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Introduction

This volume contains the abstracts of the talks given at the 26th European Workshop on Computational Geom-
etry (EuroCG’10). The workshop was held at the Technische Universität Dortmund, Germany, on March 22–24,
2010. EuroCG is renowned as a friendly workshop, where researchers across Europe and the world can meet and
exchange ideas in a delightful atmosphere.

The workshop received 85 submissions. There was a limited refereeing process to make sure that the presented
papers were in scope and met some minimal standards. Since the abstracts were not peer-reviewed in a formal
manner, it is expected that many of them will appear in formally reviewed conference proceedings or journals.
The reviewing process was synchronized using the EasyChair conference management system, and we thank the
EasyChair team for providing this tremendously helpful service to the community.

In addition to the accepted contributions, this volume also contains the abstracts of the invited lectures by
Timothy M. Chan (Waterloo), Markus Gross (ETH Zurich), and János Pach (EPFL Lausanne and Rényi Institute
Budapest).

We would like to thank all the authors who responded to the call for papers, the invited speakers, the members
of the program committee, as well as the external referees and the organizing committee members.

The conference was made possible in part by generous financial support of the “Alumni der Informatik Dortmund
e.V.”, the Chair for Efficient Algorithms and Complexity Theory and the Chair for Algorithm Engineering at
the Faculty of Computer Science, Technische Universität Dortmund.
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Instance-Optimal Geometric Algorithms∗

Timothy M. Chan†

Abstract

Planar convex hull is undisputably one of the most
basic problems in computational geometry. Many
O(n log n)-time algorithms have been discovered, and
this bound is worst-case optimal under a standard
algebraic decision tree model. However, some input
point sets are “easier” than others. For example, for
point sets with output size h, O(n log h) algorithms
are known; for point sets under various distributions,
O(n) algorithms are known. In this talk, I will present
arguably the ultimate result on planar convex hull:
there is an algorithm that provably has running time
as good as any other algorithms (within a general
class, up to constant factors) on every point set. Such
an algorithm achieves so-called instance optimality (in
an order-oblivious sense). Similar instance-optimal
results are possible for 3D convex hull and several
other fundamental geometric problems, such as 2D
and 3D maxima, orthogonal line segment intersection,
and planar point location.

The talk will describe an elegant theory that
touches on many interesting threads—output-
sensitive, adaptive, and average-case algorithms,
partition trees, entropy, distribution-sensitive data
structures, decision-tree lower bounds, and a new
simple adversary argument.

∗Joint work with Peyman Afshani and Jeremy Barbay (work
appeared in FOCS 2009).

†Department of Computer Science, University of Waterloo
tmchan@uwaterloo.ca
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Point Samples for Surface Representation and Geometry Processing

Markus Gross∗

Abstract

Over the past decade point primitives have received
a growing attention in Computer Graphics and Ge-
ometry Processing. There are two main reasons for
this new interest in points: On one hand, we have
witnessed a dramatic increase in the polygonal com-
plexity of computer graphics models. The overhead
of managing, processing, and manipulating very large
polygonal meshes has led many researchers to ques-
tion the future utility of polygons as the fundamen-
tal graphics primitive. On the other hand, modern
3D digital photography and 3D scanning systems fa-
cilitate the ready acquisition of complex, real-world
objects. These techniques generate huge volumes of
point samples and create the need for advanced point
processing.

In this presentation I will discuss the utility and
versatility of point primitives for surface representa-
tion and geometric modeling, and I will present a sur-
vey the latest research results in this area. I will re-
view novel concepts for the mathematical represen-
tation of point-sampled shapes with a focus on mov-
ing least squares, spherical MLS, and robust statis-
tics. Furthermore, I will address efficient algorithms
for digital geometry processing and modeling of point
models, including filtering, resampling, spectral pro-
cessing, and deformation. In last part, I will discuss
how point based representations can help to bridge
the gap between numerical simulations and interac-
tive graphics, and I will demonstrate their potential
for a fusion of both.

∗Department of Computer Science ETH Zurich
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Touching points

János Pach∗

We say that two simple curves in the plane touch
or are tangent to each other if they have precisely one
point in common (which is their point of tangency)
and at this point one curve does not pass from one
side of the other curve to the other. Two Jordan re-
gions are said to touch if their boundary curves touch.
We say that two curves cross or properly cross at a
point p if p belongs to both of them and in a small
neighborhood of p one curve passes from from one side
of the other curve to the other.

Estimating the maximum number of tangencies be-
tween noncrossing circles was initiated by de Roc-
quigny [19] at the end of the 19th century. The
problem was forgotten for three quarters of a cen-
tury, until similar questions were asked and answered
for “Apollonian arrangements” [10]. It follows imme-
diately from Euler’s polyhedral formula that among
any n > 2 pairwise disjoint simply connected Jordan
regions in the plane there are at most 3n− 6 “touch-
ing” (tangent) pairs. This bound is tight. A family
of closed curves in the plane is said to form a set of
pseudo-circles if any two of them are disjoint, or tan-
gent to each other in one point, or cross in precisely
two points.

Theorem 1 (Erdős-Grünbaum) Any set of n > 2
pairwise noncrossing pseudo-circles in the plane de-
termines at most 3n − 6 points of tangencies. This
bound is tight.

Note that at each of these “touching points” (points
of tangencies) several curves may touch one another.

Erdős’s famous unsolved question [6] on the maxi-
mum number of unit distance pairs among n points in
the plane can also be formulated as a problem about
tangencies: What is the maximum number u(n) of
tangencies among n (possibly overlapping) disks of
unit diameter in the plane? The answer is superlin-
ear in n.

Theorem 2 (Erdős, Spencer-Szemerédi-Trotter [21])
The maximum number of tangencies among n unit
circles in the plane satisfies

n1+c/ log log n < u(n) < c′n4/3,

for suitable constants c, c′ > 0.

∗EPFL, Lausanne and Rényi Inst., Budapest
pach@cims.nyu.edu

Equivalently, one can ask: What is the maximum
number of incidences between n unit circles and n
points in the plane?

It was first observed by Tamaki and Tokuyama [22]
that in order to obtain an upper bound on the num-
ber of incidences between a family C of curves and a
set of points, it is sufficient to estimate the minimum
number of points needed to cut the curves in C into
“pseudo-segments,” that is, smaller pieces such that
any pair of them are either disjoint or cross precisely
once. Obviously, this number is at least as large as
the number of tangencies between the members of C,
and in most cases these two quantities do not differ
too much. For many applications, this approach leads
to the best known upper bounds for the number of in-
cidences between curves and points [1], [5], [12].

Theorem 3 (Marcus-Tardos) Any family of n
pseudo-circles can be cut into O(n3/2 log n) pseudo-
segments.

A natural generalization of the notion of tangency
among closed curves is that of a “lens,” i.e., a face
of the arrangement bounded by precisely two arcs
belonging to different curves. In his thesis, Rom
Pinchasi [16], in connection with a conjecture of
Bezdek [4], proved the following remarkable result:
Any family of n pairwise intersecting circles in the
plane determines at most n lenses. This result was
extended to pseudo-circles [1] (see also [2]).

Theorem 4 (Agarwal et al.) Any family C of pair-
wise intersecting pseudo-circles, no three of which
pass through the same point, determine at most O(n)
tangencies.

As is shown by Theorem 2, this statement does not
remain true if we drop the condition that the curves
are pairwise intersecting. However, if we count only
those tangencies that do not belong to the interior of
any member of C, then we can again obtain a linear
upper bound [11], [15]. If we also drop the condi-
tion that the curves are pseudo-circles, then even the
number of tangencies not contained in the interior of
a third curve can be as large as Ω(n4/3). It was proved
in [8] that this bound is not far from being optimal,
provided that no pair of curves is allowed to cross in
more than a fixed number s of times.

If we do not assume that any two curves cross a
bounded number of times, then it is easy to construct
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a family of n simple closed curves, no three of which
pass through the same point, with a quadratic number
of touching pairs. In fact, there are two families of
size n/2 such that each member of the first family is
tangent to every member of the second. However, in
this case, the total number of crossings between the
curves must be quite large.

Theorem 5 [FFPP10] Let A and B be two families
of x-monotone curves with a total of n members, no
three of which pass through the same point, such that
no curve in A properly crosses any curve in B. If m
denotes the number of pairs of touching curves (α, β)
with α ∈ A and β ∈ B, the total number of crossing
points in A ∪ B is Ω(m log m).

Consequently, if m > εn2 for some ε > 0, then
the total number of crossing points in A ∪ B is su-
perquadratic in n.

This result seems to support the following conjec-
ture (see also [13], [20]).

Conjecture 1 (Richter-Thomassen [18]) Any inter-
secting family of n closed curves, no three of which
pass through the same point, determines a total of at
least (1− o(1))n2 intersection points.

In a forthcoming paper [14], we study the structure
of tangencies between two families of closed Jordan re-
gions, each consisting of n pairwise disjoint members.
It was shown by Pinchasi and Ben-Dan [3], using the
proof idea of Theorem 3 that the maximum number
of such tangencies is O(n3/2 log n).

Theorem 6 [PST10] The number of tangencies be-
tween two families of convex bodies in the plane, each
consisting of n > 2 disjoint members, cannot exceed
6n−O(1). This bound is asymptotically tight.

Corollary 7 [PST10] Let C be a family of n convex
bodies in the plane, which can be decomposed into
k subfamilies consisting of disjoint bodies. The total
number of tangencies between members of C is O(kn).
This bound is asymptotically tight.

Conjecture 2 [PST10] For every fixed integer k > 2,
the number of tangencies in any n-member family of
convex bodies, no k of which are pairwise intersecting,
is at most Ok(n).

Somewhat surprisingly, the above results are no
longer true if we replace the assumption that the sets
are convex by the weaker one that they are vertically
convex, that is, they are closed connected sets and ev-
ery vertical line misses them or intersects them in a
connected set (interval).

Theorem 8 [PST10] Let f(n) denote the maximum
number of tangencies between two n-member families
of disjoint, vertically convex bodies in the plane. Then
we have

Ω(n log n) ≤ f(n) ≤ O(n log2 n).
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circles. In: Paul Erdős and His Mathematics (A. Sali,
M. Simonovits and V. T. Sós, Eds.), J. Bolyai Math.
Soc., Budapest, 1999, 33–36.

[5] T.M. Chan. On levels in arrangements of curves. II.
A simple inequality and its consequences. Discrete
Comput. Geom. 34 (2005), no. 1, 11–24.
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Proximity Graphs inside Large Weighted Graphs
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Abstract

Given a large weighted graph G = (V, E) and a subset
U of V , we define several graphs with vertex set U in
which two vertices are adjacent if they satisfy some
prescribed proximity rule. These rules use the short-
est path distance in G and generalize the proximity
rules that generate some of the most common proxim-
ity graphs in Euclidean spaces. We prove basic prop-
erties of the defined graphs and provide algorithms
for their computation.

1 Introduction

In Euclidean spaces, proximity graphs are a key tool
to obtain neighborhood relations in a given set of
points [5]. They have been intensively explored in
the contexts of spacial distribution analysis [9] and
graph drawing [7], among others.

In non-Euclidean settings, the Delaunay graph and
its relatives have found applications in the analysis of
networks that model real connection nets. A promi-
nent example is the network Voronoi diagram (see
Section 3.8 in [9]).

Here we deal with a complex graph G with a large
number of vertices and edges, in which it is difficult
to distinguish which are the relations of proximity
among a subset of the vertices. The edges of the graph
come with an associated positive weight. We study
relations of proximity based on shortest paths along
G = (V,E) among the vertices of a subset U ⊆ V,
which might represent the schools in the map of a
city, the corresponding stations in a huge transporta-
tion net, etc. We consider generalizations of some
well-known proximity graphs. This appears to be a
natural method to provide notions of closeness.
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de México, dflores@math.unam.mx.

§Departament de Matemàtica Aplicada II, Uni-
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The natural and important question of defining
suitable notions of closeness among vertices of a graph
has found different kinds of answers in the literature.
However, we are only aware of one approach that uses
proximity graphs (see [6, 11]). The graphs considered
there are clearly different from ours, as proximity is
constructed by adopting a notion whose universe is
a given geometric graph, but where the relations are
given by the full Euclidean plane.

Let us mention that the set U together with
the shortest-path distance constitutes a finite metric
space, so some of the proximity graphs we consider are
not new because they can be seen as a particular case
of proximity graphs defined on general metric spaces.
Even though there exists some literature on proximity
graphs in metric spaces, to the best of our knowledge
this topic has not been deeply investigated, as only
some definitions and basic properties have been given
(see Section 4.5 in [12], and also [4]). The sphere-of-
influence graph has been further studied [3, 8], but it
is out of the scope of our work.

When using empty regions as proximity criteria
in G, such as disks, two main variations arise, since
we might allow these disks to be centered at any point
in G, or we might restrict their centers to lie only on
vertices of the graph, as in [3, 1]. Moreover, the defi-
nition of certain regions of interference might depend
on the multiplicity of paths or distances in G. Degen-
eracies that occur in the standard geometric case also
generate several possibilities. For the sake of clarity
we first present the situation where there are essen-
tially no degeneracies (Sections 2–5). In Section 6 we
drop the non-degeneracy assumptions and extend our
results to the general setting.

Proofs and descriptions of the algorithms will be
given in the full-version of this paper.

2 Definitions and Notation

We deal with a connected and edge-weighted graph
G = (V, U,E), where U ⊆ V and all edges have posi-
tive real weights assigned to them. We assume that it
is possible to consider points in the edges of G; more
precisely, for every edge e = (v1, v2) with weight w(e)
and every r ∈ (0, w(e)), we assume that there exists
a point p in e and paths from both v1 and v2 to p
such that the weight of the path from v1 to p is r,

9
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and the weight of the path from v2 to p is w(e) − r
(if G is embedded in the plane, these paths are sim-
ply portions of the edges). We say that p is a point
of G if p is either a vertex of G, or a point in an
edge of G. The distance dG(p, q) between two points
p and q in G is defined as the minimum total weight
of any path connecting p and q in G. The closed disk
DG(p, r) is defined as the set of points q of G for which
dG(p, q) ≤ r. We say that ui ∈ U is a nearest neigh-
bor of uj ∈ U with i 6= j if dG(uj , ui) ≤ dG(uj , uk)
for all vertices uk 6= uj , ui ∈ U . A midpoint of two
points p and q of G is a point m on one of the shortest
paths from p to q such that dG(m, p) = dG(m, q). We
denote the set of midpoints of p and q by MG(p, q).
For the remainder of this paper, we define |V | = m,
|U | = n, and |E| = e.

We first consider the case where the following non-
degeneracy assumptions hold: (A1) for all ui, uj ∈ U,
the shortest path connecting ui and uj is unique; (A2)
there do not exist three distinct vertices ui, uj ∈ U,
v ∈ V −U such that dG(v, ui) = dG(v, uj); (A3) there
do not exist vertices vi, vj ∈ V, ui, uj ∈ U such that
dG(vi, ui) = dG(vj , uj) with vi 6= ui; (A4) all paths in
G between distinct nodes in V have different lengths.

Obviously, the previous assumptions are not inde-
pendent, but considering them separately allows to
clarify and provide a more precise description of the
scenario. In Section 6, we extend the results from
Sections 3–5 to the general case where A1–A4 are not
necessarily satisfied.

We now adapt several known definitions to proxim-
ity structures in graphs G = (V, U,E).

Definition 1 The nearest neighbor graph of G =
(V, U,E), denoted by NNG(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if uj is one of the nearest
neighbors of ui in G.

Definition 2 A minimal spanning tree of G =
(V, U,E) is a tree T = (U,F ) such that the sum of
dG(ui, uj) over all edges (ui, uj) ∈ F is minimal. The
union of the minimal spanning trees of G, denoted
by UMST(G), is the graph consisting of all the edges
included in any of the minimal spanning trees of G.

If A3 holds, each vertex in U has exactly one nearest
neighbor and the minimal spanning tree of G, denoted
by MST(G), is unique.

Definition 3 The relative neighborhood graph of
G = (V,U,E), denoted by RNG(G), is the graph
H = (U,F ) such that (ui, uj) ∈ F if there exists no
vertex uk ∈ U such that dG(uk, ui) < dG(ui, uj) and
dG(uk, uj) < dG(ui, uj).

Definition 4 The free Gabriel graph of G =
(V, U,E), denoted by GGf(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if there exists no vertex

uk ∈ U (uk 6= ui, uj) such that dG(p, uk) ≤ dG(p, ui),
where p is the midpoint of ui and uj .

If A1 holds, there exists only one midpoint of ui

and uj , thus the previous graph is well-defined.

Definition 5 The constrained Gabriel graph of G =
(V,U,E), denoted by GGc(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if the smallest closed
disk centered at a vertex in V enclosing ui and uj

does not contain any other vertex from U .

The previous graph is well-defined if A3 holds.

Definition 6 The Voronoi region of a vertex ui ∈
U is the set of points p of G such that dG(p, ui) ≤
dG(p, uj) for all vertices uj ∈ U different from ui.
The Voronoi diagram of G = (V, U,E), denoted by
VD(G), is the Voronoi diagram of the vertex set U
for the distance dG.

Definition 7 The free Delaunay graph of G =
(V,U,E), denoted by DGf(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if there exists a closed
disk DG(p, r), where p is a point of G, enclosing ui

and uj and no other vertex from U .

Definition 8 The constrained Delaunay graph of
G = (V, U,E), denoted by DGc(G), is the graph
H = (U,F ) such that (ui, uj) ∈ F if there exists a
closed disk DG(v, r), with v ∈ V , enclosing ui and uj

and no other vertex from U .

3 Inclusion Sequence

The graphs just defined satisfy some inclusion rela-
tions. In this section we show which proximity graphs
are subgraphs of which other proximity graphs assum-
ing A1, A2, and A3.

Theorem 1 The relations of containment among all
classes of proximity graphs are shown in Table 1. The
symbol ⊆ means that the inclusion is satisfied for all
graphs G, and * means that there are graphs G for
which the inclusion is not satisfied.

All inclusions in the table are proper, in the sense
that there exists a graph G for which the correspond-
ing proximity subgraph does not coincide with its su-
pergraph.

4 Geometric and Combinatorial Properties

We define the dual graph of the Voronoi diagram of
G = (V, U,E) as the graph with vertex set U and
edges connecting two vertices if their Voronoi regions
share some point in G that does not belong to the
Voronoi region of any other element in U.
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Table 1: Relations of containment among proximity
graphs in the non-degenerate case.

MST RNG GGc GGf DGc DGf

NNG ⊆ ⊆ 6⊆ ⊆ ⊆ ⊆
MST ⊆ 6⊆ ⊆ 6⊆ ⊆
RNG 6⊆ ⊆ 6⊆ ⊆
GGc 6⊆ ⊆ ⊆
GGf 6⊆ ⊆
DGc ⊆

Proposition 2 Let G = (V, U,E) be a graph. Then
DGf(G) is the dual graph of VD(G).

The previous proposition allows to draw the first
analogy between the usual proximity graphs and these
new proximity structures on graphs. Moreover, it is
a key tool to prove the following result:

Corollary 3 Let G = (V, U,E) be a graph. The
number of edges of NNG(G), MST(G), RNG(G),
GGc(G), GGf(G), DGc(G), and DGf(G) is at most e.

This bound is tight up to a constant factor:

Proposition 4 There exists a graph G = (V,U,E)
such that RNG(G) = GGf(G) = DGf(G) = G. There
also exists a graph G′ = (V ′, U ′, E′) such that the
number of edges of GGc(G′) and DGc(G′) is e′/2.
Furthermore, all of these graphs have Θ(n2) edges.

In the following theorems we show that the prox-
imity graphs inherit planarity and acyclicity from the
original graph.

Theorem 5 Let G = (V,U,E) be a planar
graph. Then NNG(G), MST(G), RNG(G), GGc(G),
GGf(G), DGc(G), and DGf(G) are planar.

Theorem 6 Let G = (V, U,E) be a tree. Then
GGc(G) and DGc(G) are forests, and RNG(G) =
GGf(G) = DGf(G) = MST(G).

Next we give complete characterizations for those
graphs that are isomorphic to a certain proximity
graph of some other graph.

Proposition 7 If G = (V, E) is a graph, there exists
a graph Ḡ = (V̄ , Ū , Ē) such that G ∼= NNG(Ḡ) if
and only if G is acyclic and does not contain isolated
vertices.

Proposition 8 If G = (V, E) is a graph, there exists
a graph Ḡ = (V̄ , Ū , Ē) such that G ∼= MST(Ḡ) if and
only if G is a tree.

Table 2: Running times of the algorithms to compute
the proximity graphs on G.

proximity graph running time

NNG O(e + (m− n) log(m− n))

MST O(e α(e, n) + (m− n) log(m− n))

RNG O(APSP(G) + min{n2, e}n)

GGc O(APSP(G) + min{n2, e}m)

GGf O
(
APSP(G) + min{n2, e}m)

DGc O(e + m log m)

DGf O(e + (m− n) log(m− n))

Proposition 9 If G = (V,E) is a graph, there exists
a graph Ḡ = (V̄ , Ū , Ē) such that G ∼= RNG(Ḡ) if and
only if G is triangle-free.

Proposition 10 Let G = (V, E) be a graph. There
exists a graph Ḡ = (V̄ , Ū , Ē) such that G ∼=
GGc(Ḡ) = GGf(Ḡ) = DGc(Ḡ) = DGf(Ḡ).

5 Algorithms

We have derived algorithms to compute each of the
proximity graphs we have studied. Due to lack of
space, we omit the description of the algorithms and
only give their running times.

In some cases the algorithm computes the short-
est paths between all pairs of vertices in U .
If G is a sparse graph, we use the algorithm
in [10], which runs in O(m log m + ne log α(m, e))
time. If G is dense, we use the algorithm
in [2], which runs in O

(
m3 log3 log m/ log2 m

)
time. We define APSP(G) = min{m log m +
ne log α(m, e),m3 log3 log m/ log2 m}.

Theorem 11 For each graph G = (V,U,E), the
proximity graphs on G can be computed in the num-
ber of steps indicated in Table 2.

6 Presence of Degeneracies

In this section we generalize our results to the case in
which degeneracies arise.

First of all, we look through the definitions. The
graphs NNG(G), UMST(G), RNG(G), DGf(G), and
DGc(G) are well-defined regardless of the properties
of G, although, in contrast to the non-degenerate case,
a vertex in U might have several nearest neighbors.

In the general case there might be more than one
shortest path between two vertices of U. This gives
rise to two definitions of free Gabriel graphs:

Definition 9 The free-one Gabriel graph of G =
(V, U,E), denoted by GGf1(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if there exists p ∈
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Table 3: Relations of containment among all classes
of proximity graphs in the general case.

