Philadelphia, Pennsylvania, 2001.

J.T. Betts. Survey of Numerical Methods for Tra-
jectory Optimization. J. of Guidance, Control, and
Dynamics, 21(2), 193-207, 1998.

J. Canny and J.H. Reif. New lower bound techniques
for robot motion planning problems. In Proc. of
the 28th Annual IEEE Symposium on Foundations
of Computer Science, IEEE, New York, 49-60, 1987.

I.M. Gelfand and S.V. Fomin. Calculus of Variations.
Dover Publications, Inc., NY, 2000.

.M. Gelfand and S.V. Fomin. Calculus of Variations.
Gos. Izd. fiz.-mat. lit., Moscow, 1961.

J.S.B. Mitchell and C.H. Papadimitriou. Planning
shortest paths. In Proc. STAM Conference on Ge-
ometric Modeling and Robotics, New York, 1-21,
1985.

L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkre-
lidze, and E.F. Mishchenko. The Mathematical The-
ory of Optimal Processes. John Wiley, 1962.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

A Traveller’'s Problem

Florian Berger*

Abstract

A traveller is planning a tour from some start posi-
tion, s, to a goal position g in d-dimensional space.
Transportation is provided by n carriers. Each car-
rier is a convex object that results from intersecting
finitely many closed linear subspaces; it moves at con-
stant speed along a line. Different carriers may be
assigned different velocity vectors. While using car-
rier C, the traveller can walk at innate speed v > 0
in any direction, like a passenger on board a vessel.
Whenever his current position on C' is simultaneously
contained in some other carrier C’, the traveller can
change from C to C’, and continue his tour by C”.

Given initial positions of the carriers and of s and g,
is the traveller able to reach g starting from s? If so,
what minimum travel time can be achieved?

We provide the following answers. For a 1%—
dimensional situation similar to the “Frogger” game,
where the traveller has to cross a river on which n
consecutive rectangular barges move at m different
speeds, we provide an O(nlogm) solution. In dimen-
sion 8 and higher, the Traveller’s Problem is unde-
cidable, even for innate speed zero. An interesting
case is in dimension 2. We prove that the problem
is NP-hard, even if all carriers are vertical line seg-
ments. It turns out that an s-to-g path of finite
duration may require an infinite number of carrier
changes. Despite this difficulty, we can show that
the two-dimensional problem is decidable. In addi-
tion, we provide a pseudo-polynomial approximation
algorithm.

Keywords: Affine mappings, computational ge-
ometry, continuous Dijkstra, frogger, motion plan-
ning, NP-hardness, partition, pseudo-polynomial ap-
proximation, undecidability.

1 Problem description

Motion planning in dynamic environments is one of
the challenging problems in computational geometry.
A classical, and important question is how to avoid
collision with obstacles that move in time. In this
paper we take a different view and consider a situa-
tion where moving objects can be used as a means of
transportation.

*University of Bonn, Institute of Computer Science I,
D-53117 Bonn, Germany.

Rolf Klein*

A carrier in dimension d is a non-empty intersec-
tion of finitely many closed linear subspaces. Thus,
in dimension 2, a carrier can be a point, a line seg-
ment, a half-line, a line, a possibly unbounded con-
vex polygon, or the plane itself. Each carrier is as-
signed its own velocity vector, causing it to move lin-
early at constant speed. The traveller is modelled as
a point, p. At time ¢ = 0, his journey begins at a
start point, s, which is located on some carrier Cs.
Like a passenger on board a cruiser, traveller p will
be moved along with Cs. In addition, he can walk
on Cs (and any other carrier) at maximum speed v,
called innate speed for short, as long as he does not
fall off. If, at some time ¢ > 0, traveller p is located
in the intersection of Cs and some other carrier, C,
he may decide to change from C; to C', and continue
his journey by C. The traveller’s ultimate goal is to
reach a goal point, g, located on some carrier Cy,.