UMST RNG GGca GGc1 GGfa GGf1 DGc DGf

NNG ⊆ ⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆
UMST ⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆
RNG 6⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆
GGca ⊆ 6⊆ 6⊆ ⊆ ⊆
GGc1 6⊆ 6⊆ ⊆ ⊆
GGfa ⊆ 6⊆ ⊆
GGf1 6⊆ ⊆
DGc ⊆

MG(ui, uj) such that no vertex uk ∈ U (uk 6= ui, uj)
satisfies dG(p, uk) ≤ dG(p, ui).

Definition 10 The free-all Gabriel graph of G =
(V, U,E), denoted by GGfa(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if, for each p ∈
MG(ui, uj), no vertex uk ∈ U (uk 6= ui, uj) satisfies
dG(p, uk) ≤ dG(p, ui).

Analogously, the definition of the constrained
Gabriel graph must be replaced by the following vari-
ants:

Definition 11 The constrained-one Gabriel graph
of G = (V,U,E), denoted by GGc1(G), is the
graph H = (U,F ) such that (ui, uj) ∈ F if there
exists a closed disk DG(v, r), with v ∈ V and
r = minv∈V {r | DG(v, r) contains both ui and uj},
enclosing ui and uj and no other vertex from U .

Definition 12 The constrained-all Gabriel graph of
G = (V, U,E), denoted by GGca(G), is the graph
H = (U,F ) such that (ui, uj) ∈ F if every closed
disk DG(v, r) containing both ui and uj , and where
v ∈ V and r = minv∈V {r | DG(v, r) contains both
ui and uj}, does not contain any other vertex of U.

Now we may go through the inclusion relations of
the proximity graphs.

Theorem 12 If degenerate situations are allowed,
the relations of containment among all classes of prox-
imity graphs are shown in Table 3. Furthermore, all
classes of proximity graphs are different.

To conclude this section, we focus on the most im-
portant properties presented in Section 3.

The fact that DGf(G) is the dual graph of the
Voronoi diagram of G holds in all cases. On the other
hand, if A2 is not satisfied, some of the proximity
graphs might have more edges than the original graph:

Theorem 13 Let G = (V, U,E) be a graph. The
number of edges of GGca(G), GGc(G), GGfa(G),

GGf(G), DGc(G), and DGf(G) is at most e. The num-
ber of edges of NNG(G), UMST(G), and RNG(G)
may be greater than e.

Finally, we check whether all proximity graphs in-
herit the property of being planar or acyclic in the
degenerate case.

Theorem 14 Let G = (V, U,E) be a planar graph.
Then the graphs GGca(G), GGc1(G), GGfa(G),
GGf1(G), DGc(G), and DGf(G) are planar, whereas
NNG(G), UMST(G), and RNG(G) may not be.

Theorem 15 Let G = (V, U,E) be a tree. Then
the graphs GGca(G), GGc1(G), GGfa(G), GGf1(G),
DGc(G), and DGf(G) are acyclic, whereas NNG(G),
UMST(G), and RNG(G) may not be.

The algorithms in the preceding section can be
adapted to run under the presence of degeneracies yet
we omit here further details.
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Abstract

We consider the problem of computing the discrete
Fréchet distance between two polygonal curves when
their vertices are imprecise. An imprecise point
is given by a region and this point could lie any-
where within this region. By modelling impre-
cise points as balls in arbitrary fixed dimension, we
present an algorithm for this problem that returns
in time O(m2n2 log2(mn)) the Fréchet distance lower
bound between two imprecise polygonal curves with
n and m vertices, respectively. We give an im-
proved algorithm for the planar case with running
time O(mn log2(mn) + (m2 + n2) logmn). In the d-
dimensional orthogonal case, where points are mod-
elled as axis-parallel boxes, and we use the L∞ dis-
tance, we give an O(dmn log(dmn))-time algorithm.

1 Introduction

Shape matching is an important ingredient in a wide
range of computer applications such as computer vi-
sion, computer–aided design, robotics, medical imag-
ing, and drug design. In shape matching, we are given
two geometric objects and we compute their distance
according to some geometric similarity measure. The
Fréchet distance [1] is a natural distance function for
continuous shapes such as curves and surfaces, and is
defined using reparameterizations of the shapes.

The discrete Fréchet distance is a variant of the
Fréchet distance in which we only consider vertices of
polygonal curves. Given two polygonal curves with
n and m vertices, respectively, there is a dynamic
programming algorithm that computes the discrete
Fréchet distance between them in Θ(mn) time [6], and
no subquadratic algorithm is known yet.
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Most of previous works on the Fréchet distance as-
sume that the input curves are given precisely. The
input curve, however, could be only an approxima-
tion; In many cases, geometric data comes from mea-
surements of continuous real-world phenomenons, and
the measuring devices have finite precision.

Imprecise data can be modelled in different ways.
One possible model, for data that consists of points,
is to assign each point to a region, typically a disk or
a square. In this case, existing algorithms for com-
puting the Fréchet distance could be too sensitive to
the precision of the measurements, and they may re-
turn a solution without providing any guarantee on
its correctness or preciseness. One solution to this
problem is to take the impreciseness of the input into
account in the design of algorithms, so that they re-
turn a solution with some additional information on
its quality.

Our results. We study the problem of computing
the discrete Fréchet distance between two polygonal
curves, where the vertices of a polygonal curve are
imprecise. Each point belongs to a region, which is
either a Euclidean ball or an axis-parallel box in Rd.
We consider two cases: the orthogonal case and the
Euclidean case. In the orthogonal case, the regions are
boxes, and we use the L∞ distance. In the Euclidean
case, the regions are balls and we use the Euclidean
distance.

Given two imprecise sequences of n and m points,
respectively, we give algorithms for computing the
Fréchet distance lower bound between these two se-
quences. In the orthogonal case, our algorithm runs
in O(dmn log dmn) time. In the Euclidean case, we
give an O(m2n2 log2mn)-time algorithm for arbitrary
fixed dimension. We also give an improved algo-
rithm for the planar Euclidean case with running time
O(mn log2(mn) + (m2 + n2) logmn).

2 Notation and preliminaries

We work in Rd, and we use a metric dist(·, ·) which
is either the Euclidean distance, or the L∞ distance.
Let A = a1, . . . , an and B = b1, . . . , bm denote two
sequences of points in Rd. A coupling is a sequence of
ordered pairs (α1, β1), . . . , (αc, βc) such that:

• α1 = 1, β1 = 1, αc = n and βc = m.
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• for each 1 6 k < c, one of the three statements
below is true:

– αk+1 = αk + 1 and βk+1 = βk + 1.

– αk+1 = αk + 1 and βk+1 = βk.

– βk+1 = βk + 1 and αk+1 = αk

The discrete Fréchet distance F(A,B) is the mini-
mum, over all couplings, of max16k6c dist(aαk

, bβk
).

In what follows, we consider the case where the two
point sequences A and B are imprecise. So, instead of
knowing the position of each ai, bj , we are given two
sequences of regions of Rd denoted by H = h1, . . . , hn
and V = v1, . . . , vm. These regions will be either
Euclidean balls, or axis-aligned boxes. They specify
where the points ai, bj lie, and thus for each i, j, we
have ai ∈ hi and bj ∈ vj . For all i 6 n, we denote by
Hi the subsequence h1, . . . , hi, and for all j 6 m, we
denote Vj = v1, . . . , vj .

We will consider two different cases. In the Eu-
clidean case, the regions are Euclidean balls in Rd
and we use the Euclidean distance. In the orthogonal
case, the regions are axis-aligned boxes and the dis-
tance we use is the L∞ metric. In the Euclidean case,
we will assume that we are in fixed dimension, that
is, we assume that d = O(1).

A realization of the region sequence H is a point
sequence A = a1, . . . , an such that ai ∈ hi for all
1 6 i 6 n. Similarly, a realization of the region se-
quence V is a point sequence B = b1, . . . , bm such
that bj ∈ vj for all 1 6 j 6 m. We denote by
A ∈R H and B ∈R V the fact that A is a realiza-
tion of H, and B is a realization of V , respectively.
When A ∈R H and B ∈R V , we will say that (A,B)
is a realization of (H,V ). This will be denoted as
(A,B) ∈R (H,V ). For two region sequences H and
V , the Fréchet distance lower bound Fmin(H,V ) is the
minimum, over all realizations (A,B) of (H,V ), of the
discrete Fréchet distance F(A,B):

Fmin(H,V ) = min
(A,B)∈R(H,V )

F(A,B).

3 Computing the Fréchet distance lower bound
Fmin

In this section, we give algorithms for computing
Fmin(H,V ). We first give a decision algorithm
that, given a real number δ > 0 , decides whether
Fmin(H,V ) 6 δ. Then we give an improved deci-
sion algorithm for the Euclidean case. Based on these
decision algorithms, we finally give optimization algo-
rithms, which compute Fmin(H,V ) in the orthogonal
case and in the Euclidean case.

We denote by hδi (resp. vδj ) the set of points that
are at distance at most δ from hi (resp. vj). In the
Euclidean case, where hi is a ball with radius r, the

set hδi is the concentric ball with radius r + δ. In the
orthogonal case, if hi = [x1, y1]×· · ·×[xd, yd], we have
hδi = [x1 − δ, y1 + δ]× · · · × [xd − δ, yd + δ].

3.1 Decision algorithm for the orthogonal case

Our decision algorithm is based on dynamic pro-
gramming. In each cell of an array with n rows
and m columns, we will store two feasibility regions
FHδ(i, j) ⊂ Rd and FVδ(i, j) ⊂ Rd. The ith row rep-
resents the region Hi, and the jth column represents
Vj . We will compute these fields row by row, from
i = 1 to i = n.

As we shall see in Lemma 1, the feasibility region
FHδ(i, j) represents the possible locations of ai, where
(Ai, Bj) is a realization of (Hi, Vj), and there exists a
coupling that achieves F(Ai, Bj) 6 δ whose last two
pairs are not (i − 1, j), (i, j). The other feasibility
region FVδ(i, j) represents the possible locations of
bj , when there is such a coupling whose last two pairs
are not (i, j − 1), (i, j).

The pseudocode of our decision algorithm De-
cideFréchetMin is given below. Lines 1 to 8 initialize
some of the fields of our array for the first row and
column, as well as an extra zeroth column and row.
It allows boundary cases when i = 1 and j = 1 to be
handled correctly in the main loop. The main loop is
from line 9 to 15.

Algorithm DecideFréchetMin
Input: Two sequences of regions H = h1, . . . , hn and

V = v1, . . . , vm, and a value δ > 0.
Output: TRUE when Fmin(H,V ) 6 δ, and FALSE

otherwise.
1. for i← 1 to n
2. FHδ(i, 0)← ∅
3. FVδ(i, 0)← ∅
4. for j ← 1 to m
5. FHδ(0, j)← ∅
6. FVδ(0, j)← ∅
7. FHδ(0, 0)← Rd
8. FVδ(0, 0)← Rd
9. for i← 1 to n
10. for j ← 1 to m
11. if FHδ(i − 1, j − 1) = ∅ and

FVδ(i− 1, j − 1) = ∅
12. then FHδ(i, j) ← FHδ(i, j −

1) ∩ vδj
13. FVδ(i, j) ← FVδ(i −

1, j) ∩ hδi
14. else FHδ(i, j)← hi ∩ vδj
15. FVδ(i, j)← hδi ∩ vj
16. if FHδ(n,m) = ∅ and FVδ(n,m) = ∅
17. then return FALSE
18. else return TRUE

In order to prove that our decision algorithm De-
cideFréchetMin is correct, we need the following
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lemma.

Lemma 1 For any 2 6 i 6 n, 2 6 j 6 m, we
have Fmin(Hi, Vj) 6 δ if and only if FHδ(i, j) 6= ∅
or FVδ(i, j) 6= ∅. More precisely, for any x, y ∈ Rd,
we have:

(a) x ∈ FHδ(i, j) if and only if there exists
(Ai, Bj) ∈R (Hi, Vj) such that ai = x, and
such that there exists a coupling achieving
F(Ai, Bj) 6 δ whose last two pairs are not
(i− 1, j), (i, j).

(b) y ∈ FVδ(i, j) if and only if there exists
(Ai, Bj) ∈R (Hi, Vj) such that bj = y, and
such that there exists a coupling achieving
F(Ai, Bj) 6 δ whose last two pairs are not
(i, j − 1), (i, j).

We now prove Lemma 1 when i, j > 3. The bound-
ary cases where i = 2 or j = 2 can be easily checked.
We only prove Lemma 1(a); the proof of (b) is similar.
Our proof is done by induction on (i, j), so we assume
that Lemma 1 is true for all the cells that have been
handled before cell (i, j) by our algorithm; in partic-
ular, it is true for all cells (i′, j′) 6= (i, j) such that
i′ 6 i and j′ 6 j.

We first assume that x ∈ FHδ(i, j), and we want
to prove that there exists (Ai, Bj) ∈R (Hi, Vj) such
that ai = x, and such that there exists a coupling
achieving F(Ai, Bj) 6 δ whose last two pairs are not
(i− 1, j), (i, j). We distinguish between two cases:

• First case: FHδ(i − 1, j − 1) 6= ∅ or FVδ(i −
1, j − 1) 6= ∅. Then, by induction, there ex-
ists (Ai−1, Bj−1) ∈R (Hi−1, Vj−1) such that
F(Ai−1, Bj−1) 6 δ. We also know that FHδ(i, j)
was set to hi ∩ vδj at line 14. In other words, x ∈
hi, and there exists y′ ∈ vj such that dist(x, y′) 6
δ. So we extend Ai−1 and Bj−1 by choosing
ai = x and bj = y′. We extend a coupling achiev-
ing F(Ai−1, Bj−1) 6 δ with the pair (i, j), and
obtain a coupling achieving F(Ai, Bj) 6 δ whose
last two pairs are (i− 1, j − 1), (i, j).

• Second case: FHδ(i − 1, j − 1) = ∅ and FVδ(i −
1, j−1) = ∅. Then FHδ(i, j) was set to FHδ(i, j−
1) ∩ vδj at line 12. Thus x ∈ FHδ(i, j − 1), so by
induction, there exists (Ai, Bj−1) ∈R (Hi, Vj−1)
such that ai = x and F(Ai, Bj−1) 6 δ. Since
x ∈ vδj , there exists y′ ∈ vj such that dist(x, y′) 6
δ. So we extend Bj−1 by choosing bj = y′. We
extend a coupling achieving F(Ai, Bj−1) = δ with
the pair (i, j), and we obtain a coupling achieving
F(Ai, Bj) 6 δ whose last two pairs are (i, j −
1), (i, j).

Now we assume that there exists (Ai, Bj) ∈R
(Hi, Vj) such that there exists a coupling C achiev-
ing F(Ai, Bj) 6 δ whose last two pairs are not

(i− 1, j), (i, j). We want to prove that ai ∈ FHδ(i, j).
We distinguish between two cases:

• First case: FHδ(i−1, j−1) 6= ∅ or FVδ(i−1, j−
1) 6= ∅. It implies that FHδ(i, j) was set to hi∩vδj
at line 14. Since Ai ∈R Hi, we have ai ∈ hi.
Since Bj ∈R Vj and F(Ai, Bj) 6 δ, it follows
that dist(ai, bj) 6 δ, and thus ai ∈ vδj . Thus,
ai ∈ FHδ(i, j).

• Second case: FHδ(i − 1, j − 1) = ∅ and
FVδ(i − 1, j − 1) = ∅. Then, by induction, we
have Fmin(Hi−1, Vj−1) > δ, which implies that
F(Ai−1, Bj−1) > δ, so the pair (i− 1, j − 1) can-
not appear in C. It follows that the last three
pairs of C can only be (i, j− 2), (i, j− 1), (i, j) or
(i − 1, j − 2), (i, j − 1), (i, j). So, by induction,
we have ai ∈ FHδ(i, j − 1). Since F(Ai, Bj) 6 δ,
we have ai ∈ vδj . As FHδ(i − 1, j − 1) = ∅ and
FVδ(i− 1, j − 1) = ∅, the value of FHδ(i, j) was
set to FHδ(i, j − 1) ∩ vδj at line 14, so we have
ai ∈ FHδ(i, j).

This completes the proof of Lemma 1. It
follows immediately from Lemma 1 that Algo-
rithm DecideFréchetMin decides correctly whether
Fmin(H,V ) 6 δ. We still need to analyze this al-
gorithm. In the orthogonal case, lines 12–15 consist
in intersecting two axis-aligned boxes in fixed dimen-
sion; it can be done in O(d) time. Thus, we obtain
the following result:

Theorem 2 In the d-dimensional orthogonal case,
given δ > 0, and given two imprecise sequences H
and V of n and m points, respectively, we can decide
in O(dmn) time whether Fmin(H,V ) ≤ δ.

3.2 Decision algorithm for the Euclidean case

In this section, we give an efficient algorithm for the
Euclidean case. We will need the following result:

Lemma 3 We can decide in O(k) time whether k
balls in fixed-dimensional Euclidean space have an
empty intersection.

Proof. We consider a collection of k balls in Rd, with
d = O(1). We use the standard lifting-map [5, Sec-
tion 1.2], which maps any point x = (x1, . . . , xd) ∈ Rd

to the point x̂ =
(
x1, . . . , xd,

∑d
i=1 x

2
i

)
. Then a

ball B ⊂ Rd can be mapped to an affine hyperplane
H ⊂ Rd+1 such that x ∈ B if and only if x̂ is be-
low H. Thus, deciding whether k balls have a non-
empty intersection reduces to deciding whether there
is a point x such that x̂ is below all the corresponding
hyperplanes. To do this, it suffices to decide whether
there is a point x below all these hyperplanes and such
that

∑d
i=1 x

2
i 6 xd+1. It can be done in O(k) time
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using an algorithm of Dyer [4] for some generalized
linear programs in fixed dimension; in our case, the
linear constraints for Dyer’s algorithm are given by
our set of hyperplanes, and the convex function we
use is (x1, . . . , xd+1) 7→ −xd+1 +

∑d
i=1 x

2
i . �

We now explain how we implement line 13 in amor-
tized O(log n) time. We fix the value of j, and
we show how to build an incremental data struc-
ture that decides in amortized O(log n) time whether
FVδ(i, j) = ∅. To achieve this, we do not maintain the
region FVδ(i, j) explicitly: we only maintain an aux-
iliary data structure that allows us to decide quickly
whether it is empty or not. During the course of Al-
gorithm DecideFréchetMin, the region FVδ(i, j) can
be reset to hδi ∩ vj at line 15, and otherwise, it is the
intersection of FVδ(i− 1, j) with hδi . So at any time,
we have FVδ(i, j) = hδi0 ∩ h

δ
i0+1 · · · ∩ hδi ∩ vj for some

1 6 i0 6 i.
So our auxiliary data structure needs to perform

three types of operations:

1. Set S = ∅.

2. Insert the next ball into S.

3. Decide whether the intersection of the balls in S
is empty.

When we run Algorithm DecideFréchetMin on col-
umn j, the sequence of n balls hδ1, . . . , h

δ
n is known

in advance, but not the sequence of operations. So
this is the assumption we make for our auxiliary data
structure: we know in advance the sequence of balls,
but the sequence of operations is given online. A
trivial implementation using Lemma 3 requires O(n)
time per operation. Using exponential and binary
search [8], we will show how to do it in amortized
O(log n) time per operation.

Operation 1 is trivial to implement. To implement
operation 2, suppose that, before we perform this op-
eration, the cardinality |S| of S is s = 2`, for some
integer `. Then, using Lemma 3, we check whether
the intersection of the balls in S and the next s balls
is empty. If so, we find by binary search the first sub-
sequence of balls, starting at the balls of S, whose
intersection is empty. By Lemma 3, it can be done
in O(s log s) time. Then we can perform in constant
time each operation of type 2 or 3 until the next time
operation 1 is performed. On the other hand, if the
intersection of the balls in S and the next s balls is not
empty, we record this fact. Then, until the cardinality
of S reaches 2s = 2`+1, or we perform operation 1, we
can perform each operation of type 2 or 3 in constant
time.

This data structure needs only amortized O(log n)
time per operation. Keeping one such data struc-
ture for each value of j, we can perform line 13 of
Algorithm DecideFréchetMin in amortized O(log n)

time. Similarly, we can implement line 12 in amor-
tized O(logm) time. Overall, we obtain the following
result:

Theorem 4 In the fixed-dimensional Euclidean case,
given δ > 0, and given two imprecise sequences H and
V of n and m points, respectively, we can decide in
O(mn logmn) time whether Fmin(H,V ) ≤ δ.

3.3 Optimization algorithms

We obtain algorithms for computing the Fréchet dis-
tance lower bound based on the decision algorithms
above, and two standard optimization technique: We
use the monotone matrix searching technique by Fred-
erickson and Johnson [2, 7] in the orthogonal case, and
we use parametric search [2, 3] in the Euclidean case.
The results are summarized in the theorem below,
whose proof is omitted, due to the space limit.

Theorem 5 Given two imprecise sequences H and
V of n and m points, respectively, we can com-
pute Fmin(H,V ) in O(dmn log dmn) time in the d-
dimensional orthogonal case. The running time of
our algorithm is O(mn log2(mn) + (m2 + n2) logmn)
in the planar Euclidean case, and O(m2n2 log2(mn))
in the fixed-dimensional Euclidean case.
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Abstract

The quality of a triangulation is, in many practical
applications, influenced by the angles of its triangles.
In the straight line case, angle optimization is not pos-
sible beyond the Delaunay triangulation. We propose
and study the concept of circular arc triangulations, a
simple and effective alternative that offers flexibility
for additionally enlarging small angles. We show that
angle optimization and related questions lead to lin-
ear programming problems, and we define unique flips
in arc triangulations. Moreover, applications of cer-
tain classes of arc triangulations in the areas of finite
element methods and graph drawing are sketched.

1 Introduction

Geometric graphs and especially triangulations are an
ubiquitous tool in geometric data processing [2, 8, 13].
The quality of a given triangular mesh naturally de-
pends on the size and shape, in particular the angles,
of its composing triangles. In practice, quite often the
Delaunay triangulation (see, e.g., [8]) is the mesh of
choice, because it maximizes the smallest angle over
all possible triangulations of a given finite set of points
in the plane. Still, the occurrence of ‘poor’ trian-
gles cannot be avoided sometimes, especially near the
boundary of the input domain, or due to the presence
of mesh vertices of high edge degree.

The situation becomes different (and interesting
again) if the requirement that triangulation edges be
straight is dropped. In applications like finite element
methods or graph drawing, the numerical and optical
benefits of a graph that potentially grants nice angles
can be exploited fully only if curved edges are admit-
ted. In this paper, we try to encourage the use of
so-called arc triangulations, which are triangulations
whose edges are circular arcs. Modeling triangula-
tions this way bears several advantages if angles are
to be optimized. Small angles at the boundary can
be enlarged by optimizing the arc curvatures for the
given triangulation. Situations with vertices of high
degree can be faced by applying angle-improving flips
in arc triangles that reduce the vertex degree.
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Maximizing the smallest angle in a combinatorially
fixed arc triangulation of a point set can be formulated
as a linear program. This guarantees a fast solution
of this optimization problems for arc triangulations
in practice. Moreover, the linear program will tell
us whether a given domain admits an arc triangula-
tion of a pre-specified combinatorial type, by checking
whether its feasible region is void. In particular, flips
for arcs can be defined, via optimization after the flip
has been applied combinatorially. If we want to opti-
mize equiangularity in an arc triangulation (i.e., max-
imize the sorted angle vector lexicographically) then
we can do so as well.

We believe that arc triangulations constitute a use-
ful tool in several important areas, including finite ele-
ment methods or especially graph drawing. In view of
the latter application [5, 6], it is desirable to extend
our approach to optimizing angles in general plane
graphs. As our simple optimization method works
only for full triangulations, we complete the graphs
to suitable triangulations (e.g., the constrained De-
launay [11, 4]) and treat the newly obtained angles in
concatenation. In several applications, the boundary
of the underlying domain will be given as a polynomial
spline curve. Such domains can be approximated in
a convenient way using circular biarc splines [1], and
thus are naturally suited to triangulation by circular
arcs.

2 Angle Optimization

Consider a straight line triangulation, T , in a given
domain D of the plane. No restrictions on D are
required but, for the ease of presentation, let D be
simply connected and have piecewise circular (or lin-
ear) boundary. In general, T will use vertices in the
interior of D. We are interested in the following op-
timization problem: Replace each interior (i.e., non-
boundary) edge of T by some circular arc, in a way
such that the smallest angle in the resulting arc tri-
angulation is maximized. To see that this problem
is well defined, notice that the optimal solution, call
it T ∗, cannot contain negative angles: The smallest
angle between arcs has to be at least as large as the
smallest angle that arises in T . As a consequence, for
each vertex in S, the order of its incident arcs in T ∗

coincides with the order of its incident edges in the in-
put triangulation T . In other words, each arc triangle
in T ∗ is well-oriented, i.e., it has the same orientation
as its straight line equivalent. Therefore, if each angle
is less than π, no overlap of arcs or arc triangles in T ∗
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Figure 1: Angles of deviation

can occur. Interestingly, this is a specialty of trian-
gulations; the last conclusion remains no longer true
if faces with more than three arcs are present. We
postulate for the rest of this paper that arc triangles
be well-oriented.

We now formulate the angle optimization problem
as a linear program. For each interior edge e = pq in
the triangulation T we introduce one variable, φe, de-
scribing the angle at which the circular arc

⌢
pq deviates

from the straight connection of p and q (at these very
points). Figure 1 offers an illustration. Note that φe

may take on positive or negative values, depending on
the sidedness of

⌢
pq with respect to e. For each edge e′

of T on the input boundary ∂D, we fix φe′ to the
value de′ given by ∂D.1 The inequalities for the lin-
ear program now stem from the angles αi arising in T .
If e and f are the two edges of T that define αi, we
consider the angle between the two respective circular
arcs, βi = φe + αi + φf , and we put

ε ≤ βi .

The linear objective function L, which is to be max-
imized, is just L = ε, what clearly maximizes the
smallest angle βmin in the arc triangulation. There
are precisely 3·(2n−h−2) inequalities and 3n−2h−3
variables, if n is the total number of vertices, and h

among them are situated on ∂D.
Sometimes the objective is to optimize not only the

smallest angle, but rather to maximize lexicographi-
cally the sorted list of all arising angles, as is guaran-
teed by the Delaunay triangulation in the straight line
case. This can be achieved by repeatedly solving the
linear program above, keeping angles that have been
optimized already as constants. (This is a nontriv-
ial task. Depending on the solver, minimum angles
do typically occur at several places, and the optimal
ones among them have to be singled out.) By modifiy-
ing or adding constraints the results may be adapted
to various needs, as avoiding angles larger than π or
obtaining arc triangles ‘as equilateral as possible’. We
consider the flexibility of our simple approach as an
important feature in practice.

1We have d
e
′ = 0 if e′ is a line segment. However, we can

keep φ
e
′ variable and bound it from above by some thresh-

old t > d
e
′ .

v

(a) Delaunay triangulation

v

(b) Arc triangulation

Figure 2: Flip-optimized arc triangulation starting
from a Delaunay triangulation.

3 Flipping in Arc Triangles

The fact that every simple polygon can be triangu-
lated with straight line segments is folklore. Again, a
domain D with piecewise circular boundary need not
admit any triangulation, even if circular arcs may be
used. It is known that a linear number of Steiner
points is required in the worst case to ensure an arc
triangulation [1].

One of the arising questions is: Given the domain D

and a (combinatorial) triangulation Tc in D (possibly
with interior points), can Tc be realized by circular
arcs? For deciding this, we can now utilize the lin-
ear program formulated in Section 2. A realizing arc
triangulation exists if and only if the feasible region
of the linear program is nonempty. As a particularly
nice feature, this enables us to define flip operations
in arc triangulations, as is described below.

Consider some arc triangulationA in the domain D.
Each interior arc

⌢
pq of A lies on the boundary of two

arc triangles. Let r and s be the two vertices of these
arc triangles different from p and q. Flipping

⌢
pq by

definition means removing
⌢
pq from A, establishing an

arc between r and s combinatorially, and optimizing
over the resulting triangulation. The new arc trian-
gulation, if it exists, will contain a unique circular arc
between r and s. In case of nonexistence, we declare
the arc

⌢
pq as not flippable. Observe that an arc flip

may change various circular arcs geometrically (by op-
timizing over their curvature), whereas only a single
arc is exchanged combinatorially. An arc flip thus is
a geometrically global operation which is combinato-
rially local.

Optimizing angles with arc flips is a powerful
(though maybe costly) tool. We demonstrate the pos-
itive effect of sequences of such flips with Figures 2a
and 2b. A significant improvement over the Delaunay
triangulation becomes possible (in fact, the smallest
angle is doubled in this example) by reducing the de-
gree of a particular vertex, v. In general, we observe
that small angles in a straight line triangulation stem
from one of two reasons: (1) The geometry of the
underlying domain D (plus its vertex set) forces slim
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triangles in the vicinity of ∂D. These ‘boundary ef-
fects’ can usually be mildened by mere geometric op-
timization of the corresponding arc triangulation. (2)
Vertices of degree k naturally impose an upper bound
of 2π

k
on the smallest arising angle. This situation

can be remedied only with combinatorial changes, and
in contrast to the straight edge case, this is indeed
possible for arc triangulations. (For straight edges,
the combinatorics of the Delaunay triangulation is al-
ready optimal.)

4 Special Arc Triangles

An arc triangle ∇ is termed a π-triangle if the sum
of its interior angles is π. In the isoparametric ap-
proach to finite element methods [10], based on the
fact that π-triangles are images of straight triangles
under a Möbius transformation, an approximation by
conformal (angle-preserving) Bézier patches can be
obtained, when the sum of angles is optimized to-
wards π. Moreover, if the angle sum is even equal
to π, simple inverse geometry mappings can be con-
structed. We omit details (and proofs) in this version.

Property 1 Let ∇ be some arc triangle. The follow-
ing three properties are equivalent.

(a) ∇ is a π-triangle.
(b) The three supporting circles of ∇ intersect in a

common point exterior to ∇.
(c) ∇ is the image of a straight line triangle under

a unique Möbius transformation.

Property 2 Any π-triangle is contained in the cir-
cumcircle of its vertices.

In view of the mentioned properties, it is worth-
while to study π-triangulations. Such triangulations
will not always exist, depending on the boundary do-
main D, and in particular the sum of its inner angles,
but they do, of course, if D is a simple polygon.

For the remainder of this section, let D be a simple
polygon, and T be some straight line triangulation
in D. The geometry of any arc triangulation A in D

that is combinatorially equivalent to T is determined
by the vector Φ(A) of deviation angles φ(ai) for the
interior arcs ai of A; see Section 2. Interpreting Φ(A)
as a point in high dimensions, we can talk of the space
of arc triangulations for T . The next lemma is impor-
tant in view of optimizing a given π-triangulation.

Lemma 1 Let T have n vertices, h of which lie on
the boundary of D. The dimension of the space of
π-triangulations for T is n − h.

Lemma 1 remains true if T is replaced by any
π-triangulation of D. In practice, the input is most
likely a straight line triangulation, which is to be op-
timized into a π-triangulation with maximum small-
est angle. Figure 3 displays an example. The change
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Figure 3: Straight line triangulation and its angle-
maximized π-triangulation superimposed

angle sum Delaunay min min arc angle gain

180o 18.03o 22.52o 25%

179o - 181o -”- 22.92o 26%

175o - 185o -”- 24.88o 38%

170o - 190o -”- 27.53o 50%

160o - 200o -”- 31.77o 72%

Table 1: Improvement of angles in (almost)
π-triangulations

does not appear dramatic, but observe that the small-
est angle (occurring at vertex v) almost doubles, from
9.7o to 19o. No arc flips have been applied. Table 1
shows experimental data for a larger input (500 ran-
dom points, postprocessed to keep a certain interpoint
distance as in realistic meshes). We see that the gain
reduces for larger Delaunay meshes but is still sig-
nificant, especially if the condition on the angle sum
in the triangles is relaxed from π to a small intervall
around that value.

5 Graph Drawing

Literature on drawing graphs nicely in the plane is
large; see e.g. [5, 14]. Most algorithms take as in-
put an abstract graph G and produce a layout of the
vertices of G such that the resulting straight line (or
orthogonal) drawing is aesthetically pleasing, and/or
satisfies certain application criteria. On the theoreti-
cal side, bounds on the achievable angular resolution
are known for various classes of graphs [7, 12], includ-
ing planar graphs.

Results for curvilinear drawings of graphs are com-
paratively sparse. See, for example, [3, 9] and refer-
ences therein, who give lower bounds and algorithms
for drawing graphs on a grid with curved edges (in-
cluding circular multiarcs), and [6] where a method
based on physical simulation is proposed. To our
knowledge, no algorithm has been given that draws
a graph with (single) circular arcs under some opti-
mization criterion. Here we actually consider a sim-
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Figure 4: IP backbone graph, straight line and opti-
mally redrawn.

pler setting, namely, for a given planar straight line
embedding of a graph G, the problem of redrawing G

with curved edges in an optimal way. In a redraw-
ing, the positions of the vertices are kept fixed. This
may be a natural demand, for instance, in certain ge-
ographical applications.

Let us describe how maximizing the smallest angle
in a circular arc redrawing of G can be achieved. It
is tempting to apply the linear optimization method
from Section 2 to G directly. This, however, bears the
risk of arc overlaps getting out of control. The way
out is to embed G in some triangulation T first, and
treat respective sums of angles as single entities to be
optimized. More precisely, for each angle ̺ in G, given
by the concatenation of angles α1, . . . , αk, k ≥ 1, in T

we use the constraint

ε ≤

k∑

i=1

βi

with each βi expressed by the corresponding straight
line triangulation angle αi and its two deviation vari-
ables φe and φf as in Section 2. The quality of opti-
mization depends on the chosen triangulation, which
will be subject of future research (cf. Section 3). Also,
the entire angle vector ̺1, . . . , ̺m for G can be opti-
mized, in an iterative way as before. Additional re-
strictions may be posed, like ̺j < π or ̺j < π

2
, in or-

der to preserve obtuse or sharp angles in G.
The adjacency graphs in Figure 4 exemplify the ef-

fect of our circular arc redrawing method. The results
seem satisfactory, in spite of the fact that vertices
are required not to move. Our results compare well
to, e.g. [6], who use for optimization the additional
freedom of placing vertices, though at a price of high
computation cost. For our method, the number of

vertices of the input graph is no limitation, as far as
applications from graph drawing are concerned.

6 Future Work

Circular arc triangulations are a flexible and computa-
tionally controllable structure with potential impact
but, so far, with lack of interest from computational
geometry. They lead to simple and fast graph re-
drawing procedures, and bear novel aspects for finite
element methods. Among the open questions raised
are the convergence of the angle-increasing arc flip-
ping process in Section 3, and an extension of the
presented results to three dimensions, for tetrahedral
volumes with spherical faces. We will elaborate on
the properties of such 3D primitives and their meshes
in a forthcoming paper.
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Abstract

Deciding 3-colorability for general plane graphs is
known to be an NP-complete problem. However, for
certain classes of plane graphs, like triangulations,
polynomial time algorithms exist. We consider the
family of pseudo-triangulations (a generalization of
triangulations) and prove NP-completeness for this
class. The complexity status does not change if the
maximum face-degree is bounded to four, or pointed
pseudo-triangulations with maximum face degree five
are treated. As a complementary result, we show
that for pointed pseudo-triangulations with maximum
face-degree four, a 3-coloring always exists and can be
found in linear time.

1 Introduction

The chromatic number of a graph is the smallest num-
ber of colors needed to color its vertices so that no
two adjacent vertices share the same color. Graphs
with chromatic number 3 are said to be (vertex)
3-colorable. Determining the chromatic number of a
graph is known to be a computationally hard prob-
lem. Interestingly, deciding 3-colorability of a plane
graph is still NP-complete [9]. For the class of tri-
angulations, though, 3-colorability can be decided in
linear time; it is necessary and sufficient that every
interior (i.e., non-extreme) vertex has even degree.
Alternatively, we can use the following constructive
approach: Start with the three different colors of a
single triangle. Then the color of the third vertex of
each edge-adjacent triangle is determined. This pro-
cess is iterated until either a contradiction occurs (an
already colored vertex is forced to have a different
color) or a proper coloring is obtained.

Also for some other types of graphs the decision
problem can be solved efficiently. Beside (obvious)
graph classes like paths, cycles, trees, and quadrangu-
lations, the class of maximal outerplanar graphs (or,
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tria, September 2009. O. A., F. A., T. H., A. P., and B. V. were
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by projects MEC MTM2009-07242 and Gen. Cat. DGR
2009SGR1040.
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Politècnica de Catalunya, clemens.huemer@upc.edu

equivalently, triangulations of polygons, or of point
sets in convex position) is also 3-colorable. Elling-
ham et al. [3], and in a different formulation Diks,
Kowalik, and Kurowski [2], give a characterization of
planar graphs with isolated non-triangular faces that
are 3-colorable. Moreover, 3-colorability is linear-time
decidable for general locally connected graphs [5].
See [8] for a survey on 3-colorability.

In the present work we consider the class of pseudo-
triangulations, which generalize triangulations in sev-
eral aspects. In fact, as we shall see, this class is
rich enough to lead to a wide spectrum of color-
ing results. We show that deciding 3-colorability for
pseudo-triangulations is NP-complete. In fact, any
plane geometric graph can be reduced, with respect
to 3-coloring, to a (pointed) pseudo-triangulation.
For the special case of pointed pseudo-triangulations
with constant maximum face-degree, the problem re-
mains NP-complete if the degree bound is at least
five. As a complementary result, we prove that for
pointed pseudo-triangulations with maximum face-
degree four, a 3-coloring always exists and can be
found in linear time. Some intermediate results for a
varying number of pointed vertices are given as well.

We assume that point sets that serve as vertex sets
for geometric graphs are in general position, that is,
no three points lie on a common straight line. For a
point set S, let n = |S|, and denote with |CH(S)| the
number of extreme points of S.

2 (Pointed) Pseudo-Triangulations

Pseudo-triangulations are a versatile generalization
of the well-known concept of (geometric) triangula-
tions [7]. Instead of triangles, their faces are pseudo-
triangles, that is, simple polygons with exactly three
convex vertices. In a geometric straight-line graph G,
a vertex v is called pointed if there exists a line
through v such that all edges of G incident to v lie
on one side. The rank of a pseudo-triangulation is its
number of non-pointed vertices; see [1] for further de-
tails. Pseudo-triangulations with rank zero are called
pointed. These structures are of particular interest,
because they are planar Laman graphs, and are min-
imally rigid [10].

Lemma 1 Any plane geometric graph G(S) on S can

be extended to a pseudo-triangulation, T (S′), such

that:

• S ⊆ S′ and |S′| = Θ(n)
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Figure 1: (a) Transforming a plane graph into a
pseudo-triangulation. (b) Transforming a plane graph
into a pointed plane graph. Note that these gadgets
are arbitrarily flat. Colors C1 to C3 indicate possible
color configurations.

• G(S) is 3-colorable if and only if T (S′) is

3-colorable

• the rank of T (S′) equals the number of non-

pointed vertices in G(S)

Proof. From [7, Theorem 2.6] it follows that, by
adding a linear number of edges, any plane geomet-
ric graph G(S) can be augmented in polynomial time
to a pseudo-triangulation T (S) without changing the
pointedness of the underlying vertices. Instead of
adding single edges, we use gadgets like in Figure 1(a)
to connect two vertices in order to obtain a pseudo-
triangulation T (S′).

Observe that |S′| = Θ(n) holds, as one gadget adds
only a constant number of points. Also, the gadgets
can be added in a way such that they do not change
the pointedness of the involved vertices. (Under the
general position assumption, the gadgets can be made
sufficiently narrow.) As the additional vertices in-
troduced with each gadget are all pointed, it follows
that the number of non-pointed vertices remains un-
changed.

Finally, adding the gadgets does not add additional
coloring restrictions. The connected vertices might
be colored arbitrarily (identically or differently), and
still the added vertices of the gadget are 3-colorable.
Thus G(S) is 3-colorable if and only if T (S′) is
3-colorable. �

As planar graph 3-colorability is known to be NP-
complete [9], the previous lemma already leads to the
following NP-completeness result.

Theorem 2 Deciding whether a pseudo-triangu-

lation is 3-colorable is NP-complete.

Proof. By Lemma 1, we can obtain a pseudo-
triangulation T from each plane graph G such that
G is 3-colorable if and only if T is 3-colorable. As the
transformation can be done in polynomial time, and
only a linear number of edges and vertices are added,
the claimed NP-completeness result follows. �

Pointed pseudo-triangulations are an important
subclass of pseudo-triangulations. They minimize the
number of edges over all pseudo-triangulations and
thus, in some way, also the number of color restric-
tions. Nevertheless, we will show that even for this

restricted class, 3-colorability is NP-complete. To this
end, we prove that pointed planar graph 3-colorability
is NP-complete, from which NP-completeness of
pointed pseudo-triangulation 3-colorability follows.

Lemma 3 Deciding whether a pointed plane geomet-

ric graph is 3-colorable is NP-complete.

Proof. We show how to transform a given plane
straight-line graph G into a pointed plane straight-
line graph G′, such that G is 3-colorable if and only if
G′ is 3-colorable. W.l.o.g., assume that there are no
horizontal edges in the given embedding of G, as oth-
erwise we slightly rotate the plane. Now every non-
pointed vertex v of G is replaced by two duplicates
vL and vR of v. The two copies are placed sufficiently
close to the left (vL) and to the right (vR) of v, re-
spectively. All edges incident to v from above are
now incident to vL, and all edges incident to v from
below are moved to vR. In addition, vL and vR are
connected by a small construction consisting of five
edges, as shown in Figure 1(b).

By the general position assumption, the resulting
graph G′ is plane. Only a linear number of additional
vertices has been added, and all the vertices are now
pointed. Moreover, the gadget connecting vL and vR

ensures that in a proper 3-coloring of G′ both vertices
have to get the same color. Thus G is 3-colorable if
and only if G′ is 3-colorable. NP-completeness fol-
lows as the transformation can be done in polynomial
time. �

Combining Lemma 1 with Lemma 3 gives the fol-
lowing theorem.

Theorem 4 Deciding whether a pointed pseudo-

triangulation is 3-colorable is NP-complete.

The last result gives rise to an interesting question.
On the one hand, pointed pseudo-triangulations have
rank 0 and, as shown in Theorem 4, it is NP-complete
to decide their 3-colorability. On the other hand, tri-
angulations have maximum rank rmax = n−|CH(S)|,
i.e., all interior vertices are non-pointed, and, as al-
ready mentioned in the introduction, 3-colorability
can be decided in linear time. So it is natural to ask
for which rank the change from ‘easy’ to ‘intractable’
happens. With the next two theorems we make a
first step towards answering this question. (In the
following, several proofs are omitted due to space con-
straints.)

Theorem 5 For all constants c ≥ 1 and any r ≤

rmax −Θ( c

√
n) it is NP-complete to decide whether a

pseudo-triangulation of rank r is 3-colorable.

Theorem 6 Whether a pseudo-triangulation T (S) of

rank r ≥ rmax − Θ (log n) is properly 3-colorable can

be decided in polynomial time.
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3 Constant Maximum Face-Degree

In this section, we consider pseudo-triangulations
with constant maximum face-degree, that is, pseudo-
triangulations where each interior face is a pseudo-
triangle with at most a (small) constant number of
vertices. The following two statements will allow us
to transform any pseudo-triangulation with high max-
imal face-degree into one with smaller maximal face-
degree while keeping rank and colorability properties;
cf. Figure 2.

Lemma 7 Any pseudo-triangle with k > 5 vertices

can be subdivided into two pseudo-triangles of sizes

strictly less than k, by adding an interior vertex of

degree two, such that the pointedness of the involved

vertices persists.

p
1

p
2

p
1

p
2

Figure 2: Subdividing large pseudo-triangles.

Corollary 8 Every pseudo-triangulation T (S) with

maximum face-degree k > 5 can be transformed into

a pseudo-triangulation T ′(S′) with maximum face-

degree five in polynomial time such that:

• S ⊆ S′ and |S′| = Θ(n)

• T (S) is 3-colorable if and only if T ′(S′) is 3-

colorable

• the rank of T ′(S′) equals the rank of T (S)

3.1 Face-Degree ≤5 Pseudo-Triangulations

By combining Corollary 8 with Theorem 4, we obtain
a result for pointed pseudo-triangulations with maxi-
mum face-degree five.

Corollary 9 Deciding whether a pointed pseudo-

triangulation with maximum face-degree five is

3-colorable is NP-complete.

A more general statement (that includes the previ-
ous corollary) is the following.

Theorem 10 For all constants c ≥ 1 and any rank

r ≤ rmax − Θ ( c

√
n) it is NP-complete to decide

whether a pseudo-triangulation of rank r and with

maximum face-degree five is 3-colorable.

3.2 Face-Degree ≤4 Pseudo-Triangulations

Pseudo-triangles of size larger than five can always
be subdivided as described in Lemma 7. This result
cannot be extended to smaller pseudo-triangles. In
fact, the situation changes completely if we bound
the face-degree of a pseudo-triangulation by four.

Theorem 11 Pointed pseudo-triangulations with

maximum face-degree four are 3-colorable.

Proof. To prove the theorem, we use the concept
of combinatorial (pointed) pseudo-triangulations [6].
These are combinatorial embeddings of (pointed)
pseudo-triangulations, where the edges need not be
straight lines and pointedness is not a geometric prop-
erty anymore. Instead, each pointed vertex has a
mark in one incident face, namely the one where it
is pointed to, and for each face all but three vertices
(the corners) have marks in this face. The only ex-
ception is the outer face, where all (at least three) in-
cident vertices have their mark in. Note that a given
combinatorial (pointed) pseudo-triangulation can be
embedded such that every angle with a mark is larger
than π and all other angles are smaller than π [4, Sec-
tion 5.2]. Thus, with respect to 3-colorability, combi-
natorial pointed pseudo-triangulations are equivalent
to geometric pointed pseudo-triangulations.