We observe that our definition of changing the car-
rier allows for the following implementations. First,
the traveller can change at some point where two car-
riers touch each other, since such touch point belongs
to either carrier. Second, we could introduce a special
carrier Cy that equals the whole plane and does not
move. Then the traveller could, in our model, get off
his current carrier anytime and wait for another car-
rier to arrive or, if v > 0, walk some distance in the
plane, and board another carrier.

In general it is not clear if g can be reached from s at
all. Thus, we are interested in the following questions.

e Given initial positions for the carriers at time ¢t =
0, is it possible for the traveller to reach g when
starting from s?

e If so, what is the quickest way to get there, using
only the carriers for transportation?

2 Crossing a river

As a warm-up example, we consider a special case
that resembles the well-known “Frogger” game. Our
traveller wants to cross a river whose banks are mod-
elled as two horizontal line-shaped carriers that do
not move.

On the river, n rectangular barges are sailing hori-
zontally, at individual speeds and in both directions;
see Figure 1.

The ith barge in bottom-up order is B;. The strips
defined by B; and B, touch each other; B; and B,

93

26th European Workshop on Computational Geometry, 2010

s=p

Figure 1: Barges on a river.

touch the lower resp. the upper lines, where start
point s resp. goal point g are located. The traveller
cannot swim. But, as in the well-known “Frogger”
game, he can walk on the barges in X- or Y-direction
at maximum innate speed v = 1. Also, where two
barges touch, he can jump from one to the next.

Starting from s at time t = 0, is the traveller able
to reach g? If so, what is the earliest possible arrival
time? Clearly, this is a special case of the general
Traveller’s Problem defined in the Introduction.

Using the continuous Dijkstra technique [4] and ap-
plying an argument of [3], we obtain

Theorem 1 Suppose that the n barges are running
at m different speeds. Then Traveller’s Problem can,
in this case, be solved in time O(nlogm).

3 Higher dimensions

The ease of the solution stated in theorem 1 is owed to
the special situation. In this section, we will establish
that the general Traveller’s Problem is undecidable in
dimension d > 8.

To this end we employ the following recent result
by Bell and Potapov [1].

Theorem 2 The following problem is undecid-
able [1]. Given five affine mappings fi, fa,...fs
from Q? to Q? and two rational vectors q = (z,y)
and ¢ = (2/,y’). Is there a finite product of map-
pings from {f1, fa,... fs} that maps q to ¢'?

Now we use this result to prove the following.

Theorem 3 Traveller’s Problem with innate speed
zero is undecidable in dimension d > 8.

Proof. First, we demonstrate how to simulate the
application of a single linear function of one vari-
able, f(X) = a - X, where a > 0, using seven un-
bounded carriers moving in XY ZV-space. In our
construction, only the directions of their speed vec-
tors matter, not their lengths.

Figure 2 depicts the projection of the correspond-
ing journey to XY Z-space. We start with the trav-
eller at an arbitrary point e > 0 on the X-axis. Our
first carrier is the XY-plane itself, moving upwards.
The traveller can use it to get up to the graph of

94

Figure 2: A linear mapping f : Q — Q simulated by
carrier movements.

the mapping f(X) = aX. Here he can change to
the plane {(x,az, z)|z,z € R} that moves into direc-
tion (0,0,1). At Z = 1, he can get off, and change
to the third carrier—the plane {(z,y,1)|z,y € R}
moving leftwards. It gets the traveller to (0, ae,1).
At this point, he can enter dimension 4 by means of
the plane {(0,y,1,v)|ly,v € R}, which moves in pos-
itive V-direction.® At (0,ae,1,1) the traveller can
board the plane {(z,y,1,1)|z,y € R} whose veloc-
ity vector equals (1,—1,0,0). Tt gets him to the
point (ae,0,1,1), where he can change to the sixth
carrier, the plane {(z,0, 1,v)|z,v € R} moving in neg-
ative V-direction. Back to 3-space at (ae,0, 1), he can
finally catch the plane {(z,0, z)|z, z € R}; it moves in
negative Z-direction and gets the traveller back to
the X-axis, at point ae = f(e).