(a)

v’ v=v’

v
t

t

(b)

Figure 3: Move operation to collapse a pseudo-
triangle (a), and a degenerate case (b).

For an interior vertex v we define a merge operation
for the pseudo-triangle ∇ to which v is pointed. This
operation identifies v with the antipodal vertex v′

in ∇, by ‘moving’ v towards v′, see Figure 3(a). In
this way ∇ collapses, but the remaining graph is still a
valid combinatorial pointed pseudo-triangulation with
one vertex, one face, and two edges less.

We iterate this process as long as we have interior
vertices. This can be done, as each such vertex is al-
ways pointed towards a pseudo-triangle of size four.
Whenever there exist interior vertices of degree two,
they are merged before other vertices, to avoid degen-
erate cases as shown in Figure 3(b). Such degeneracies
can only happen if vertex t has degree two. Observe
that all arguments also hold in the degenerate case, as
we still have all relevant properties of combinatorial
pointed pseudo-triangulations. However, for simplic-
ity, we prefer to avoid degeneracies.

At the end of all merging steps, no interior vertices
are left, and we obtain a (combinatorial) triangula-
tion of a convex point set. Such triangulations are
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Figure 4: A pseudo-triangulation with rank 1 (one
non-pointed vertex) and maximum face-degree four,
which can not be 3-colored.

well known to be 3-colorable, and we can assign their
colors in linear time.

We finally invert the above process and replicate,
in each reversed merge step, the color of the orig-
inal vertex for the duplicated vertex. This keeps
the 3-coloring valid, as these vertices are not con-
nected in the original graph. After all merge steps
are undone, the given pointed pseudo-triangulation is
3-colored. �

Note that the above proof also provides a linear
time algorithm to find a 3-coloring. The obtained
3-coloring is special in the sense that, for every interior
face of size four of the pointed pseudo-triangulation,
its reflex vertex has the same color as its antipodal
vertex. In fact, up to permutation of the three colors,
there is only one coloring with this property. This
follows from the facts that (1) a 3-coloring of a trian-
gulation of a convex point set is unique (up to per-
mutation), and (2) the merge steps used in the above
proof lead to a unique triangulation of the convex set,
independent of the order they are carried out.

Pointed pseudo-triangulations with bounded face-
degree four are a special structure concerning
3-colorability. Note that triangulations of convex
point sets also fall into that category. Investigating
the influence of the rank of a bounded face-degree four
pseudo-triangulation on 3-colorability reveals that al-
ready a rank of 1 allows pseudo-triangulations which
are not properly 3-colorable; see Figure 4. Note that
all interior vertices in this example have even degree.
So the parity property, which can be used to prove
3-colorability for triangulations, does not carry over
to pseudo-triangulations of general rank. In addition,
there exist 3-colorable examples with non-pointed in-
terior vertices of odd degree.

In fact, we can prove NP-completeness for a wide
range of ranks for maximum face-degree four pseudo-
triangulations.

Theorem 12 For all constants c ≥ 1 and any r,

Θ ( c

√
n) ≤ r ≤ rmax − Θ ( c

√
n), it is NP-complete

to decide whether a rank r pseudo-triangulation with

maximum face-degree four is 3-colorable.

4 Final remarks

To summarize, we have the following results for
pseudo-triangulations of maximum face-degree four:

• rank 0 (pointed pseudo-triangulations):
always 3-colorable.

• rank r, Θ ( c

√
n) ≤ r ≤ rmax − Θ ( c

√
n):

NP-complete.

• rank r, rmax − Θ (log n) ≤ r ≤ rmax:
decidable in polynomial time.

• rank rmax = n − |CH(S)| (triangulations):
decideable in linear time.

For rank r pseudo-triangulations of maximum face-
degree five, and rank r pseudo-triangulations without
any face-degree bound, 3-colorability is NP-complete
as long as r ≤ rmax − Θ ( c

√
n). For both classes,

3-colorability is decidable in polynomial time if r ≥

rmax −Θ (log n). Where precisely do the changes be-
tween ‘NP-complete’ and ‘polynomial time decidable’
happen? What can be said if a pseudo-triangulation
is ’almost pointed’ (small constant rank)?
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for planar graphs. In: L. Kučera, editor, Graph-Theoretic
Concepts in Computer Science, Lecture Notes in Computer
Science, 2573, pp. 138–149, Springer, 2002.

[3] M. N. Ellingham, H. Fleischner, M. Kochol, E. Wenger.
Colorability of planar graphs with isolated nontriangular

faces. Graphs and Combinatorics, 20(4), pp. 443–446, 2004.

[4] R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius,
H. Servatius, D. Souvaine, I. Streinu, W. Whiteley. Planar

minimally rigid graphs and pseudo-triangulations. Compu-
tational Geometry, Theory and Applications, 31, pp. 31–
61, 2005.

[5] M. Kochol. Linear algorithm for 3-coloring of locally con-

nected graphs. In: K. Jansen et al., editors, Experimental
and Efficient Algorithms, Lecture Notes in Computer Sci-
ence, 2647, pp. 191–194, Springer, 2003.

[6] D. Orden, F. Santos, B. Servatius, H. Servatius, Combi-

natorial pseudo-triangulations. Discrete Mathematics, 307,
pp. 554–566, 2007.

[7] G. Rote, F. Santos, I. Streinu, Pseudo-triangulations–a

Survey. Contemporary Mathematics, 453, pp. 343–410,
2008.

[8] R. Steinberg. The state of the three color problem. In:
J. Gimbel, J. W. Kennedy, and L. V. Quintas, editors, Quo
vadis, graph theory?: A source book for challenges and di-
rections. Annnals of Discrete Mathematics, 55, pp. 211–
248, North Holland, 1993

[9] L. Stockmeyer. Planar 3-colorability is polynomial com-

plete. SIGACT News, 5, pp. 19–25, 1973.

[10] I. Streinu. A combinatorial approach to planar non-

colliding robot arm motion planning. Proc. 41st IEEE
Symp. FOCS, pp. 443–453, 2000.

24



EuroCG 2010, Dortmund, Germany, March 22–24, 2010

Connecting Obstacles in Vertex-Disjoint Paths
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Abstract

Given a set of k disjoint convex polygonal obsta-
cles inside a triangular container, we add straight-line
noncrossing edges such that each obstacle has three
vertex-disjoint paths to the container. We prove com-
binatorial bounds on the minimum number of edges
that are always sufficient and sometimes necessary.

Figure 1: A triangular container with disjoint convex ob-
stacles.

1 Introduction

A given graph is said to be k-connected if it remains
connected upon deleting any k−1 vertices along with
the incident edges. A k-connected graph has k vertex-
disjoint paths between any two nodes. An important
area of research in graph theory and computational
geometry is the problem of connectivity augmenta-
tion. The k-connectivity augmentation problem asks
for the minimum number of edges needed to augment
a graph to make it k-connected. Edge-connectivity
augmentation is defined analogously.

In abstract graphs, the connectivity augmentation
problem can be solved in linear time for k = 2 [4, 6],
and in polynomial time for any fixed k [5]. For a given
planar graph, the augmentation that has to preserve
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graph planarity, is called planarity-preserving aug-
mentation. Unfortunately, the problem is NP-hard
even for k = 2 [3]. For a given planar graph that has
already been embedded in the plane, if the augmen-
tation has to respect the given embedding, the aug-
mentation is said to be embedding preserving. For a
planar straight-line graph, the minimum embedding-
preserving augmentation using noncrossing straight-
line edges is NP-Hard for any 2 ≤ k ≤ 5 [7].

There are two possible approaches to get around
the NP-Hardness of the augmentation problem:
(i) approximation algorithms (e.g., there is a 2-
approximation algorithm for planarity-preserving
connectivity augmentation for k = 2, which runs in
O(n log n) time [3]); and (ii) proving combinatorial
bounds on the number of new edges in terms of the
number of vertices (e.g., Al-Jubeh et al. [2] show
that 2n− 2 new edges are always sufficient and some-
times necessary for the embedding-preserving 3-edge-
connectivity augmentation of a planar straight line
graph with n vertices if augmentation is possible).
Tóth and Valtr [8] characterized the planar straight
line graphs that can be augmented to 3-connectivity.
These graphs are called 3-augmentable. It remains an
open problem what is the minimum number of new
edges that are sufficient for the 3-connectivity aug-
mentation of every 3-augmentable planar straight line
graphs with n vertices.

In this paper we consider a special type of augmen-
tation problem (see the formulation below) and pro-
vide combinatorial bounds on the minimum number
of necessary and sufficient new edges.

Figure 2: Adding noncrossing straight-line edges so as
to make each obstacle connected by three vertex-disjoint
paths to the triangular container.
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1.1 Problem Definition

Given a set of k disjoint convex polygonal obstacles
inside a triangular container, add straight-line non-
crossing edges such that each obstacle has 3 vertex-
disjoint paths to the three vertices of the container.
The three paths should start at distinct vertices of the
obstacle and end at distinct vertices of the container.
They can use the edges of the obstacles arbitrarily.

1.2 When is Augmentation Possible?

If the obstacles are not convex, it might not be pos-
sible at all to add edges such that each obstacle has
three vertex-disjoint paths to the container. In Fig-
ure 3 the inner-most obstacle “sees” only three other
vertices, all of which belong to the same obstacle.
Since it is not possible to route three vertex disjoint
paths along the same obstacle without adding edges
in the interior of the obstacle, this example is not aug-
mentable.

Figure 3: Non-convex obstacles may not be connected to
the boundary by three vertex-disjoint paths.

For a set of disjoint convex obstacles inside the
triangular container, every triangulation of the free
space around the obstacles is a 3-connected graph [8].
It is easy to see that there are three vertex-disjoint
paths from every obstacle to the container along the
edges of a triangulation. For any particular obsta-
cle, add a new internal node p and connect it to the
boundary of the obstacle at three distinct vertices.
Similarly, add a node q outside the triangular con-
tainer and add the three edges connecting q to the
corners of the container. It can be easily verified
that the new graph is still 3-connected, which implies
that there are three vertex-disjoint paths from p to q.
Hence, there are three vertex-disjoint paths that start
at distinct vertices of the obstacle and end at distinct
vertices of the container. These three paths can be
determined using any max-flow algorithm [1].

Although a triangulation contains the desired aug-
mentation as a subgraph, it may contain too many
edges. In this paper we show how to perform this
augmentation by using much fewer edges.

p

q

Figure 4: A triangulation of the free space around convex
obstacles in a triangular container is a 3-connected graph,
and it contains the desired augmentation as a subgraph.

1.3 Our Results

• For k convex obstacles, where k can be arbitrar-
ily large, 3k − 1 edges are sometimes necessary
(Section 2).

• For k convex obstacles, where k can be arbitrarily
large but each obstacle has at most s sides, 3k−
k−1
s−1 edges are sometimes necessary (Section 2).

• For k convex obstacles, 3k edges are always
enough (Section 3).

Once each obstacle has three vertex-disjoint paths
to the container, we can get a 3-connected planar
graph by adding an edge for each degree-2 vertex [2].

2 Lower Bound Constructions

When there is only one convex obstacle, three edges
are obviously required (and sufficient) for connecting
it to the container. However, for k (an arbitrarily-
large k) convex obstacles, at least 3k − 1 edges are
necessary in the worst case. Our lower bound con-
struction is depicted in Figure 5. It includes one large
convex obstacle which hides one small obstacle be-
hind each side (except the base), such that each small
obstacle can “see” only three different vertices (the
top vertex of the container and two adjacent vertices
of the large obstacle). Thus, we need three edges for
each small obstacle and only two edges for the larger
obstacle, connecting its two bottom vertices to the
two endpoints of the base of the container.

The large obstacle in the above construction is a
convex k-gon, and so the lower bound 3k − 1 does
not hold if the every obstacle has at most s sides,
for some fixed 3 ≤ s < k. In that case we use a
similar construction, in which a big s-sided obstacle
hides s − 1 smaller obstacles behind all its sides ex-
cept one, and the construction is repeated recursively.
This construction corresponds to a complete tree with
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Figure 5: k convex obstacles, edges needed: 3k − 1.

branching factor s− 1, in which the smaller obstacles
are the children of a larger obstacle. For a fixed value
of s, we set h as the height of the complete (s−1)-ary
tree. Thus, the number of obstacles,

k =
(s− 1)h − 1

s− 2
, (1)

can be as high as we desire. The number of leaves
in the tree is (s − 1)h−1. A simple manipulation of
Equation 1 shows that this number equals k − k−1

s−1 .
Hence, the number of internal nodes in the tree is k−1

s−1 .
For the 3-vertex-disjoint path augmentation, each leaf
obstacle needs three edges and each non-leaf obstacle
needs two edges. The total number of edges required
is, thus,

3
(
k − k − 1

s− 1

)
+ 2

(
k − 1
s− 1

)
= 3k − k − 1

s− 1
,

which ranges from 5
2k + 1

2 to 3k − 1 for 3 ≤ s ≤ k.

Figure 6: Construction for triangular obstacles.

3 The Upper Bound

We now prove that 3k edges are always sufficient
for making the given set of obstacles O 3-vertex-
connected to the triangular container C. Initially,
there exists a triangulation T of the free space inside
C that is the 3-connected, which is not always true for
non-convex containers. The algorithm recurses such
that each subproblem is on a polygonal container P
with 3-connected triangulation (Lemmas 1 and 2).

We designate the three corners of the C with the
colors red (vR), green (vG), and blue (vB). Each ob-
stacle is charged up to three times, once for each color.

An obstacle is marked to indicate its connection to a
particular colored corner of the container. If a path
to a designated vertex goes through another obstacle,
then the latter obstacle is charged for one of the edges.
For each edge at least one obstacle is charged, and no
obstacle is charged more than thrice, which implies
that the entire process adds at most 3k edges. The
procedure Augment implements this process, which
is invoked by a call Augment(C, vR, vG, vB).

vR

vG vB

o

Figure 7: Vertex-disjoint paths from the obstacle o.

Algorithm 1 Augment(P, vR, vG, vB)
Pick an arbitrary obstacle o inside P .
Find three vertex-disjoint paths πR, πG, and πB to
the vertices vR, vG, and vB , respectively.
for all paths πi, where i ε {R,G,B} do
πi = ShortenPath(πi)
for all edges e along the path πi from o to vi do

Mark the obstacle incident to e for vi

if e is a part of some obstacle boundary then
Go to next edge.

else if e in incident to the boundary of P then
Add the edge e and exit loop.

else if e in incident to the vertex vi then
Add the edge e and exit loop.

else if e is incident to an marked obstacle
then

Add the edge e and exit loop.
else

Add the edge e.
end if

end for
end for
HandleSubproblem(P, o, πR, πG)
HandleSubproblem(P, o, πR, πB)
HandleSubproblem(P, o, πB , πG)

Lemma 1 For a polygon P such that every triangu-
lation of P contains a 2-cut Ci then all the designated
vertices on P are not on the same side of Ci.

Proof. As a result of the subroutine ShortenPath,
the polygonal boundary on the either side of any 2-cut
cannot consist of only one path. Since there are al-
ways two vertex disjoint paths forming the polygonal
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vR

vG

vB

o

vR

vG

vB

o

Figure 8: Recursing on the subproblems. Empty circles
denote designated vertices in subproblems.

o o

Figure 9: Shortening a vertex disjoint path.

Algorithm 2 ShortenPath(π)
Let {v1, v2, . . . , vm} be the vertices in path π.
while for some i < j − 1, vi and vj see each other
do

Let P ′ be closed polygon formed by π and the line
segment vivj . Assume we are allowed to travel
along π.
Let πi,j be shortest geodesic path between vi and
vj inside P ′.
Replace the portion of π between vi and vj by
πi,j .
Exit loop when π stops changing.

end while
return π

boundary, there must a designated vertex or a vertex
of the obstacle o present. �

Lemma 2 Given three vertex-disjoint paths from an
obstacle to vR, vG, and vB , the path to vR cannot
touch the boundary of the polygon P between the
vertices vG and vB .

Proof. The lemma follows from the fact that the
three paths are vertex disjoint. �

4 Open problems

• Close the gap between the lower and upper
bounds. We conjecture that the lower bound is
the correct one. Hence, give an augmentation
algorithm that adds only 3k − k−1

s−1 edges.

Algorithm 3 HandleSubproblem(P, o, πi, πj)
Obstacle o together with πi and πj creates a closed
polygon P ′ inside P
Let vi, vj be the designated vertices of the paths πi

and πj .
Let l ∈ {R,G,B} \ {i, j}.
Designate a vertex on the obstacle o as vl.
if There is a 3-connected triangulation of P ′ then

Augment(P ′, vi, vj , vl)
else

Let C1 be the leftmost 2-cut.
Let P1 be the polygon created by C1.
Let vR be one of the designated vertices the right
of the C1 (w.l.o.g).
Designate the two vertices of the 2-cut as VG and
VB

Augment(P1, vR, vG, vB)
HandleSubproblem(P \ P1, C1, πi, πj)

end if

• Provide combinatorial bounds for 3-connectivity
augmentation of 2-regular graphs.

• Similarly, set combinatorial bounds for 3-
connectivity augmentation of a set of line seg-
ments (a 1-regular graph).
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Blocking Coloured Point Sets∗

Greg Aloupis† Brad Ballinger‡ Sébastien Collette§ Stefan Langerman¶ Attila Pór‖

David R. Wood∗∗

1 Introduction

This paper studies problems related to visibility and
blocking in sets of coloured points in the plane. A
point x blocks two points v and w if x is in the in-
terior of the line segment vw. Let P be a finite set
of points in the plane. Two points v and w are vis-
ible with respect to P if no point in P blocks v and
w. The visibility graph of P has vertex set P , where
two distinct points v, w ∈ P are adjacent if and only
if they are visible with respect to P . A point set B
blocks P if P ∩ B = ∅ and for all distinct v, w ∈ P
there is a point in B that blocks v and w. That is, no
two points in P are visible with respect to P ∪ B, or
alternatively, P is an independent set in the visibility
graph of P ∪B.

A set of points P is k-blocked if each point in P is
assigned one of k colours, such that each pair of points
v, w ∈ P are visible with respect to P if and only if v
and w are coloured differently. Thus v and w are as-
signed the same colour if and only if some other point
in P blocks v and w. We say P is {n1, . . . , nk}-blocked
if it is k-blocked and for some labelling of the colours
by the integers [k] := {1, 2, . . . , k}, the i-th colour
class has exactly ni points, for each i ∈ [k]. Equiva-
lently, P is {n1, . . . , nk}-blocked if the visibility graph
of P is the complete k-partite graph K(n1, . . . , nk).
See Figure 1 for an example.

The following fundamental conjecture regarding k-
blocked point sets is the focus of this paper.

Conjecture 1 For each integer k there is an integer
n such that every k-blocked set has at most n points.

∗Initiated at the 2009 Bellairs Workshop on Computational
Geometry. The authors are grateful to Godfried Toussaint and
Erik Demaine for organising the workshop, and to the other
participants for providing a stimulating working environment.
†Institute of Information Science, Academia Sinica, Taipei,

Taiwan (aloupis.greg@gmail.com).
‡Department of Mathematics, Humboldt State University,

Arcata, California, U.S.A (bjb86@humboldt.edu).
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g1

g2

g3

y1

y2

y3

r1

r2

r3

b1

b2

b3

Figure 1: A {3, 3, 3, 3}-blocked point set.

A k-set is a multiset of k positive integers. A
k-set {n1, . . . , nk} is representable if there is an
{n1, . . . , nk}-blocked point set. As illustrated in Fig-
ure 2, it follows from the characterisation of 2- and
3-colourable visibility graphs by Kára et al. [6] that
{1, 1} and {1, 2} are the only representable 2-sets,
and that {1, 1, 1}, {1, 1, 2}, {1, 2, 2} and {2, 2, 2} are
the only representable 3-sets. In particular, every 2-
blocked point set has at most 3 points, and every 3-
blocked point set has at most 6 points. This proves
Conjecture 1 for k ≤ 3. Later we prove Conjecture 1
for k = 4.

(1, 1)

(2, 1) (1, 1, 1) (1, 1, 2)

(1, 2, 2) (1, 2, 2)

(2, 2, 2)

Figure 2: The 2-blocked and 3-blocked point sets.
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This paper makes the following contributions. Sec-
tion 2 introduces some background motivation. Sec-
tion 3 describes methods for constructing k-blocked
sets from a given (k − 1)-blocked set. These meth-
ods lead to a characterisation of representable k-sets
when each colour class has at most three points. Sec-
tion 4 studies the k = 4 case in more detail. In par-
ticular, we characterise the representable 4-sets, and
conclude that the example in Figure 1 is in fact the
largest 4-blocked point set. Section 5 introduces a spe-
cial class of k-blocked sets (so-called midpoint-blocked
sets) that lead to a construction of the largest known
k-blocked sets for infinitely many values of k.

Also note the following easily proved properties.

Lemma 1 ([2]) At most three points are collinear in
every k-blocked point set.

Lemma 2 ([2]) Each colour class in a k-blocked
point set is in general position (no three collinear).

2 Some Background Motivation

Much recent research on blockers began with the fol-
lowing conjecture by Kára et al. [6].

Conjecture 2 (Big-Line-Big-Clique Conjecture [6])
For all integers t and ` there is an integer n such that
for every finite set P of at least n points in the plane:

• P contains ` collinear points, or

• P contains t pairwise visible points (that is, the
visibility graph of P contains a t-clique).

Conjecture 2 is true for t ≤ 5, but is open for t ≥ 6
or ` ≥ 4; see [10, 1]. Jan Kára suggested the following
weakening of Conjecture 2.

Conjecture 3 ([10]) For all integers t and ` there is
an integer n such that for every finite set P of at least
n points in the plane:

• P contains ` collinear points, or

• the chromatic number of the visibility graph of
P is at least t.

Clearly Conjecture 2 implies Conjecture 3.

Proposition 3 Conjecture 3 with ` = 4 and t = k+1
implies Conjecture 1.

Proof. Assume Conjecture 3 holds for ` = 4 and t =
k+1. Suppose P is a k-blocked set of at least n points.
By Lemma 1, at most three points are collinear. Thus
the first conclusion of Conjecture 3 does not hold.
Since the visibility graph of P is k-colourable, the
second conclusion of Conjecture 3 does not hold. This
contradiction proves that every k-blocked set has less
than n points, and Conjecture 1 holds. �

Since Conjecture 2 holds for t ≤ 5, Conjecture 1
holds for k ≤ 4. Let b(n) be the minimum integer
such that some set of n points in the plane in general
position is blocked by some set of b(n) points. Linear
lower bounds on b(n) are known [7, 3], but many au-
thors have conjectured or stated as an open problem
that b(n) is super-linear.

Conjecture 4 ([7, 9, 3, 10]) b(n)
n →∞ as n→∞.

Pór and Wood [10] proved that Conjecture 4 implies
Conjecture 3, and thus implies Conjecture 1. That
Conjecture 1 is implied by a number of other well-
known conjectures, yet remains challenging, adds to
its interest.

3 k-Blocked Sets with Small Colour Classes

We now describe some methods for building blocked
point sets from smaller blocked point sets.

Lemma 4 Let G be a visibility graph. Let i ∈
{1, 2, 3}. Furthermore suppose that if i ≥ 2 then
V (G) 6= ∅, and if i = 3 then not all the vertices of
G are collinear. Let Gi be the graph obtained from G
by adding an independent set of i new vertices, each
adjacent to every vertex in G. Then G1, G2, and G3

are visibility graphs.

Proof. For distinct points p and q, let ←−pq denote the
ray that is (1) contained in the line through p and q,
(2) starting at p, and (3) not containing q. Let L be
the union of the set of lines containing at least two
vertices in G.
i = 1: Since L is the union of finitely many lines,

there is a point p 6∈ L. Thus p is visible from every
vertex of G. By adding a new vertex at p, we obtain
a representation of G1 as a visibility graph.
i = 2: Let p be a point not in L. Let v be a vertex

of G. Each line in L intersects←−vp in at most one point.
Thus ←−vp \ L 6= ∅. Let q be a point in ←−vp \ L. Thus p
and q are visible from every vertex of G, but p and q
are blocked by v. By adding new vertices at p and q,
we obtain a representation of G2 as a visibility graph.
i = 3: Let u, v, w be non-collinear vertices in G.

Let p be a point not in L and not in the convex hull
of {u, v, w}. Without loss of generality, uv ∩ pw 6= ∅.
There are infinitely many pairs of points q ∈ ←−up and
r ∈ ←−vp such that w blocks q and r. Thus there are
such q and r both not in L. By construction, u blocks
p and q, and v blocks p and r. By adding new vertices
at p, q and r, we obtain a representation of G3 as a
visibility graph. �

We now characterise the representable (≥ 4)-sets,
assuming each colour class has at most three points.
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Proposition 5 A k-set {n1, . . . , nk} is representable
whenever k ≥ 4 and each ni ≤ 3, except for {1, 3, 3, 3}
which is not representable [2].

Proof. We say {n1, . . . , nk} contains
{n1, . . . , ni−1, ni+1, . . . , nk} for each i ∈ [k]. We
proceed by induction on k. If {n1, . . . , nk} contains
a representable (k − 1)-set, then {n1, . . . , nk} is
also representable by Lemma 4. (Since k ≥ 4 the
assumptions in Lemma 4 hold.) Now assume that
every (k− 1)-set contained in {n1, . . . , nk} is not rep-
resentable. By induction, we may assume that k ≤ 5.
Moreover, if k = 5 then {n1, . . . , n5} must contain
{1, 3, 3, 3} (since by induction all other 4-sets are
representable). Similarly, if k = 4 then {n1, . . . , n4}
must contain {1, 1, 3}, {1, 2, 3}, {1, 3, 3}, {2, 2, 3},
{2, 3, 3} or {3, 3, 3} (since {1, 1, 1}, {1, 1, 2}, {1, 2, 2}
and {2, 2, 2} are representable). The following table
describes the construction in each case.
{1, 1, 1, x} contains {1, 1, 1}
{1, 1, 2, x} contains {1, 1, 2}
{1, 1, 3, 3} Figure 1 minus {r1, g3, r3, g1}
{1, 2, 2, x} contains {1, 2, 2}
{1, 2, 3, 3} Figure 1 minus {g1, g3, r3}
{2, 2, 2, x} contains {2, 2, 2}
{2, 2, 3, 3} Figure 1 minus {g3, r3}
{2, 3, 3, 3} Figure 1 minus g3
{1, 1, 3, 3, 3} contains {1, 1, 3, 3}
{1, 2, 3, 3, 3} contains {1, 2, 3, 3}
{1, 3, 3, 3, 3} contains {3, 3, 3, 3}

�

4 4-Blocked Point Sets

As shown in Section 2, Conjecture 1 holds for k ≤
4. That is, every 4-blocked set has bounded size.
An explicit bound of 2790 follows from a result of
Abel et al. [1], which can be improved to 2578 using a
recent result by Dumitrescu et al. [3]; see [2]. Before
characterising all representable 4-sets, we give a sim-
ple proof that every 4-blocked point set has bounded
size.

Proposition 6 Every 4-blocked set has at most 36
points.

Proof. Let P be a 4-blocked set. Suppose that
|P | ≥ 37. Let S be the largest colour class. Thus
|S| ≥ 10. By Lemma 2, S is in general position. By a
theorem of Harborth [4], some 5-point subsetK ⊆ S is
the vertex-set of an empty convex pentagon conv(K).
Let T := P ∩ (conv(K)−K). Since conv(K) is empty
with respect to S, each point in T is not in S. Thus
T is 3-blocked. K needs at least 8 blockers (5 block-
ers for the edges on the boundary of conv(K), and 3
blockers for the chords of conv(K)). Thus |T | ≥ 8.
But every 3-blocked set has at most 6 points, which
is a contradiction. Hence |P | ≤ 36. �

Theorem 7 A 4-set {a, b, c, d} is representable if and
only if:

• {a, b, c, d) = (4, 2, 2, 1}, or

• {a, b, c, d) = (4, 2, 2, 2}, or

• all of a, b, c, d ≤ 3 except for {3, 3, 3, 1}

Proof Sketch. Figure 3 shows {4, 2, 2, 1}-blocked
and {4, 2, 2, 2}-blocked point sets. When a, b, c, d ≤ 3,
the required constructions are described in Propo-
sition 5. Now we prove the converse. Let P be
a 4-blocked point set. We prove [2] that if some
colour class S contains a 4-point subset K, such that
conv(K) is a convex quadrilateral that is empty with
respect to S, then P is {4, 2, 2, 1}-blocked. Moreover,
if some colour class S has at least five points, then by
Lemma 2 and a theorem of Esther Klein, S contains
such a subset K—implying P is {4, 2, 2, 1}-blocked,
which is a contradiction. Hence each colour class has
at most four points. Let S be a largest colour class. If
S consists of four points in convex position, then P is
{4, 2, 2, 1}-blocked (just set K := S). If S consists of
four points in nonconvex position, then we prove [2]
that P is {4, 2, 2, 2}-blocked. Otherwise |S| ≤ 3, and
we are done by Proposition 5. �

Figure 3: {4, 2, 2, 1}-blocked and {4, 2, 2, 2}-blocked
point sets.

Corollary 8 Every 4-blocked set has at most 12
points, and there is a 4-blocked set with 12 points.

5 Midpoint-Blocked Point Sets

A k-blocked point set P is k-midpoint-blocked if for
each monochromatic pair of distinct points v, w ∈ P
the midpoint of vw is in P . Of course, the midpoint
of vw blocks v and w. A point set P is {n1, . . . , nk}-
midpoint-blocked if it is {n1, . . . , nk}-blocked and k-
midpoint-blocked. For example, the point set in Fig-
ure 1 is {3, 3, 3, 3}-midpoint-blocked.

Another interesting example is the projection1 of
[3]d. With d = 1 this point set is {2, 1}-blocked, with
d = 2 it is {4, 2, 2, 1}-blocked, and with d = 3 it is
{8, 4, 4, 4, 2, 2, 2, 1}-blocked. In general, each set of

1If G is the visibility graph of some point set P ⊆ Rd, then
G is the visibility graph of some projection of P to R2.
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points with exactly the same set of coordinates equal
to 2 is a colour class, there are 2d−i colour classes
of points with exactly i coordinates equal to 2, and
[3]d is {

(
d
i

)
× 2i : i ∈ [0, d]}-midpoint-blocked and 2d-

midpoint-blocked.
Hernández-Barrera et al. [5] defined m(n) to be

the minimum number of midpoints determined by
some set of n points in general position in the plane,
and proved that m(n) ≤ cnlog2 3 = cn1.585.... This
upper bound was improved by Pach [8] (and later
by Matousek [7]) to m(n) ≤ nc

√
logn. Hernández-

Barrera et al. [5] conjectured that m(n) is super-
linear, which was verified by Pach [8]; that is, m(n)

n →
∞ as n → ∞. Pór and Wood [10] proved the fol-
lowing more precise version: For some c > 0, for
all ε > 0 there is an integer N(ε) such that m(n) ≥
cn(log n)1/(3+ε) for all n ≥ N(ε).

Theorem 9 For each k there is an integer n such that
every k-midpoint-blocked set has at most n points.
More precisely, there is an absolute constant c and
for each ε > 0 there is an an integer N(ε), such that
for all k, every k-midpoint-blocked set has at most
kmax{N(ε), c(k−1)3+ε} points.

Proof. Let P be k-midpoint-blocked set of n points.
We may assume that n

k > N(ε). Let S be a set of
exactly s := dnk e monochromatic points in P . Thus
S is in general position by Lemma 2. And for every
pair of distinct points v, w ∈ S the midpoint of vw is
in P − S. Thus cnk (log n

k )1/(3+ε) ≤ m(s) ≤ n − s ≤
n(1− 1

k ). Hence (log n
k )1/(3+ε) ≤ (k − 1)/c, implying

n ≤ k2((k−1)/c)3+ε . The result follows. �

We now construct k-midpoint-blocked point sets
with a ‘large’ number of points. The method is based
on the following product of point sets P and Q. Let
(xv, yv) be the coordinates of each v ∈ P ∪ Q. Let
P ×Q be the point set {(v, w) : v ∈ P,w ∈ Q} where
(v, w) is at (xv, yv, xw, yw) in 4-dimensional space. For
brevity we do not distinguish between a point in R4

and its image in an occlusion-free projection of the
visibility graph of P ×Q into R2.

Lemma 10 If P is a {n1, . . . , nk}-midpoint-blocked
point set and Q is a {m1, . . . ,m`}-midpoint-blocked
point set, then P × Q is {nimj : i ∈ [k], j ∈ [`]}-
midpoint-blocked.

Proof. Colour each point (v, w) in P ×Q by the pair
(col(v), col(w)). There are nimj points for the (i, j)-
th colour class. It is straightforward to verify that two
points in P × Q are blocked if and only if they have
the same colour. Thus P ×Q is blocked. Since every
blocker is a midpoint, P ×Q is midpoint-blocked. �

Say P is a k-midpoint blocked set of n points. By
Lemma 10, the i-fold product P i := P×· · ·×P is a ki-
blocked set of ni = (ki)logk n points. Taking P to be

the {3, 3, 3, 3}-midpoint-blocked point set in Figure 1,
we obtain the following result, which describes the
largest known construction of k-blocked point sets.

Theorem 11 For all k a power of 4, there is a k-
blocked set of klog4 12 = k1.79... points.
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tado, Scott D. Kominers, Stefan Langerman, At-
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Stefan Langerman, Attila Pór, and David R.
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Computing the depth of an arrangement of axis-aligned rectangles
in parallel∗

Helmut Alt† Ludmila Scharf∗

Abstract

We consider the problem of computing the depth of
the arrangement of n axis-aligned rectangles in the
plane, which is the maximum number of rectangles
containing a common point. For this problem we give
a sequential O(n log n) time algorithm, and a parallel
algorithm with running time O(log2 n) in the classical
PRAM model. We also describe how to adopt the par-
allelization to a shared memory machine model with
a fixed number of processing units.

1 Introduction

In this paper we consider a basic geometric problem:
how to compute the depth of the arrangement of n
axis-aligned rectangles in R2. The depth of a point
p is defined as the number of rectangles containing p,
and the depth of the arrangement is the maximum
depth over all points in R2, or, equivalently, it is the
maximum number of rectangles that contain a com-
mon point.

We describe a parallel algorithm for this problem
for a shared memory parallel machine model. The
algorithm has a running timeO(log2 n) and total work
O(n log2 n) in the classical EREW-PRAM model. We
also describe how to adopt the parallelization to a
more realistic assumption of having a fixed number
k of processing units in a shared memory machine,
which fits better the modern multi-core processors.

The current trend in the microprocessor industry
is to increase the performance in computing not by
increasing the CPU clock rates but by multiple CPU
cores working on shared memory and common cache.
This trend in the hardware development makes the de-
sign of parallel algorithms once again an active topic
in the algorithmic community.

In this paper we first describe a sequential
O(n log n) time algorithm for computing the depth
of the arrangement of axis-aligned rectangles in the
plane. Namely, we construct a balanced search tree
on the x-coordinates of the corners of rectangles and
then perform a plane sweep along the y-axis, while
updating the box coverage information in the tree.
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To our knowledge no O(n log n) algorithm for the
depth problem has been given before explicitly, al-
though the result is somehow “folklore” knowledge in
the computational geometry community. In fact, the
scheme of algorithms given for solving Klee’s mea-
sure problem (KMP), i.e., computing the volume of
the union of n axis-parallel boxes, can be used for
computing the depth of arrangements. For the two-
dimensional KMP Bentley described but did not pub-
lish such an algorithm [2] the idea of which is given in
[6], however. Our algorithm is similar to some extent.
We develop and describe it in detail, mostly in or-
der to derive from it in Section 3 the efficient parallel
algorithm for the problem.

For the applications of the depth computation prob-
lem we mention two examples: One is a geometric
pattern matching problem. For two m-point sets A
and B in R2 finding a transformation minimizing the
directed L∞-Hausdorff distance from A to B can be
reduced to finding the depth in an arrangement of
O(m2) boxes. Another example is a clustering prob-
lem: For a given set of n points in R2 and a given
radius r find a L∞-disk of radius r containing the
largest number of points, that is, the densest cluster
of radius r. This clustering problem is dual to de-
termining the deepest point in the arrangement of n
boxes with side length 2r.

For general shape (algebraic) regions, not just axis-
aligned rectangles, there is no better algorithm known
for computing the depth of their arrangement than to
construct the complete arrangement and then to tra-
verse it. For arrangements of disks the problem is
known to be 3-SUM hard [1], so sub-quadratic algo-
rithms are not likely to exist. For an arrangement
of axis-aligned boxes in arbitrary dimension d Chan
[3] describes a sequential algorithm with running time
O((nd/2/ logd/2−1 n) logd/2 log n) for d ≥ 3.

2 Sequential Algorithm

In this section we describe the sequential algorithm
for computing the depth of the arrangement of axis-
aligned rectangles.

The general idea is the following: For a given set
of n axis-aligned rectangles we build a balanced bi-
nary search tree T on the x-coordinates of the verti-
cal sides of the rectangles, so that all x-coordinates
are in the leaves of the tree. Let x1, x2, . . . , x2n be
the x-coordinates of the vertical sides of the rectan-
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gles in sorted order. With the leaf labeled with xi,
i = 1, . . . , 2n− 1, we associate the interval [xi, xi+1).
The last leaf, labeled with x2n, is associated with the
interval [x2n, x2n]. With an internal node v we asso-
ciate the union of the intervals of its children. Space
requirement for the tree is linear in the number of
rectangles.

Next we perform a top-down sweep along the y-axis.
Each sweepline event, i.e., a y-coordinate of the top
or bottom of a rectangle, has two x-coordinates a and
b of the vertical sides of the corresponding rectangle
and an event value d associated with it. The event
value is d = 1 if it is the top of the rectangle (the
rectangle is “opened”) and d = −1 if it is the bottom
(the rectangle is “closed”).

To process a sweepline event we traverse the tree T
from the root node to the leaves labeled a and b. In
the nodes of the tree we want to count the number of
rectangles covering the associated x-interval, and to
update this information with each y-event. Of course,
we cannot store this information directly and update
it for all covered nodes for each rectangle, since that
could make up to linear time per update.

Instead, we maintain in every internal node v for
the current state of the sweepline in counters l and
r the number of rectangles covering the interval of
the left and right child of v that were opened minus
the number of ones closed since the last traversal of
that child. Additionally, counters lm and rm store
the maximum value of the l and r counters, respec-
tively, since the last traversal of the corresponding
child node. Every leaf node contains counters c and
cm, which keep track of the current and maximum
coverage of the associated interval during the sweep.

The information in the counters is exactly as de-
scribed above when v is updated. For subsequent
events that do not traverse v the information may
get outdated. Thus, the counters of v store the up-
dates that happened between the last traversal of the
corresponding child node and the last traversal of v.

During each traversal of v by one of the searches
the counter values are propagated from v to its child
on the search path in temporary counters t and tm,
which are initially set to 0. I.e., once we updated v
as described below and move to its left (right) child,
t and tm are set to the values of v.l and v.lm (v.r and
v.rm), and then v.l, v.lm (v.r, v.rm) are reset to 0.
Thus, when we enter the child node w the counter t is
the additive change since the last update of w of the
number of open rectangles that completely cover the
interval of w; tm is either the maximum value of that
change between the last update of w and the current
event, or 0 if the additive updates were all negative.

An update of an internal node v is performed
slightly differently depending on whether both x-
coordinates a and b associated with the event are con-
tained in the subtree rooted at v (see Procedure 1:

SearchBoth), or the search paths for a and b split
earlier in the tree and the subtree of v contains only a
(see Procedure 2: SearchLeft) or only b (procedure
SearchRight).

If both a and b are contained in the subtree rooted
at v we need to update the counters of v only with the
values propagated from the parent node. For l and r
we simply add the value of t. The max-counters (lm
and rm) are set to the maximum of their old value,
and the sum of the old counter (l or r, resp.) and tm.
If the paths to a and b split in the node v, we perform
two separate searches in the left and right subtrees.

Procedure 1 : SearchBoth(v, a, b, t, tm)

v.lm = max(v.lm, v.l + tm)1

v.rm = max(v.rm, v.r + tm)2

v.l = v.l + t3

v.r = v.r + t4

if a < b ≤ v.x then5

SearchBoth (v.left, a, b, v.l, v.lm)6

v.l = v.lm = 07

if v.x < a < b then8

SearchBoth (v.right, a, b, v.r, v.rm)9

v.r = v.rm = 010

if a ≤ v.x < b then11

SearchLeft(v.left, a, v.l, v.lm)12

SearchRight(v.right, b, v.r, v.rm)13

v.l = v.lm = v.r = v.rm = 014

After the path split we know that the current rect-
angle spans all intervals of the right subtrees of the
left search path, i.e., path to a, and all intervals of
the left subtrees of the right search path, i.e., path to
b. Therefore, for a node v on the left (right) search
path we also add the event value d to the counter r
(l). When we reach the leaves containing a and b we
can update the current and maximum depth of the
associated intervals.

Procedure 2 : SearchLeft(v, x1, t, tm)

if x1 ≤ v.x and v is an internal node then1

v.rm = max(v.rm, v.r + tm, v.r + t+ d)2

v.r = v.r + t+ d3

SearchLeft(v.left, x1, v.l + t,4

max(v.lm, v.l + tm))5

v.l = v.lm = 06

if x1 > v.x then7

v.lm = max(v.lm, v.l + tm); v.l = v.l + t8

SearchLeft(v.right, x1, v.r + t,9

max(v.rm, v.r + tm))10

v.r = v.rm = 011

if x1 = v.x and v is a leaf then12

cm = max (cm, c+ tm, c+ t+ d) ; c = c+ t+ d13

After all sweepline events have been processed, the
depth of the arrangement is determined as the maxi-
mum of the cm counters of the leaf nodes.
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The correctness of the algorithm is based on the
following observation: Once we reach the bottom of a
rectangle, the counter cm in the leaf node labeled with
the x-coordinate of its left vertical boundary contains
the maximum coverage of the associated x-interval be-
tween the highest y-coordinate and the y-coordinate
of the bottom of the rectangle. Since, clearly, every
maximally covered cell has a left vertical boundary
that is a part of a left boundary of a rectangle, and
thus covers at least one leaf interval, we capture at
least one cell with maximum depth this way.

If we want not only to compute the depth, but also
get a point with maximum depth, we can additionally
store a y-coordinate for each max-counter. This y-
coordinate has to be updated with the y-value of that
event which results in the counter update.

The time needed to construct the tree and to sort
the y-events is O(n log n). Each of the 2n events is
processed in O(log n) time.

Theorem 1 summarizes the result of this section:
Theorem 1 The depth of an arrangement of n axis-
aligned rectangles in R2 can be computed in time
O(n log n) with O(n) additional memory.

3 Parallel Algorithm
To enable a parallel execution of the algorithm we
maintain so-called “history lists” in the nodes of the
tree T . A history list of a node v contains an en-
try for each event of the sweepline that traverses the
node v, i.e., for each y-coordinate associated with x-
coordinates a and b, such that a or b is contained in
the subtree rooted at v.

A history entry α of an internal node contains its
“timestamp” – the y-coordinate, the corresponding x-
values, the event value d and the counters l, r, lm, rm,
as described in Section 2, and reset-flags ρl, ρr. The
reset flags indicate whether the values of the left or
right counters, respectively, “survive” until the next
event: The value of ρl/ρr is 0 if the event of α causes
the traversal of the left/right subtree, since in this
case the counter values are propagated to the subtree
and will be reset in the node v. Otherwise, the value
is 1. Additionally, every history event has a pointer to
the corresponding event, i.e., the event with the same
y-coordinate, in the parent node. A history entry of
a leaf node contains only its y-coordinate, the event
value d, and two counters c and cm.

Every y-event appears in at most two nodes of each
level of the tree and requires constant space. Thus,
the space for the tree is O(n log n).

All information of a history event, except for the
counter values l, lm, r, rm, is known and can be set
during the tree construction. Now we can “fill out”
the counter values in the history lists starting with the
root node down to the leaves. The left/right counters
in all root node events are set to 0. For an internal
node v let α(i) be the i-th history entry of v. Let t(i)

and t
(i)
m denote the values of r and rm of the corre-

sponding history entry of the parent node of v if v is
a right child of its parent node, and values of l and lm
otherwise. If α(i) contains both x-coordinates a and
b associated with y(i) then set

l(i) = l(i−1) · ρ(i−1)
l + t(i) (1)

l(i)m = max
{
l(i−1)
m · ρ(i−1)

l , l(i−1) · ρ(i−1)
l + t(i)m

}
(2)

r(i) = r(i−1) · ρ(i−1)
r + t(i) (3)

r(i)m = max
{
r(i−1)
m ρ(i−1)

r , r(i−1)ρ(i−1)
r + t(i)m

}
, (4)

where the values with the high-index (i − 1) denote
the values of the history event preceding α(i).

Also if a history event α(i) of a node v contains only
a, and a is in the right subtree of v, or if α(i) contains
only b, and b is in the left subtree of v, the counters are
set as above. That is, the values from the parent node
v are propagated to the corresponding child node but
the interval associated with the child is not completely
covered by the rectangle causing the event, and thus,
we do not need to consider the event value d.