Two observations are crucial. While the definition
of carriers does depend on the coefficient a of map-
ping f, it works for any argument e.? Second, if the
traveller leaves the X-axis (at some point e), then his
only chance of returning to the X-axis is to ride the
seven carriers the way explained above. This gets him
to point f(e).

Our construction generalizes to two-dimensional
affine mappings f(X1, X2). Here, we need to make
sure that the traveller, after starting from some
point (e,g) in the X;Xs-plane, can return to this
plane only at the point (r,s) = f(e,g). This can be
achieved by introducing extra dimensions, so that the
computations of r and s take place in disjoint affine
subspaces and, consequently, do not interfere. We can

1This part of the journey is not visible in Figure 2, as it
projects onto the point (0, ae,1). The same holds for the ride
back on the 6th carrier.

2We must add three alternative carriers to deal with argu-
ments e < 0.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

deal similarly with five such affine mappings acting
independently on the X7 Xs-plane, and thus simulate
the problem of Theorem 2. It turns out that dimen-
sion 8 provides us with sufficiently many disjoint affine
subspaces for this purpose. (I

4 Dimension two

4.1 NP-hardness

Our NP-hardness reduction is from the NP-complete
problem

PARTITION Given n natural numbers ay,as,...,a,,
let S := > a;. Does there exist a subset I C
{1,...,n} such that §/2 =3, ; a;?

Theorem 4 Traveller’s Problem in dimension two is
NP-hard for arbitrary innate speed v. There is no
constant factor approximation, unless P=NP.

Proof. Let us first assume that v = 0 holds. Our con-
struction uses vertical carriers C,C’ and A;, B;,1 <
1 < n, of height S each. C and C’ are aligned
and do not move. The bottommost point of C
equals s, while g is the center point of C'; see Fig-
ure 3. For each i, carrier A; moves in such a way
that, at some time, it is congruent with C, and has
gained a; in height on reaching C’ afterwards. B;
traverses the horizontal strip containing C,C’ from
right to left. These carriers pass over C,C’ in the or-
der Ay, B1, A5, B>, ..., A,, B,, with plenty of time in
between so that no interference is possible.

The traveller, located at some point on C, may
choose to board a carrier A;. It will get him to C”,
at a point by a; higher than his point of departure
from C. Then, he can use B;, or one of the later car-
riers B;, to return to C' while maintaining his height.
In other words, for each index 4, the traveller has the
option to move a distance a; upwards on C. Thus, he
is able to reach its middle point, g if, and only if, a
partition of the given numbers is possible.

Now assume that a partition is impossible. Then
the traveller misses g by a distance at least 1/2, since
all a; are natural numbers. If v = 0 the traveller
will never get to g. Now let v > 0, and assume
that there exists an approximation algorithm with ap-
proximation factor < . By speeding up the carriers
we can ensure that T = ﬁ holds for the time T
where B,, hits C. At this point, the traveller has

1

walked a total distance of at most Tv = 5, so that
1 1

he is at least d := 5 — 55 away from g, if he has
reached C at all. To walk distance d takes time at
least % = d2aT = (a — 1)T, so that the whole jour-
ney needs time o' at least. Thus, the approximation

algorithm would decide PARTITION. O

-

Al

Figure 3: Proving Traveller’s Problem NP-hard.

4.2 Decidability

The main difficulty in showing decidability comes
from the fact that there are scenes where the goal
can be reached in finite time, but only by an infinite
number of carrier changes. An example is shown in
Figure 4. The three line segments A, B,C are very
long, but bounded. Their velocity vectors have large
axial and small lateral components. This causes the
segments to intersect in point z at some time T. The
fast point-shaped carrier D will pass through z at
time T, too, and then speed on to meet carrier F
that consists just of the goal point, g. The traveller’s

Figure 4: The traveller must pass through the cy-
cle A, B,C infinitely often before he can board car-
rier D at Zeno point z.

innate speed is zero. He sets out from point s on A.
In order to reach g, he needs to catch carrier D, be-
cause A’s upward movement is too slow, and because
staying on A would get the traveller too far to the
left, anyway. The only occasion when one of A, B,C
contains D is at time T in point z. Until then, the
traveller must keep cycling through the ever contract-
ing triangle formed by A, B,C' — an infinite number
of times! Using a notation from the field of hybrid
automata [2], we call z a Zeno point, because the
situation resembles the paradox of Achilles and the
tortoise. At least three carriers are necessary to give
rise to a Zeno point and each triple of carriers causes

95

26th European Workshop on Computational Geometry, 2010

at most one Zeno point. Hence, their total number is
in O(n?).