In case α(i) contains only a, and a is in the left
subtree of v, then the complete right subtree is cov-
ered by the current rectangle. Therefore, the right
counters are incremented by the event value d(i):

r(i) = r(i−1) · ρ(i−1)
r + t(i) + d(i) (5)

r(i)m = max
{
r(i−1)
m ρ(i−1)

r , r(i−1)ρ(i−1)
r + t(i)m , r(i)

}
(6)

The left counters are updated as in equations (1), (2).
In case α(i) contains only b, and b is in the right sub-
tree of v the left counters must be adjusted analo-
gously and the right counters are updated as in equa-
tions (3), (4). The counters c and cm of the leaf nodes
are updated analogously.

Then, after all events have been processed, each
leaf node stores the maximal coverage of its associated
interval up to the position where the (last) rectangle
with the corresponding vertical side was closed.

The depth of the arrangement is then the maximum
over the cm counters of the leaves.

So we could build the tree T and then traverse it
level-by-level starting from the root node to the leaves,
and node-by-node within one level, setting the coun-
ters in all history events. Thus, we would have a se-
quential algorithm with running time in O(n log n) as
before but with O(n log n) memory usage.
Parallel implementation on a PRAM. For the
parallel algorithm we assume that there are O(n)
processors on a EREW-PRAM available. Then sort-
ing of the corner points of the rectangles once by y-
coordinates and once by x-coordinates can be per-
formed in O(log n) time, i.e., O(n log n) total work,
using, for example, the sorting algorithm by Cole [4].
The tree T without the history lists can be build
straightforwardly in time O(log n).
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The unsorted history lists for each level of the tree
can be constructed in constant time per level: We as-
sign one processor to every history event. Every pro-
cessor writes an entry for its event to the history lists
of the nodes on the paths from the corresponding two
leaves to the root. The entries of the history lists have
correctly set timestamps (the y-coordinates), pointers
to the parent entries, the event value d, and, for the
internal nodes, the reset switches ρl, ρr. The counter
values remain open.

The total size of the history lists in one level is at
most 2n. Therefore, the total time needed to sort
the history lists of one level is O(log n). Then, for
the complete tree, the construction time of the sorted
history lists is O(log2 n).

The computation of the left/right counters in the
event entries is performed level-by-level starting with
the root node down to the leaves. The computation
of the counters l(i) and r(i) according to equations
(1),(3),(5) corresponds to a prefix sum computation:
Consider the left counter of the i-th history entry of a
node v. Let j be the highest index ≤ i with ρ

(j)
l = 0.

Then the value of l(i) is the sum
∑i

k=j+1(t(k) + d(k)),
where d(k) is set to 0 if the computation of l(k+1)

follows equation (1). Thus, if we can subdivide the
l-counters of a history list into subsequences corre-
sponding to blocks of ones terminated by a zero of
the ρl-switches, then we can in a first step set each
l(i) to t(i) or t(i) +d(i), respectively, and then perform
parallel prefix sum computations on the subsequences.
We omit the details about the subdivision into sub-
sequences, which again can be performed using the
parallel prefix sum computation.

The r-counter values are computed analogously.
Prefix sum computation can be performed in O(log n)
time [5].The total size of all prefix sum lists of one level
is O(n). So we need O(log2 n) time in total.

For the computation of the max-counters according
to equations (2), (4) or (6), e.g., for r(i)m , we need the
values r(i−1)

m , r(i−1), tm, and possibly l(i). All of these
values, except for r(i−1)

m , are computed by now. Thus,
we can compute the prefix maxima analogously to a
prefix sum.

We summarize the preceding sketch of the parallel
algorithm and its analysis:
Theorem 2 The depth of an arrangement of n axis-
aligned rectangles in R2 can be computed on a
CREW-PRAM with O(n) processing units in time
O(log2 n).

Parallel implementation for a fixed number k
of processors with shared memory: Sorting of
the x- and y-coordinates of the vertical and horizontal
sides of the rectangles can obviously be performed on
a k-processor machine in time O(n

k log n).
Then we have to split the work performed by the

algorithm between k processors. For this purpose we

split the tree construction into k subtrees, each con-
taining at most d2n/ke x-coordinates. Each of the
subtrees is constructed by one processor sequentially.
Afterwards, the k subtrees are combined into a single
tree by adding a tree of height dlog ke on top of the
subtrees. The tree construction includes the history
lists except for the values of the counters r, l, rm, lm
in the internal nodes, and the counters c, cm in the
leaves.

For the computation of the counters in the history
lists we apply the same idea: for the top tree we ap-
ply parallel prefix sum computation by processing the
history lists in blocks of at most k elements. There
are O(n/k) such blocks in each level, and each block
is processed in O(log k) time. Thus, the dlog ke levels
of the top tree can be processed in O(n

k log2 k) time.
For the k subtrees we apply the sequential algorithm
to find the maximum depth in each subtree. The size
of the subtrees is O(n/k), thus, the time for the re-
maining levels is O(n

k log n). The total time is then
O(n

k (log2 k + log n)).
Summarizing, we have:

Corollary 3 The depth of an arrangement of n
axis-parallel rectangles can be computed in paral-
lel by k processors with shared memory in time
O(n/k(log2 k + log n)).

4 Future Work
Although the depth computation of a set of rectangles
in R2 is an interesting problem on its own, we plan
to develop parallel algorithms for higher dimensional
depth computation. Further, we are interested in an
implementation of the algorithm presented here, and
possibly algorithms for higher dimensional problems,
and in their experimental evaluation. The implemen-
tations should be performed for currently available
parallel hardware platforms, such as multicore CPUs
and general purpose GPUs.
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Even Triangulation of Planar Set of Points with Steiner Points

Victor Alvarez∗

Abstract

Let P ⊂ R
2 be a set of n points of which k are interior

points. Let us call a triangulation T of P even if all its
vertices have even degree, and pseudo-even if at least
the k interior vertices have even degree. (Pseudo-)
Even triangulations have one nice property; their ver-
tices can be 3-colored, see [2, 3, 4]. Since one can
easily check that for some sets of points, such trian-
gulation do not exist, we show an algorithm that con-
structs a set S of at most ⌊(k + 2)/3⌋ Steiner points
(extra points) along with a pseudo-even triangulation
T of P ∪ S = V (T ).

1 Introduction

Let P ⊂ R
2 be a set of n points. Let us for a moment

suppose that along with P , we are given a parity, even
or odd, for each of its n points. Given a triangulation
T of P , we say that a vertex v of T is happy if and
only if v has a degree of the parity that was originally
set for v. If a vertex is not happy then we will say that
it is unhappy. The problem of finding a triangulation
of P that maximizes the number of happy vertices has
recently got some attention. In [1], Aichholzer et al.

showed that one can always find a triangulation that
makes at least roughly 2n/3 vertices happy, and they
also showed a configuration of points and parities that
will make at least n/108 vertices unhappy, regardless
of the chosen triangulation.

In this paper we attack a problem with the same
spirit, however, we use a different paradigm to solve
it since the result of Aichholzer et al. does not ensure
in general a solution. Let P ⊂ R

2 be as before and as-
sume that 0 ≤ k ≤ n− 3 points are inside the convex
hull Conv(P ) of P , i.e. there are k interior points.
In our setting, only those k interior points will have
a parity assigned and it will be the same for each one
of them, namely, even. Now, we look for a triangu-
lation that makes all those k interior vertices happy.
We will call such triangulations pseudo-even, or sim-
ply even in the case that also the vertices of Conv(P )
happen to have even degree. It is already known that
a maximal planar graph is 3-colorable if and only if
it is at least pseudo-even, see [4] for this characteriza-
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tion and [2, 3] for a general reference on 3-colorable
planar graphs. So pseudo-even triangulations have
at least one interesting property and we can also see
this problem as that of embedding 3-colorable planar
graphs on set of points. As one can easily check that
for some sets of points, a pseudo-even triangulation do
not exist, we will introduce extra points, also known
as Steiner points, and then we will consider the ques-
tions: how many Steiner points are sufficient and how
many are necessary to get a pseudo-even triangula-
tion T such that P ⊆ V (T )? While we still have no
answer for the latter question, we will present a non-
trivial solution for the former, namely, we will show
an algorithm with the following properties:

(i) Its output triangulation T is pseudo-even and
V (T ) = P ∪ S.

(ii) |S| ≤ ⌊(k + 2)/3⌋.
(iii) At most two Steiner points of S fall on

Conv(P ).
Note that, as T is a pseudo-even triangulation, the

Steiner points of S that are interior must also get even
degree.
This paper is divided as follows: in Section 2 we

show our construction and in Section 3 we close with
some interesting observations.

2 Points in general position

Let us quickly recall that given a polygon P , a vertex
of P is called reflex if the internal angle is larger than
180 degrees and we will call it convex otherwise.
The main result of this section is the following:

Theorem 1 Let P ⊂ R
2 be a set of n points such

that k of those points are interior points. Then we

can always obtain a pseudo-even triangulation adding

at most ⌊(k + 2)/3⌋ Steiner points to P , of which at

most two fall on Conv(P ).

Before showing the actual construction let us give
the general idea. As it was pointed out in the intro-
duction, we can talk about 3-colorable maximal pla-
nar graphs and pseudo-even triangulation unambigu-
ously. Therefore, our idea to get a pseudo-even trian-
gulation is to actually embed a 3-colorable maximal
planar graph on P with the help of at most ⌊(k+2)/3⌋
Steiner points. So we will use a 3-coloration as a mea-
sure of the correctness of our algorithm. Having de-
fined what we will actually aim at, let us start with
our construction.
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Proof. Let us fix a vertex v ∈ Conv(P ) such that
v has the lowest y-coordinate among all points in P .
Using v as a pivot, we will sort each interior point of
P by its slope with respect to v. Let p1, . . . , pk, be a
labeling, from left to right with respect to this angular
order, of the internal points of P . Let p0, pk+1 be the
left and right neighbors of v on Conv(P ) respectively.
We construct a simple polygon P from P \ {v} as

follows: we add each edge pipi+1, for 0 ≤ i ≤ k. We
call this the lower part of P and we will denote it
by L(P). Also, we consider the edges of Conv(P ) \
{p0v, pk+1v} and we call this the upper part of P and
we will denote it by U(P).
Next we will triangulate P as follows: we will scan

L(P) from left to right and we will consider the largest
chains formed by convex vertices. Note that for each
chain, the left and right endpoints must be reflex ver-
tices of P , see to the left in Figure 1. Now, for each
chain, we will make adjacent its two endpoints and
we will use its lowest convex vertex as a pivot to tri-
angulate the resulting convex polygon in case that it
has more than three vertices. These convex polygons
can be thought as “ears” that can be cut from P on
L(P). The rest of P , outside these “ears”, can be tri-
angulated in any way. See to the right in Figure 1.
If there is no convex vertex of P in L(P), then the
triangulation of P is arbitrary.

v
p0 pk+1

v
p0 pk+1

Figure 1: To the left we have the polygon P on n− 1
vertices in light gray. The convex polygons formed by
scanning L(P) from left to right are shown in dashed.
Note that each pair of consecutive convex polygons
shares at most one vertex. To the right we see a tri-
angulation T (P) of P . The dashed edges are the only
ones that are not arbitrary.

Let T (P) be the aforementioned triangulation of P .
We know that we can 3-color it, see for example [5],
and note that the only point yet to be colored is v. We
will show how to color v while keeping a 3-coloration
of T (P) by using Steiner points.
From this point on, our construction is done by

case analysis. Note that as T (P) is already 3-colored,
if all the interior vertices of P are colored by only two
colors, say i+1, i+2, 1 ≤ i ≤ 31, we could use color i
for v without violating the 3-coloration of T (P), and
hence, using the straight-line segments that connect

1Arithmetic taken modulo three

v with each vertex of L(P), we obtain a pseudo-even
triangulation T (P ).

However, in general it is not going to happen that
the interior vertices can be colored using only two
colors, hence we need to do something else in such
cases. We will proceed in a line-sweep fashion from
p0 to pk+1 with respect to the angular order given by
v.

Let us fix the color of v as the color of the small-
est chromatic class in the lower part L(P) of P using
the 3-coloration of T (P), say that color is i without
loss of generality, 1 ≤ i ≤ 3. Note that the points in
L(P) with color i are the ones causing trouble to com-
plete the desired triangulation, hence we will handle
those points depending on their kind in P , namely if
they are reflex or convex vertices of P . We will keep
the invariant that, by the time we are processing an
interior point pj , all interior points to the left have al-
ready even degree. Also note that by this time, if the
degree of pj is odd it is because pj+1 has color i, other-
wise we could join v and pj+1 and hence the conflict
is somewhere to the left or even in P , which would
contradict our invariant or the valid 3-coloration of
P .

Let us start now with our case analysis, we will
assume that we are currently processing the interior
point pj , 1 ≤ j < k.

(1) Point pj of color, say i + 1, and pj+1 of color
i is a reflex vertex. Note that if pj+2 has color i + 2,
then we could introduce the edge pjpj+2, as pj+1 has
already even degree in T (P). Hence we will assume
that pj and pj+2 have the same color.

As pj+2 is of color i+ 1, then we need to complete
the degree of both pj and pj+1 as both degrees are
odd. Here we will introduce one Steiner point s of
color i + 2 that will be adjacent, without introduc-
ing any crossing, to pj, pj+1, pj+2, v, hence of even
degree and we will add the straight-line segment be-
tween pj+2 and v, move to pj+2 and continue. See to
the left in Figure 2

(2) Point pj again of color i + 1 and pj+1 of color
i is a convex vertex. Again see that if pj+2 is of color
i + 1, as before, we introduce one Steiner point s of
color i+ 2, and exatly the same set of adjacencies as
in the case when pj+1 is reflex. See in the middle in
Figure 2.

So let us assume that pj+2 has color i + 2. Note
that, as pj+1 is a convex vertex of P , it must be part
of one of the convex polygons we first got when P got
triangulated, after all remember that the triangula-
tion T (P) is in general not arbitrary. We have now
the following sub-cases:

(2.1) The vertex pj+1 was used as a pivot in the tri-
angulation of P . Consider the convex chain C formed
by the points pj, pj+1, pj+2, . . . , pl, where pl is a re-
flex vertex. See to the right in Figure 2. Note as
well that since pj+1 was used as a pivot, all the edges
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pj+1

pj
pj+2

C

pl

v

pj+1

pj+2

s

pj

v

pj+1

pj+2

s

pj

Figure 2: The point pj is currently being processed.
Point pj+1 is of the same color i of v. If pj and pj+2

have the same color, then one Steiner point suffices
to be able to move to pj+2. To the right, pj and pj+2

have different colors and pj+1 is a convex vertex that
was used as a pivot to triangulate the convex polygon
it is part of in P .

pj+1pj+2, . . . , pj+1pl are present.
Now we distinguish between the following cases:
(2.1.1) Point pl is of color i + 1, pl+1 is of color i

and pl+2 is of color i+ 2.
We know that the union of all the triangles that

share pj+1 as a vertex forms a convex polygon C. We
will change all the adjacencies inside C as follows:
Instead of taking pj+1 as the pivot that is adjacent

to all vertices in C we will take pl−1. Now we re-
color pl−1 with color i and we will change the color of
pj+1, pj+2, . . . , pl−1 to i+2, i+1, . . . , i+2 respectively.
Note that no other color needs to be changed.
Finally we will introduce two Steiner points s1, s2

of color i+ 2, i+ 1 respectively and we will make the
following adjacencies:
(i) s1 gets adjacent to pl−1, pl, pl+1 and s2.
(ii) s2 gets adjacent to pl−2, pl−1, s1, pl+1, pl+2, v.
Additionally we introduce the edges

pj+1v, . . . , pl−2v and pl+2v. See to the left and
in the middle of Figure 3.
Look that the previous construction can always be

done without introducing any crossing. Moreover,
note that with two Steiner points we complete the
even degree of each point in the region pj , . . . , pl+2

in which there were originally two points of color i.
Thus we can move to pl+2 and continue.
(2.1.2) Point pl and pl+1 as before and pl+2 is of

color i+ 1.
We will proceed as before except that this time, the

adjacencies of s1, s2 are as follows:
(i) s1 gets adjacent to s2, pl−1, pl, pl+1, pl+2 and v.
(ii) s2 gets adjacent to pl−2, pl−1, s1 and v.
As before, we also introduce the adjacencies

pj+1v, . . . , pl−2v and pl+2v. Again, every even degree
is now completed and we can move to pl+2. See to
the right in Figure 3 for the final configuration.
(2.1.3) Point pl as before and pl+1 is of color i+2.
Note that in this case, from pj to pl+1 we are in

presence of only one vertex of color i, namely pj+1,

pl−1

pl+2

pj+1

pj

pj+2

pl

pj+1

pj

pj+2

pl

s1

s2

pl+2
pl−1

pj+1

pj

pj+2

pl

s1

s2

pl−1

Figure 3: If pj+1 was used as a pivot to triangulate a
convex polygon that can be cut from P , then we can
use pl−1 as the new pivot without changing the color
of pj or anything to its left. Note that pl must be
necessarily a reflex vertex of P . In the middle we see
the final configuration in the case that pl+1 is of color
i and pl+2 is of color i + 2. To the right we see the
final configuration when pl+1 is of color i and pl+2 is
of color i+ 1.

thus we will introduce only one Steiner point s1.
We will proceed as before with C and note that

this time pl−1 and pl+1 have different colors, namely
i and i + 2 respectively. Hence the degree of pl is
already even and since pl is a reflex vertex of P , we
can introduce the adjacency pl−1pl+1. Now we make
s1 adjacent to pl−2, pl−1, pl+1 and v and finally we
introduce the adjacencies pj+1v, . . . , pl−2v and pl+1v.
Note that again each even degree in pj , . . . , pl+1 is

completed and hence we can move to pl+1 and con-
tinue. See to the left in Figure 4 for the final config-
uration.

s1

pj+1

pj

pj+2

pl

pl−1

v

pj

pj+2

q

pj+1

s

v

pj

pj+2

q = pj−2

s2

pj−1

pj+1

s1

Figure 4: To the left we see the final configuration in
the case that pj+1 was a pivot of color i and pl+1 is
of color i+ 2. In the middle and to the right we have
that, if pj+1 of color i was not a pivot and its neighbors
have different color from each other, then one of them
must necessarily be a pivot, in this case pj+2. So we
have to go back and remove some adjacencies that will
allow us to introduce the Steiner points appropriately.

Note that the following three cases are also possible:
(2.1.4) Point pl is of color i + 2, pl+1 is of color i

and pl+2 is of color i+ 1.
(2.1.5) Point pl and pl+1 as before and pl+2 is of

color i+ 2.

(2.1.6) Point pl as before and pl+1 is of color i+1.
However, those cases are essentially the same as
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the ones explained, so we would proceed in exactly
the same way but we will exchange the color of the
Steiner points we are introducing. The details are left
for the reader.
(2.2) In this case pj+1 of color i was not used as a

pivot and it just takes part in a convex polygon where
the pivot pj+2 is of color i + 2. This restriction in
colors arises from the fact that we are assuming that
the triangle pj, pj+1, pj+2 ∈ T (P) is well-colored, as
explained in the beginning of case (2).
Since the edge pjv is currently in the triangulation

being built, there is one triangle t using it. Let q 6∈
{pj, v} be the third vertex of such a triangle t. Note
that q lies to the left of the edge pjv and hence it
already has even degree, moreover, the color of q is
i+ 2. Now we have the following two cases:
(2.2.1) The vertex q is a Steiner point or the

quadrilateral Q = q, pj , pj+1, v is convex. Let us con-
sider only the case that Q is convex, if it is not the
case then q is a Steiner point and it can be moved as
pleased to make Q convex without affecting anything.
Thus we will flip the edge pjv for the edge qpj+1 and
introduce one Steiner point s of color i + 1 inside Q
with its incidences to the vertices of Q, see in the
middle of Figure 4.
(2.2.2) If q is not a Steiner point and Q is non-

convex, then it is not hard to see that the only possible
case is q = pj−2, and pj−1 is a reflex vertex of P of
color i. Note then that the edge e = pj−2pj must be
present in the triangulation and that pj−1 is adjacent
to no Steiner point. Hence we will remove e and we
will introduce one Steiner point s1 of color i+ 2 that
is adjacent to pj−1, pj, pj+1, s2, where s2 is another
new Steiner point of color i + 1 that is adjacent to
pj−2, pj−1, s1, pj+1, pj+2, v. We can now move to pj+2

and continue. See to the right in Figure 4.
Note that the color i of v was chosen as the color of

the smallest chromatic class in L(P) and note that its
cardinality can be at most ⌊(k+2)/3⌋. Also note that
in our analysis, we assumed that the current point
pj that we are processing is neither p0 nor pk+1 of
Conv(P ). So in the case that those two extreme ver-
tices are of color i we will introduce two Steiner points
of color different that i that will subdivide the edges of
Conv(P ) that connect p0 and pk+1

with v, and hence
removing any possible conflict at that stage. As we in-
troduce one Steiner point per element of the smallest
chromatic class in L(P) the total number of Steiner
points is ⌊(k + 2)/3⌋ and the result follows.

�

3 Conclusions and Discussion

We have presented an algorithm that produces a
pseudo-even triangulation adding at most ⌊(k+2)/3⌋
Steiner points to a given point set P ⊂ R

2. It is im-
portant to note that at most two Steiner points lie

on Conv(P ) and hence our construction keeps many
extent measures of P , i.e. diameter, width, etc. If we
do not care about modifying Conv(P ) or the position
of the Steiner points, then only two Steiner points far
away from Conv(P ) would do the job, say one at ∞
and the other at −∞. Albeit being this construction
possible, we do not know why it would be interesting
to use it, since the output set of points does not look
anything like the one that was given as the input.
For the sake of completeness it is also interesting

to discuss what happens when P is in convex position
and we look this time for an even triangulation. In [4]
it was proven that if T is an even triangulation, then
|Conv(V (T ))| ≡ 0 mod 3. The other direction can
be easily proven by induction, so we do not see the
necessity of writing down the details. Hence, given P
in convex position, we can obtain an even triangula-
tion T adding at most two Steiner points such that
V (T ) remains in convex position.
We are aware that our technique could be push fur-

ther to obtain a smaller number of Steiner points,
probably ⌊(k+2)/6⌋ might be doable and we already
started working out the details. Nevertheless, what it
has been rather frustrating is the fact that we have not
been able to come up with a lower bound on the num-
ber of Steiner points and actually, everything points
to the fact that really few Steiner points might suffice,
this number might even be constant ! Finding a simple

algorithm that uses fewer Steiner points, and finding
a lower bound for this number seem interesting and
challenging.
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Separability of Point Sets by k-Level Linear Classification Trees

Esther M. Arkin∗ Delia Garijo† Alberto Márquez† Joseph S. B. Mitchell∗ Carlos Seara‡

Abstract

Let R and B be sets of red and blue points in the
plane in general position. We study the problem of
computing a k-level binary space partition (BSP) tree
to classify/separate R and B, such that the tree de-
fines a linear decision at each internal node and each
leaf of the tree corresponds to a (convex) cell of the
partition that contains only red or only blue points.

1 Introduction

Consider a set of n points in the plane in general po-
sition. Each point is either “red” or “blue”. We let
R denote the set of red points and let B denote the
set of blue points. We study the separability of R
and B by a k-level binary space partition tree. We
say that R and B are separated by a k-level binary
space partition tree, T , if each region in the partition
of the plane induced by T is monochromatic (contains
only points of R or only points of B). The separat-
ing k-level tree T is a recursive partition of the plane
into monochromatic and disjoint convex regions using
(up to) 2k − 1 separating straight cuts (lines, rays or
segments). Such a tree T of height k (i.e., with k lev-
els) can be used as a classification tree for red/blue
points; we can classify, in time O(k), a new point as
“red” or “blue” based on the color associated with the
cell (corresponding to a leaf in the tree) in which it is
located. See Figure 1.

B1

B2

B2B1 R2

R1

R2

R1

� q

� s / s

`1

`0

`1 `2

`0

`2

p

q

Figure 1: A separating 2-level tree.
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Related work. The separating k-level tree generalizes
simple separability criteria that have been previously
studied. The most basic separability criteria for R and
B is that of linear separability, which corresponds to
a separating 1-level tree: there exists a line separat-
ing R and B. Linear separability can be decided in
linear time [8]. For sets R and B that are not lin-
early separable, generalizations include the following
separability criteria: a strip (two parallel lines, par-
titioning the plane into three regions), a wedge (two
rays with common origin, partitioning the plane into
two regions), a double wedge (two intersecting lines),
or three parallel lines. All of these criteria can be de-
cided, and corresponding partitions computed, in op-
timal Θ(n log n) time [1, 2, 6, 7]. (Note that if R and
B are strip separable, then they are also wedge sepa-
rable.) Strip, wedge, double-wedge, or three parallel
lines separability criteria are special cases of separa-
bility by a 2-level tree.

Separability by multiple parallel lines is a special
case of separability by a k-level tree; in particular,
m = 2k − 1 parallel lines can be a associated with a
(height-balanced) k-level tree. The minimum number
of parallel lines needed to separate R and B can be
computed in O(n2 log n) time [2]. If R and B are
the vertices of a regular n-gon, bn/2c is a tight upper
bound for the number of parallel lines, and, given the
minimum number of separating lines, their common
orientation can be computed in O(n log n) time [3].

Other separability criteria have also been studied.
Given any disjoint point sets, R and B, there al-
ways exists a separating polygonal chain, which can be
computed in O(n log n) time. Computing a minimum-
link separating polygonal chain that turns alterna-
tively left and right by a constant angle α ≥ π/2
can be done in O(n log n) time [6]. Separability by
m parallel lines is a special case of separability by a
monotone m-link polygonal chain. The problem of de-
termining a minimum-link separating polygonal chain
of R and B is NP-complete [5]. Edelsbrunner and
Preparata [4] solved, in time O(n log n), the special
case of computing a minimum-edge convex polygon
separating R and B (if a convex separator exists);
their time bound was shown to be optimal in [1].
Outline of the paper. We initiate the study of separa-
bility by k-level trees by considering first the special
case of k = 2, separability by a 2-level tree. Sec-
tion 2 is devoted to a special case of 2-level separabil-
ity, that of separability by a zigzag, which corresponds
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to 2-level tree partitioining such that monochromatic
cells of the same color are adjacent (Figure 2). In
Section 3 we study the general version of 2-level tree
separability, including the generalizations to three or
four distinct colors of point sets (instead of just two,
red and blue). In Section 4 we consider k-level tree
separability and possible configurations of points with
O(log n)-level trees. Section 5 is devoted to separabil-
ity by k-level trees whose partitioning cuts are axis-
parallel.

2 Zigzag Separability

In this section we consider the zigzag separability
problem: Determine whether the sets R and B are
separable by a zigzag Z = (`1, s, `2), which is a sim-
ple, nonconvex 3-link polygonal chain formed by two
rays `1, `2 and a segment s joining the origins of the
rays (Figure 2). Let `s be the line containing the
segment s, and let `′1 (`′2) be the line containing the
ray `1 (`2). We can assume that the simpler known
special cases of separability have already been tested;
specifically, we assume that R and B are not separa-
ble by a line, strip, wedge, or convex polygonal chain,
each which can be decided in O(n log n) time. Thus,
under this condition, the following lemma is straight-
forward, where CH(X) denotes the convex hull of a
point set X.

B1

B2

B2B1 R2

R1

R2

R1

� q

� s / s`1

`1 `2

`2s

`s

`s

....
....
....
....
....
....
....
....
....
....
....
....
....
..

Figure 2: A separating zigzag.

Lemma 1 Let R and B be zigzag separable but not
separable by a line, strip, wedge, or convex polygon.
Then, CH(R) contains at least one blue point, and
CH(B) contains at least one red point.

A separating zigzag Z = (`1, s, `2) defines four
wedges that partition R ∪ B into four subsets, de-
noted by R1, R2, B1, and B2, where R2 = R − R1

and B2 = B − B1; all four subsets are non-empty,
since R and B are not wedge separable. Let α (β)
be the angle defined by `s and `1 (`2). Two opti-
mal separating zigzags are considered: either a zigzag
maximizing min{α, β}, called the most convex sepa-
rating zigzag (approximating linear separability), or a
zigzag that minimizes max{α, β} (approximating sep-
arability by three parallel lines).

Lemma 2 Let Z = (`1, s, `2) be the most convex sep-
arating zigzag for R and B. Then each of the two
rays, and the segment of Z pass through two points
of different colors. Moreover, either `′1 is an interior
supporting line of CH(R2) and CH(B), or `′2 is an
interior supporting line of CH(B2) and CH(R).

Lemma 3 Let R and B be zigzag separable and let
IB,R be the number of intersections between pairs of
edges of CH(B) and CH(R). Then IB,R ∈ {0, 2, 4, 6}.

Let RI (BI) be the subset of red (blue) interior
points of CH(B) (CH(R)). By Lemma 1, |RI | ≥ 1
and |BI | ≥ 1. If IB,R = 6, let R′1, R′2, and R′3 (B′

1, B′
2,

and B′
3) be the three disjoint subsets of red (blue) ex-

terior points of CH(B) (CH(R)). These eight subsets
and their respective convex hulls can be computed in
O(n log n) time (Figure 3).
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...............................................................................................................
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B′

3
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3

Figure 3: Subsets of red and blue points for IB,R = 6.

Lemma 4 Let Z = (`1, s, `2) be the most convex
separating zigzag of R and B. Then `s is a sup-
porting line of some of the following eight convex
polygons: CH(RI), CH(BI), CH(R′1), CH(R′2),
CH(R′3), CH(B′

1), CH(B′
2), and CH(B′

3).

Lemma 4 provides the key tool to design the follow-
ing O(n log n) time algorithm for computing a sepa-
rating zigzag Z = (`1, s, `2) for R and B (if it exists).

Zigzag-algorithm
Input: R and B
Output: a separating zigzag Z = (`1, s, `2), or re-

port that none exists

1. Compute CH(R), CH(B), RI , BI , CH(RI),
CH(BI), and IB,R. Check whether IB,R ∈
{0, 2, 4, 6}, and compute the intersecting edges
of CH(R) and CH(B). Check that CH(RI) or
CH(BI) are monochromatic. For RI = {r} and
BI = {b}, do as follows: If r ∈ CH(R) and
b ∈ CH(B), then R and B are zigzag separable
and it is easy to see how to compute the sepa-
rating zigzag. Analogously if r ∈ CH(R) and b
is interior to CH(B) or vice versa. From now on
assume that |RI | ≥ 2 or |BI | ≥ 2.

2. Let P be any of the polygons: CH(RI), CH(BI),
CH(R′1), CH(R′2), CH(R′3), CH(B′

1), CH(B′
2),
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or CH(B′
3), with their interior points. Do the

following:

(a) Sort the points in (R ∪ B) − P by a coun-
terclockwise rotational sweep over P with
an oriented supporting line `s according to
Lemma 4.

(b) Do a second rotational sweep over P .
Each time `s hits a red or blue point of
(R ∪ B) − P , maintain and update the
convex hulls CH(R2), CH(B1) (CH(R1),
CH(B2)) of the red and blue points on the
left (right) side of `s in O(log n) time [9].
In O(log n) time, check the linear separabil-
ity between CH(R2) and CH(B1), and be-
tween CH(R1) and CH(B2), and compute
their respective supporting lines (Figure 4).
In the affirmative case, a separating zigzag
is found.
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Figure 4: Supporting lines between monochromatic
convex hulls.

To prove the Ω(n log n) time lower bound for decid-
ing the zigzag separability, we reduce the strip separa-
bility problem [1] to the zigzag separability problem.

Theorem 5 Computing a separating zigzag for R
and B requires Θ(n log n) time.

3 Separability by a 2-Level Tree

We turn now to the problem of computing a separat-
ing 2-level tree T = (`1, `0, `2) for R and B, where `0,
`1, and `2 are the oriented line, the ray on the left side
of `0, and the ray on the right side of `0, respectively
(recall Figure 1). Let `′1 (`′2) be the line containing `1
(`2). Denote by m(`) the slope of `. Let p (q) be the
intersection point of `0 and `1 (`2). T splits the plane
into four convex regions.

Criteria. The following criteria provide a system-
atic classification of the separating 2-level trees: (1)
m(`0) > 0, m(`0) < 0, or `0 is horizontal or vertical.
(2) Relative position of p and q along `0: p ¹ q or
q ¹ p. (3) Slopes of `1 and `2 with respect to `0. (4)
Different color assignments to the convex regions.

Classification. We reduce to the following cases:
(1) Slope of `0: we only consider the m(`0) ≥ 0 case.

The configuration of points where m(`0) < 0 can be
analyzed by rotating this configuration by 90 degrees
and applying the m(`0) > 0 case (Figure 5); the case
`0 vertical is symmetric to the `0 horizontal case, by
a 90-degree rotation. (2) Relative position of p and
q: we only study the case q ¹ p. By applying sym-
metry with respect to a vertical line, followed by a
90-degree rotation, we get the case p ¹ q (Figure 5).
(3) If two consecutive regions have the same color, it
corresponds to some of the following criteria: linear,
zigzag (p 6= q), or wedge separability (p = q) which
can be solved in Θ(n log n) time [1, 6, 7]. Thus, we
assume that the colors alternate, `0 has positive slope
or is horizontal, and q ¹ p.
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Figure 6: Configurations for m(`0) > 0 and q ¹ p.

For an easier analysis of the point configurations
we refine the four cases in Figure 5 for q ¹ p into
the seven cases in Figure 6 which can be reduced as
follows: case (d) is obtained from case (b) by a 180-
degree rotation; case (e) is obtained from case (c) by
a 180-degree rotation; and case (g), where `′2 intersect
`1, is obtained from case (f), where `′1 intersect `2, by
a 180-degree rotation. Thus, we only consider the four
types (1), (2), (3), and (4) of 2-level trees in Figure 7
with a concrete assignment of colors. For types (2),
(3), and (4), the line `′1 always intersects `2.

We design algorithms for the types of 2-level trees
T = (`1, `0, `2) illustrated in Figure 7. From now on,
we assume that R and B are not separable by a line,
wedge, strip, zigzag, or convex polygonal chain. The
following lemma is straightforward.
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Figure 7: The 4 types of 2-level trees up to symmetry.

Lemma 6 If R and B are separable by a 2-level tree,
then IB,R ∈ {0, 2, 4, 6}, where IB,R is the number of
intersections between pairs of edges of CH(B) and
CH(R).

In the full paper we prove:

Lemma 7 If R and B are separable by a 2-level tree
T = (`0, `1, `2), then it holds that `0 is a supporting
line of CH(R1) or CH(R2), and `′1 (`′2) is a common
supporting line of CH(R1) and CH(B1) (CH(R2)
and CH(B2)).

An overview of algorithm is: Compute a line that
classifies/separates one of the point sets (say R) into
subsets R1 and R2, and use this classification to look
for a classification of B into subsets B1 and B2 accord-
ing to a 2-level tree. We present an O(n log n) time
algorithm for 2-level trees of type (1), and we show
an O(n2) time algorithm for 2-level trees of types (2),
(3), and (4).

Theorem 8 Computing all the separating 2-level
trees for R and B can be done in O(n2) time and
space.

In the full paper we consider also 3 or 4 colors:

Theorem 9 A separating 2-level tree for three col-
ored sets of n points can be computed in Θ(n log n)
time. For four colored sets of n points it can be com-
puted in O(n) time.

4 k-Level Trees

We consider separating (k ≥ 3)-level trees for R and
B. A separating O(log n)-level tree for R and B can
be computed using the ham-sandwich cut theorem as
follows: Compute a line yielding an equitable bipar-
tition B1 ∪ R1, B2 ∪ R2 of B ∪ R, then proceed re-
cursively on each part until we get monochromatic
subsets. At the end we get a k-level tree for n = 2k.
Since n ≤ 2O(log n), k is O(log n).

A k-level tree produces a subdivision of the plane
into monochromatic convex cells, bounded by at most
k lines. From the

(
n
2

)
lines we get

((n
2)
k

)
= O(nO(k))

cells. In O(nO(k)) time we can compute all the cells
and check which are monochromatic. Then, we use a

dynamic programming algorithm to compute a min-
imum k-level tree for R and B in O(nO(k)) time.
This yields a quasi-polynomial time algorithm (since
k = O(log n)).

Theorem 10 A separating k-level tree for R and B
can be computed in O(nO(k)) time.

On the other hand, there exist point configurations
such that the depth of the minimum k-level tree is
k = Ω(log n). See the full paper.

5 Separability With Axis-Parallel Partitions

In the full paper we prove:

Theorem 11 A separating axis-parallel lines 2-level
tree for R and B can be computed in Θ(n) time.
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Order types of segments in floorplan partitions

Andrei Asinowski∗ Gill Barequet† Toufik Mansour‡ Ron Y. Pinter§

Abstract

Floorplan partitions, whose generation is a critical
stage in e.g. integrated circuit layout and in archi-
tectural design, give rise to several interesting or-
ders. Ackerman, Barequet and Pinter studied the or-
ders induced by the neighborhood relations between
rectangles forming a partition, and obtained a natu-
ral bijection between them and Baxter permutations
(that can be described as (2-41-3,3-14-2)-avoiding
permutations). In the present paper, we study or-
ders induced by the neighborhood relations between
segments forming such partitions, and show a natu-
ral bijection between these order types and another
family of permutations, namely of those avoiding
(2-14-3,3-41-2), and investigate related questions.

1 Introduction: Neighborhood relations between

rectangles; R-permutations

In [1], Ackerman, Barequet and Pinter studied floor-
plan partitions and a representation of neighborhood
relations between rectangles in such partitions in
terms of permutation patterns.

A floorplan partition is a partition of a rectangle
into smaller interior-disjoint rectangles. It is required
that segments forming the partition do not cross, and
a meeting of segments can have one of the following
forms: ⊣, ⊥, ⊢, ⊤ (but not +). In particular, this
implies that if the number of segments in a floorplan
partition P is n, then the number of rectangles in P

is n + 1.

Neighborhood relations of rectangles forming the
partition are defined as follows. A rectangle A is a
left-neighbor of B if there is a vertical segment in the
partition that contains the right side of A and the left
side of B. A relation A is to the left of B, denoted by
A ← B, is defined to be the transitive closure of the
relation A is a left neighbor of B. We denote: A↞ B

if A = B or A← B.

∗Department of Mathematics, Technion - Israel Institute of
Technology. E-mail andrei@tx.technion.ac.il.

†Department of Computer Science, Technion - Israel In-
stitute of Technology, and Department of Computer Sci-
ence, Tufts University, Medford, MA 02155. E-mail bare-

quet@cs.technion.ac.il.
‡Department of Mathematics, University of Haifa, Israel.
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The terms A is a below-neighbor of B, and A is
below B (denoted by A ↓ B) are defined similarly. We
also denote: A ↡ B if A = B or A is below B.

Two partitions are considered identical if they can
be obtained from each other by a continuous transfor-
mation that does not change neighborhood relations
of each rectangle. See Fig. 1 for an example (observe
in this figure A ↓D, B ← C).

D

A

D

B

C

B

A C

Figure 1: Two representations of the same floorplan
partition.

The following results are obtained in [1]. Let P be
a floorplan partition. Any two different rectangles A

and B in P are in exactly one neighborhood relation:
either A← B, or B ← A, or A ↓ B, or B ↓ A. It follows
that the relations � and � between rectangles of P

defined by

A� B if A = B, or A← B, or A ↓ B,
A� B if A = B, or A← B, or B ↓ A

are linear orders. Each of them can be used for la-
beling the rectangles of P by 1,2, . . . , n + 1. For ex-
ample, in the � order, the rectangle in the lower left
corner will then be labeled 1, and the rectangle in
the upper right corner n + 1. Let R(P ) be the se-
quence a1, a2, . . . , an+1, where ai is the label in the
� order of the rectangle which is labeled i in � or-
der, for all 1 ≤ i ≤ n + 1. Then R(P ) is a permuta-
tion of [n + 1] = {1,2, . . . , n + 1}, we shall call it the
R-permutation corresponding to P . Loosely speak-
ing, R(P ) is determined by labeling the rectangles
according to the � order, and then reading these la-
bels passing the rectangles according to the � order.
Fig. 2 shows a floorplan partition and the correspond-
ing R-permutation. The main result of [1] is a theo-
rem which states that for any floorplan partition P ,
the permutation R(P ) is a Baxter permutation (that
is, a (2-41-3,3-14-2)-avoiding permutation1); further-
more, the correspondence P ↦ R(P ) is a natural bi-
jection: all the information about the neighborhood

1This kind of notation is discussed in Section 3.1.
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Figure 2: Constructing the R-permutation corresponding to a floorplan partition.

relations between rectangles in P can be read from
R(P ).

2 Neighborhood relations between segments; S-

permutations

2.1 Four orders of segments: ↞, ↡, � and �

Similarly to the described above, in our work we define
and study neighborhood relations between segments

which form a floorplan partition P .
A segment A is a left neighbor of a segment B if

one of the following holds:

• A and B are vertical, and there is a rectangle of
P such that its left side is included in A and the
right side is included in B; or

• A is vertical, B is horizontal, and the left end-
point of B lies in A; or

• A is horizontal, B is vertical, and the right end-
point of A lies in B.

Several examples are shown in Fig. 3.

I

J
J

I

I I J

J

Figure 3: The segment A is a left neighbor of the
segment B (several cases).

A relation A is to the left of B, denoted by A← B

is the transitive closure of the relation “A is a left
neighbor of the segment B”. We denote: A ↞ B if
A = B or A← B.

The terms: A is a below-neighbor of B and; A is
below B (and then B is above A) (denoted by A ↓ B),
are defined similarly. Denote: A ↡ B if A = B or
A ↓ B.

Similarly to the facts for the corresponding orders
between rectangles, we prove that the relations↞ and
↡ are partial order relations, and that every two dif-
ferent segments, A and B, in a floorplan partition P ,

are in precisely one of these relations: either A ← B,
or B ← A, or A ↓ B, or B ↓ A.

Finally, we define two relations � and � between
segments of P as follows:

A� B if A = B, or A← B, or A ↓ B,
A� B if A = B, or A← B, or B ↓ A.

These relations � and � are linear orders.

2.2 S-permutations

Let P be a floorplan partition of a rectangle with
n segments. Let S(P ) be the sequence b1, b2, . . . , bn

where bi is the label in the � order of the segment
which is labeled i in the� order, for all 1 ≤ i ≤ n. It is
clear that S(P ) is a permutation of [n] = {1,2, . . . , n};
we shall call it the S-permutation of P and denote it
by S(P ).

Thus, we assign a permutation to a partition in a
way similar to that from [1], but this time we use
not rectangles but segments. Note that S(P ) is a
permutation of [n], while R(P ) is a permutation of
[n + 1].

If a segment of a floorplan partition P is labeled
j in the � order and labeled i in the � order, then
S(P )(i) = j. In other words, the graph2 of S(P ) has
the point (i, j) which will be denoted by Ni.

Fig. 4 shows a partition P with segments labeled
in the form (i, j) where j is the label of a segment
according to the � order, and i is its label according
to the � order, and the graph of S(P ).

3 Our Results

3.1 (2-14-3,3-41-2)-avoiding permutations

First we introduce a family of permutations that will
appear in the main result.

We say that a permutation π = a1a2 . . . an is
(2-14-3,3-41-2)-avoiding if there are no 1 ≤ i1 < i2 <

i3 < i4 ≤ n such that i3 = i2 + 1 and either π(i2) <
π(i1) < π(i4) < π(i3) or π(i3) < π(i4) < π(i1) < π(i2).

2For π, a permutation of [n], the graph of π is the point set
{(i, π(i)) ∶ i ∈ [n]}.
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Figure 4: A partition P and the corresponding S-permutation S(P ).

In other words, π does not contain a subpermutation
isomorphic to 2143 or to 3412 so that the labels cor-
responding to 1 and 4 are adjacent.

This is a special case of so-called dashed notation in
permutation patterns. See [3] for a general definition
and many results concerning generalized permutation
patters.

3.2 A bijection between order types of segments

in floorplan partitions and (2-14-3,3-41-2)-
avoiding permutations

Our main result is the following two theorems:

Theorem 1 Let P be a floorplan partition. Then

S(P ) is a (2-14-3, 3-41-2)-avoiding permutation.

Theorem 2 For each π, a (2-14-3,3-41-2)-avoiding

permutation of [n], there exists a floorplan partition

P with n segments such that S(P ) = π.

In other words, there is a bijection between or-
der types of segments in floorplan partitions and
(2-14-3, 3-41-2)-avoiding permutations. Compare
this with the result from [1] which says that there is a
bijection between order types of rectangles in floor-
plan partitions and Baxter permutations (which are
described in the dashed notation as (2-41-3, 3-14-2)-
avoiding permutations).

3.3 Relations between R-permutations to S-

permutations

Let P be a floorplan partition. We show how S(P )
is related to R(P ). The following property of Baxter
permutations will be used.

Proposition 3 Let ρ be a Baxter permutation of

[n + 1]. For each i, 1 ≤ i ≤ n there exists a unique

ji, 1 ≤ ji ≤ n, such that:

• For i with ρ(i) < ρ(i + 1) we have ρ(i) ≤ ji <

ρ(i + 1) and ρ−1(ji) ≤ i < ρ−1(ji + 1);

• for ρ(i) > ρ(i+ 1) we have ρ(i+ 1) ≤ ji < ρ(i) and

ρ−1(ji + 1) ≤ i < ρ−1(ji).
The relation of S(P ) to R(P ) is the following:

Theorem 4 Let P be a floorplan partition, and let

ρ = R(P ). For each i, let ji be as in Proposition 3,

with respect to ρ. Then S(P ) = j1, j2, . . . , jn.