Although Zeno points cause complications, they are
not strong enough to provide universal computing
power in our model. Indeed, we have the following
result.

Theorem 5 Traveller’s Problem is decidable in the
plane (if all carriers are lines, half-lines, or line seg-
ments).?

4.3 Pseudo-polynomial approximation

Now we present a pseudo-polynomial approximation
algorithm for the case of bounded carriers in the
plane. Let v = 1. Let us assume that an s-to-g paths
exists in our model, and let P* be a path of minimum
travel time, W. We will establish an algorithm that
computes an s-to-g path of almost minimum travel
time. However, this path may only be feasible in a
relazed model, where the traveller can walk at innate
speed 1+ ¢, and use a carrier although it is a distance
of p away. Both relaxation parameters, € and p, can
be chosen arbitrarily small.

Our algorithm works by discretising time and space.
The time difference between two consecutive discrete
time points is A := m, where v, denotes the
maximum speed of all carriers. Space is discretised

1

by a regular grid of width x := 7 min(u,eA).

It is easy to show the following lemma.

Lemma 6 There exists a function Q : [0, W] — R2,
such that

o Q)| < 2k for all t € [0,W], and

e P*+(is a path visiting grid points at all discrete
time points jA, and

e P* + (@ is feasible in the relaxed model.

Thanks to Lemma 6, we need only consider such
paths that visit grid points at all times jA. This will
get us to the goal location at most A later than W.

Suppose, the traveller is located at the grid point p
at time jA. Which grid points can be reached from
there at time (j + 1)A? The crucial idea is to re-
strict this path planning to a set of #-usable carriers,
which contains all carriers having distance at most
0= gli + (1 4 20ax)A from p at time jA.

If a carrier has distance greater than 6 from p at
time jA, it is redundant by Lemma 6. Namely, the
traveller’s distance to this carrier exceeds gn not
only at time jA, but throughout a time interval of
length A, during which traveller and carrier could get
closer by (142vmax)A. On the other hand, if a carrier

3We put this requirement in brackets because we do not
think that it is essential.

96

is at most 0 away from p at time jA, then the distance
cannot exceed 6+ (14 2umax) A < %,u during the time
interval from jA to (j + 1)A. Hence, no matter how
the traveller changes between the #-usable carriers, or
walks on them, all extended carrier restrictions are
respected.

This freedom allows to linearly combine carrier mo-
tions. It turns out that the reachability from p at
time jA to g at time (j+ 1)A is related to the convex
hull of the velocity vectors of the #-usable carriers.

Finally, we obtain:

Theorem 7 A feasible path in the relaxed model
with travel time at most W + A can be computed
in running time:

G

Llog(L —
O (n og(L) W H)
where L denotes the total number of edges of the n
carriers, G equals the maximum carrier diameter

squared times the maximum speed to the 5th power,
and H = e*p3.

5 Conclusion

We have introduced a new motion planning problem
and shown that its complexity ranges from near lin-
ear, in simple cases, to undecidable in higher dimen-
sions. For dimension 2, the problem is decidable,
but NP-hard. Its “true” complexity in dimension 2
and 3 remains open. We believe that our pseudo-
approximation algorithm can be generalized to higher
dimensions. Whether it can be strengthened is an-
other interesting question.

6 Acknowledgement

The authors are grateful to Frank Dehne, Gilinter
Rote, and Jorg-Riidiger Sack for very fruitful discus-
sions.

References

[1] P. Bell and I. Potapov. On Undecidabil-
ity Bounds for Matrix Decision Problems.
Theor. Comput. Sci. 391(1-2), pp. 3-13, 2008.

[2] K. H. Johanson, J. Lygeros, S. Sastry, and
M. Egerstedt. Simulation of Zeno Hybrid Au-
tomata. IEEE Conference on Decision and Con-
trol, Phoenix, 1999.

[3] F. Leber. Diploma Thesis, in preparation. Bonn,
20009.

[4] J. S. B. Mitchell. Lj-shortest paths among
polygonal obstacles in the plane. Algorithmica
8(1), pp. 55-88, 1992.

EuroCG 2010, Dortmund, Germany, March 22-24, 2010

The edge rotation graph

Javier Cano* Mayra Corvera Espinoza*

Clemens Huemert

Abstract

For a given point set V in the plane in general po-
sition, consider the set PG(V, k) of non-crossing geo-
metric graphs on V' with a fixed number k of edges.
For a given non-crossing geometric graph G = (V, E)
and an edge Ty € E, an edge rotation of Ty around x
replaces Ty by an edge Tw ¢ F, if the open triangle
Azyw does not intersect any edge e € FE nor does
it contain any vertex of V. The edge rotation graph
has vertex set PG(V,k) and two vertices are adja-
cent if they differ by an edge rotation. We show that
if PG(V, k) contains no triangulations, then the edge
rotation graph is connected and has diameter O(|V|?).
This also generalizes to edge-labeled geometric graphs
and directed geometric graphs.

1 Introduction

Let V be a finite point set on the plane in general
position. A non-crossing geometric graph (also called
plane straight line graph) on V' is a graph whose ver-
tex set is V and whose edges are straight-line seg-
ments with pairwise disjoint interior, joining pairs
of elements in V. For the case when the number
of edges is maximal, this graphs are triangulations
on V. Transformations of triangulations by replace-
ment of edges (edge-flips) has been widely studied
among other things, for their applications on gen-
erating high quality meshes on V' like the Delaunay
triangulation [7, 8], or in enumeration of all triangu-
lations on V' [2]. We study non-crossing geometric
graphs with fewer edges than in a triangulation and
consider another operation to locally transform geo-
metric graphs.

*Posgrado en Ciencia e Ingenieria de la Com-
putacién, UNAM, México, j-cano@uxmcc2.iimas.unam.mx,
m_corveraQuxmcc2.iimas.unam.mx,
j-espinosa@uxmcc2.iimas.unam.mx

fDepartamento de Matemadtica Aplicada II, Universidad de
Sevilla, Spain, dbanez@us.es. Partially supported by Project
MEC MTM2009-08652.

fDepartament de Matematica Aplicada IV, Universi-
tat Politecnica de Catalunya, clemens.huemer@upc.edu.
Partially supported by Projects MEC MTM2009-07242 and
Gen. Cat. DGR 2009SGR1040.

8Instituto de Matematicas, Universidad Nacional Auténoma
de México, urrutia@matem.unam.mx, partially supported by
grants CONACyT CB-2007/80268, and FEDER-MTM2006-
03909.

José Miguel Diaz-Banez!

Joel Espinosa Longi*

Jorge Urrutiab

y w y w
—_—
T xT
(a)
w
Y Yy
—_—
X T

Figure 1: Three types of edge rotations (a-c) and an
edge flip (d).

Given a non-crossing geometric graph G = (V, E)
and an edge Ty € E, an edge rotation of Ty around x
replaces Ty by an edge Tw ¢ F, if the open triangle
Azyw does not intersect any edge e € E nor does it
contain any vertex of V.

Figure 1 shows an edge rotation for a geometric
graph (a). Variants of the definition of edge rotations
are possible, for example neglecting the conditions im-
posed on the triangle Azyw, Case (b) in Figure 1. A
more restrictive rotation allows us to replace zy by Tw
only if y and w are consecutive vertices in the cyclic
order of visible (as seen from z) vertices around x, see
Case (c). An edg