It is convenient to draw the graphs of R(P ) and S(P )
on the same diagram where the points of the graph of
R(P ) are in the centers of the grid squares, and the
points of the graph of S(P ) are in the grid nodes, see
Fig. 5 (the points of the graph of R(P ) are black, the
points of the graph of S(P ) are white).

3.4 Which partitions have the same S-

permutation

Let P1 and P2 be two floorplan partitions. We shall
see when we have S(P1) = S(P2).

We first characterize the floorplan partitions whose
S-permutation is 123 . . . n. Such a partition will be
called a (separate) ascending F-block of the size n+1.
In such a partition, all vertical segments extend from
the lower to the upper side of the border, and be-
tween a pair of adjacent vertical segments there is at
most one horizontal segment. Therefore an ascend-
ing F-block consists of several rectangles that extend
from the lower to the upper side of the boundary and
several pairs of rectangles whose union is a rectan-
gle that extends from the lower to the upper side of
the border. Fig. 6 shows several F-blocks of the size
5. Descending F-blocks, which are partitions whose S-
permutation is n . . . 321, are similarly described. Two
F-blocks are equivalent if have the same size and if
they are both ascending or both descending.

Let now P be any floorplan partition. We define
an F-block in P as a set of rectangles in a partition,
whose union is an F-block, as defined above.
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Figure 5: A partition P with labeling of rectangles (1) and with labeling of segments (2); R(P ) (black points)
together with S(P ) (white points).

Figure 6: Five (out of eight) ascending F-blocks for
n = 4, and their R-permutations.

Theorem 5 Let P1 and P2 be two floorplan parti-

tions with n segments. Then S(P1) = S(P2) if and

only if P1 and P2 may be obtained from each other

by replacing several F-blocks by equivalent F-blocks.

3.5 Other results

Other results in this work include:

• Relations between rectangles and segments in a
floorplan partition. For example, we show how to
see from R(P ) and S(P ) what segments contain
the sides of a specified rectangle.

• Enumerating issues: a generating tree for
the enumerating sequence for (2-14-3,3-41-2)-
avoiding permutations of [n] and several func-
tional equations related to its generating func-
tion. Yet the question of finding an explicit for-
mula for the number of (2-14-3,3-41-2)-avoiding
permutations of [n] remains open.

• The case of guillotine partitions. The family
of permutations which correspond to the order
types induced by segments in guillotine parti-
tions, is that of (2-14-3,3-41-2,2-4-1-3,3-1-4-2)-

avoiding permutations. The enumeration is easy
in this case.

• A multidimensional generalization of the previ-
ous item: guillotine partitions of a d-dimensional
box. Here we have d−1-dimensional cuts instead
of segments, and neighborhood relations between
them are naturally defined. We prove that the
number of order types induced by cuts in guillo-
tine partitions of a d-dimensional box with n cuts
is

n

∑
k=0

n−k

∑
j=0

(−1)n−k−jck(2k + j

j
)(k + 1 + j

n − k − j
)(d − 1)n−j.

(A formula for the number of order types of rect-
angles in guillotine partitions of a d-dimensional
box with n cuts was found by Ackerman et al.
in [2].)
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The geodesic diameter of polygonal domains

Sang Won Bae∗ Matias Korman† Yoshio Okamoto‡

Abstract

This paper studies the geodesic diameter of polyg-
onal domains having h holes and n corners. For
simple polygons (i.e., h = 0), it is known that the
geodesic diameter is determined by a pair of corners
of a given polygon and can be computed in linear
time. For general polygonal domains with h ≥ 1,
however, no algorithm for computing the geodesic di-
ameter was known prior to this paper. We present
first algorithms that compute the geodesic diameter of
a given polygonal domain in worst-case time O(n7.73)
or O(n7(log n + h)). The algorithms are based on
new geometric observations, part of which states as
follows: the geodesic diameter of a polygonal domain
can be determined by two points in its interior, and in
that case there are at least five shortest paths between
the two points.

1 Introduction

In this paper, we address the geodesic diameter prob-
lem in polygonal domains. The geodesic distance
d(p, q) between any two points p, q in a polygonal
domain P is defined as the (Euclidean) length of a
shortest obstacle-avoiding path between p and q. The
geodesic diameter diam(P) of a polygonal domain P

is defined as diam(P) := maxs,t∈P d(s, t). A pair
(s, t) of points in P that realizes the geodesic diame-
ter diam(P) is called a diametral pair. The geodesic
diameter problem is to find the value of diam(P) and
a diametral pair.

For simple polygons (i.e., h = 0), the geodesic di-
ameter has been extensively studied and fully under-
stood. Chazelle [2] provided the first O(n2)-time al-
gorithm computing the geodesic diameter of a sim-
ple polygon, and Suri [9] presented an O(n log n)-time
algorithm that solves the all-geodesic-farthest neigh-
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bors problem, computing the farthest neighbor of ev-
ery corner and thus finding the geodesic diameter. At
last, Hershberger and Suri [5] showed that the diam-
eter can be computed in linear time using their fast
matrix search technique. On the other hand, to the
best of our knowledge, no algorithm for computing
diam(P) has yet been discovered when P is a polyg-
onal domain having one or more holes (h ≥ 1).

This fairly wide gap between simple polygons and
polygonal domains is seemingly due to the unique-
ness of the shortest path between any two points; it
is well known that there is a unique shortest path
between any two points in a simple polygon [4]. Us-
ing this uniqueness, one can show that the diameter
is indeed realized by a pair of corners in V ; that is,
diam(P) = maxu,v∈V d(u, v) if h = 0 [5, 9]. For gen-
eral polygonal domains with h ≥ 1, however, this is
not the case. In this paper, we exhibit several ex-
amples where the diameter is realized by non-corner
points on ∂P or even by interior points of P (see Fig-
ure 1). This observation also shows an immediate
difficulty in devising any exhaustive algorithm since
the search space like ∂P or the whole domain P is
not discrete.

In this paper, we present the first algorithms that
compute the geodesic diameter of a given polygonal
domain in O(n7.73) or O(n7(log n + h)) time in the
worst case. We also show that for small constant h

the diameter can be computed much faster.

2 Preliminaries

We are given as input a polygonal domain P with h

holes and n corners. More precisely, P consists of an
outer simple polygon in the plane R

2 and a set of h

(≥ 0) disjoint simple polygons inside the outer poly-
gon. As a subset of R

2, P is the region contained in
its outer polygon excluding the interior of the holes;
thus P is a bounded, closed subset of R

2. The bound-
ary ∂P of P is regarded as a series of obstacles so
that any feasible path inside P is not allowed to cross
∂P . Note that some portion or the whole of a feasible
path may go along the boundary ∂P . The length of
a path is the sum of the Euclidean lengths of its seg-
ments. It is well known from earlier work that there
always exists a shortest (feasible) path between any
two points p, q ∈ P [7]. The geodesic distance, de-
noted by d(p, q), is then defined to be the length of a
shortest path between p ∈ P and q ∈ P .
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Figure 1: Three polygonal domains where the geodesic diameter is determined by a pair (s∗, t∗) of non-corner points;
Gray-shaded regions depict the interior of the holes and dark gray segments depict the boundary ∂P . Recall that P , as
a set, contains its boundary ∂P . (a) Both s∗ and t∗ lie on ∂P . There are three shortest paths between s∗ and t∗. In this
polygonal domain, there are two (symmetric) diametral pairs. (b) s∗ ∈ ∂P \ V and t∗ ∈ intP . Three triangular holes
are placed in a symmetric way. There are four shortest paths between s∗ and t∗. (c) Both s∗ and t∗ lie in the interior
intP . Here, the five holes are packed like jigsaw puzzle pieces, forming narrow corridors (dark gray paths) and two empty,
regular triangles. Observe that d(u1, v1) = d(u1, v2) = d(u2, v2) = d(u2, v3) = d(u3, v3) = d(u3, v1). s∗ and t∗ lie at the
centers of the triangles formed by the ui and the vi, respectively. There are six shortest paths between s∗ and t∗. More
details on this example can be found in the extended version of this paper [1].

Shortest path map. Let V be the set of all corners
of P and π(s, t) be a shortest path between s ∈ P

and t ∈ P . Then, it is represented as a sequence
π(s, t) = (s, v1, . . . , vk, t) for some v1, . . . , vk ∈ V ;
that is, a polygonal chain through a sequence of cor-
ners [7]. Note that possibly we may have k = 0 when
d(s, t) = ‖s− t‖. If two paths (with possibly different
endpoints) induce the same sequence of corners, then
they are said to have the same combinatorial struc-

ture.

The shortest path map SPM(s) for a fixed s ∈ P is
a decomposition of P into cells such that every point
in a common cell can be reached from s by shortest
paths of the same combinatorial structure. Each cell
σs(v) of SPM(s) is associated with a corner v ∈ V

or s itself, which is the last corner of π(s, t) for any
t in the cell σs(v). In particular, the cell σs(s) is
the set of points t such that π(s, t) passes through no
corner in V and thus d(s, t) = ‖s − t‖. Each edge of
SPM(s) is an arc on the boundary of two incident cells
σs(v1) and σs(v2) and thus determined by two corners
v1, v2 ∈ V ∪ {s}. Similarly, each vertex of SPM(s)
is determined by at least three corners v1, v2, v3 ∈

V ∪ {s}. Note that for fixed s ∈ P a point t that
locally maximizes ds(t) := d(s, t) lies at either (1)
a vertex of SPM(s), (2) an intersection between the
boundary ∂P and an edge of SPM(s), or (3) a corner
in V .

The shortest path map SPM(s) has O(n) com-
plexity can be computed in O(n log n) time using
O(n log n) working space [6]. For more details on
shortest path maps, see [7, 6, 8].

Path-length function. If π(s, t) 6= st, then there are
two corners u, v ∈ V such that π(s, t) is formed as the
union of a shortest path from u to v and two segments

su and vt. Note that u and v are not necessarily
distinct. In order to realize such a path, we assert
that s is visible from u and t is visible from v; thus,
s ∈ VP(u) and t ∈ VP(v), where VP(p) for any p ∈ P

is defined to be the set of all points q ∈ P such that
pq ⊂ P . The set VP(p) is also called the visibility

profile of p ∈ P [3].
We now define the path-length function

lenu,v : VP(u) × VP(v) → R for any fixed pair
of corners u, v ∈ V to be

lenu,v(s, t) := ‖s − u‖ + d(u, v) + ‖v − t‖.

Then, lenu,v(s, t) represents the length of the path
from s to t that has the fixed combinatorial struc-
ture, entering u from s and exiting v to t. Also, unless
d(s, t) = ‖s−t‖ (equivalently, s ∈ VP(t)), the geodesic
distance d(s, t) can be expressed as the pointwise min-
imum of some path-length functions:

d(s, t) = min
u∈VP(s), v∈VP(t)

lenu,v(s, t).

Consequently, we have two possibilities for a diame-
tral pair (s∗, t∗); either we have d(s∗, t∗) = ‖s∗ − t∗‖

or the pair (s∗, t∗) is a local maximum of the lower
envelope of several path-length functions.

3 Properties of Geodesic-Maximal Pairs

We call a pair (s∗, t∗) ∈ P × P maximal if (s∗, t∗)
is a local maximum of the geodesic distance function
d. That is, (s∗, t∗) is maximal if and only if there
are two neighborhoods Us, Ut ⊂ R

2 of s∗ and of t∗,
respectively, such that for any s ∈ Us ∩ P and any
t ∈ Ut ∩ P we have d(s∗, t∗) ≥ d(s, t). For any pair
(s, t), let Π(s, t) = {π1, . . . , πm} be the set of all dis-
tinct shortest paths from s to t, where m denotes the
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(VV) s∗ ∈ V , t∗ ∈ V implies |Π(s∗, t∗)| ≥ 1, |Vs∗ | ≥ 1, |Vt∗ | ≥ 1;

(VB) s∗ ∈ V , t∗ ∈ B implies |Π(s∗, t∗)| ≥ 2, |Vs∗ | ≥ 1, |Vt∗ | ≥ 2;

(VI) s∗ ∈ V , t∗ ∈ intP implies |Π(s∗, t∗)| ≥ 3, |Vs∗ | ≥ 1, |Vt∗ | ≥ 3;

(BB) s∗ ∈ B, t∗ ∈ B implies |Π(s∗, t∗)| ≥ 3, |Vs∗ | ≥ 2, |Vt∗ | ≥ 2;

(BI) s∗ ∈ B, t∗ ∈ intP implies |Π(s∗, t∗)| ≥ 4, |Vs∗ | ≥ 2, |Vt∗ | ≥ 3;

(II) s∗ ∈ intP , t∗ ∈ intP implies |Π(s∗, t∗)| ≥ 5, |Vs∗ | ≥ 3, |Vt∗ | ≥ 3.

Figure 2: Necessary conditions for a pair of points to be maximal.
.

number of shortest paths. Let ui and vi be the first
and the last corners in V along πi from s to t, and let
Vs := {u1, . . . , um} and Vt := {v1, . . . , vm}.

Let E be the set of all sides of P without their
endpoints and B be their union. Note that B = ∂P\V ,
the boundary of P except the corners V .

Theorem 1 Suppose that (s∗, t∗) is a maximal pair
in P and Π(s∗, t∗), Vs∗ , and Vt∗ be defined as above.
The implications of Figure 2 hold. Moreover, each of
the above bounds is best possible by examples.

Due to space constraints proofs of this theorem
is omitted (and can be found in the extended ver-
sion [1]).

4 Computing the Geodesic Diameter

Since a diametral pair is in fact maximal, it falls into
one of the cases shown in Theorem 1. In order to
find a diametral pair we examine all possible scenarios
accordingly.

Cases (V–), where at least one point is a corner in
V , can be handled in O(n2 log n) time by computing
SPM(v) for every v ∈ V and traversing it to find the
farthest point from v, as discussed in Section 2. We
thus focus on Cases (BB), (BI), and (II), where a
diametral pair consists of two non-corner points.

From the computational point of view, the most
difficult case corresponds to Case (II) of Theorem 1;
in particular, the case in which |Π(s∗, t∗)| = |Vs∗ | =
|Vt∗ | = 5. For such a case we do the following: we
choose any five corners u1, . . . , u5 ∈ V (as a candi-
date for the set Vs∗) and overlay their shortest path
maps SPM(ui). Since each SPM(ui) has O(n) com-
plexity, the overlay consists of O(n2) cells. Then, any
cell of the overlay is the intersection of five cells asso-
ciated with v1, . . . , v5 ∈ V in SPM(u1), . . . ,SPM(u5),
respectively. Choosing a cell of the overlay, we get
five (possibly, not distinct) v1, . . . , v5 and thus a con-
stant number of candidate pairs by solving the sys-
tem lenu1,v1

(s, t) = · · · = lenu5,v5
(s, t). We iter-

ate this process for all possible tuples of five corners
u1, . . . , u5, obtaining a total of O(n7) candidate pairs

in O(n7 log n) time. Note that this method also cov-
ers the case of |Π(s∗, t∗)| > 5. Recall that each path-
length function lenu,v is an algebraic function of de-
gree at most 4. Thus, given five distinct pairs (ui, vi)
of corners, we can compute all candidate pairs (s, t) in
O(1) time by solving the system1. Indeed when five
distinct pairs (u1, v1), . . . , (u5, v5) of corners in V such
that lenui,vi

(s∗, t∗) = d(s∗, t∗) for any i ∈ {1, . . . , 5}
are known, their system of equations lenu1,v1

(s, t) =
· · · = lenu5,v5

(s, t) determines a 0-dimensional zero
set corresponding to a constant number of candidate
pairs in intP×intP . The (II) case (in which |Vs∗ | ≤ 4)
can be handled similarly, resulting in O(n6) candidate
pairs.

In order to test the validity of each candidate pair
(s, t), we check the geodesic distance d(s, t) using a
two-point query structure of Chiang and Mitchell [3]:
for a fixed parameter 0 < δ ≤ 1 and any fixed
ǫ > 0, we can construct, in O(n5+10δ+ǫ) time, a data
structure that supports O(n1−δ log n)-time two-point
shortest path queries. Then, the total running time is
O(n7 log n) + O(n5+10δ+ǫ) + O(n7) × O(n1−δ log n).
We set δ = 3

11
to optimize the running time to

O(n7+
8

11
+ǫ).

Also, we can use an alternative two-point query
data structure whose performance is sensitive to the
number h of holes [3]: after O(n5) preprocessing time
using O(n5) storage, two-point queries can be an-
swered in O(log n + h) time.Using this alternative
structure, the total running time of our algorithm be-
comes O(n7(log n + h)). Note that this method out-

performs the previous one when h = O(n
8

11 ).

For Case (BI), we handle only the case of
|Π(s∗, t∗)| = 4 with |Vt∗ | = 3 or 4. For the subcase
with |Vt∗ | = 4, we choose any four corners from V

as v1, . . . , v4 as a candidate for Vt∗ and overlay their
shortest path maps SPM(vi). The overlay, together
with V , decomposes ∂P into O(n) intervals. Then,
each such interval determines u1, . . . , u4 as above, and
the side es ∈ E on which s∗ should lie. Now, we

1Here, we assume that fundamental operations on a con-
stant number of polynomials of constant degree with a constant
number of variables can be performed in constant time.
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have a system of four equations on four variables:
three from the corresponding path-length functions
lenui,vi

which should be equalized at (s∗, t∗) and the
fourth from the supporting line of es. Solving the
system, we get a constant number of candidate max-
imal pairs, again by Theorem 1 and its proof. In to-
tal, we obtain O(n5) candidate pairs. The other sub-
case with |Vt∗ | = 3 can be handled similarly, resulting
in O(n4) candidate pairs. As above, we can exploit
two different structures for two-point queries. Conse-
quently, we can handle Case (BI) in O(n5+

10

11
+ǫ) or

O(n5(log n + h)) time.
In Case (BB) when s∗, t∗ ∈ B, we handle the case

of |Π(s∗, t∗)| = 3 with |Vs∗ | = 2 or 3. For the subcase
with |Vs∗ | = 3, we choose three corners as a candi-
date of Vs∗ and take the overlay of their shortest path
maps SPM(ui). It decomposes ∂P into O(n) inter-
vals. Then, each such interval determines three cor-
ners v1, v2, v3 forming Vt∗ and a side et ∈ E on which
t∗ should lie. Note that we have only three equations
so far; two from the three path-length functions and
the third from the line supporting to et. Since s∗ also
should lie on a side es ∈ E with es 6= et, we need to
fix such a side es that

⋂
1≤i≤3

VP(ui) intersects es. In
the worst case, the number of such sides es is Θ(n).
Thus, we have O(n5) candidate pairs for Case (BB);
again, the other subcase with |Vs∗ | = 2 contributes to
a smaller number O(n4) of candidate pairs. Testing
each candidate pair can be performed as above, result-
ing in O(n5+

10

11
+ǫ) or O(n5(log n + h)) total running

time.
As Case (II) being a bottleneck, we conclude the

following.

Theorem 2 Given a polygonal domain having n cor-
ners and h holes, the geodesic diameter and a di-
ametral pair can be computed in O(n7+

8

11
+ǫ) or

O(n7(log n + h)) time in the worst case, where ǫ is
any fixed positive number.

We can avoid some difficult cases when h is a small
constant based on a simple observation: if there are
two distinct shortest paths between s and t in P , then
we know that there is at least one hole in the region
closed by the two paths. In general, if h < k−1, there
cannot exist two points that have k or more distinct
shortest paths between them.

Theorem 3 Given a polygonal domain having n cor-
ners and h holes, the geodesic diameter and a diame-
tral pair can be computed in the following worst-case
time bound, depending on h.

• O(n) time, if h = 0 (by Hershberger and Suri [5]),

• O(n2 log n) time, if h = 1,

• O(n5 log n) time, if h = 2 or 3,

• O(n7(log n + h)) time, if 4 ≤ h = O(n
8

11 ),

• O(n7+
8

11
+ǫ) time, otherwise.

5 Concluding Remark

It is worth noting that with analysis in Section 4 the
number of geodesic-maximal pairs is shown to be at
most O(n7). On the other hand, one can easily con-
struct a simple polygon in which the number of max-
imal pairs is Ω(n2). An interesting question is how
many maximal pairs are there in a polygonal domain
in the worst case.

Though we, in this paper, have focused on exact di-
ameters only, an efficient algorithm for finding an ap-
proximate diameter would be interesting. Notice that
any point s ∈ P and its farthest point t ∈ P yield a
1

2
-approximate diameter; that is, d(s, t) ≥ 1

2
diam(P).

Also, based on a standard technique using a rectan-
gular grid with a specified parameter 0 < ǫ < 1/2,
one can easily obtain a (1 − ǫ)-approximate diame-

ter in O(( n
ǫ2

+ n2

ǫ
) log n) time. However, breaking the

quadratic bound (in n) for the (1 − ǫ)-approximate
diameter seems a challenge at this stage.
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On the complexity of the edge guarding problem I

Vicente H. F. Batista† Fernando L. B. Ribeiro† Fábio Protti‡

Abstract

We revisit the complexity of the edge guarding prob-
lem on polyhedral terrains. We prove that it is NP-
hard to decide whether there exists an edge set of size
k that covers all of the faces of an n-vertex triangu-
lated terrain. To such end, we introduce the notion of
(F,H)-transversals. Also, we present a family of max-
imal planar graphs on n vertices that require at least
(n − 2)/3 edge guards to be covered. This reduces
the gap between the previously known lower and up-
per bounds on the minimum edge guard set for such
graphs.

1 Introduction

Since its formulation by Victor Klee in the 1970s, the
art gallery problem has stimulated an increasing num-
ber of researchers, notably from the computational
geometry community. The original question asks for
the minimum number of guards that can patrol the in-
terior of a gallery. In its standard version, a gallery is
represented by a simple polygon and guards are placed
at fixed points belonging to this polygon. Chvátal
[4] was the first to prove that bn/3c guards are al-
ways sufficient and sometimes necessary. By using
the fact that the triangulation of a simple polygon is
3-colorable, Fisk [7] designed a simpler and elegant
demonstration for the same problem.
Several generalizations have also been studied, such

as considering polygons with holes and orthogonal
polygons, or allowing guards to patrol along areas of
different shapes. We are concerned with the problem
of guarding polyhedral terrains. A polyhedral terrain
T can be viewed as the graph of a polyhedral function
z = F (x, y), defined over the xy-plane [5]. Given two
points u and v on T , we say that u is visible from
v if the line segment uv does not intersect any point
strictly below T . The visibility region of a point u
is defined by the set of points on T visible from u.
If guards are supposed to have fixed positions, i.e.,
if they cannot move during the surveillance, they are

IThis work has been partially supported by CNPq.
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‡Instituto de Computação, Universidade Federal Flumi-
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called point guards. If we further restrict their posi-
tions to the terrain vertices only, we call them ver-
tex guards. In another interesting variety, called edge
guards, they are allowed to patrol along a straight line,
usually the terrain edges.

Early results on the hardness of guarding polyhe-
dral terrains were presented by Cole and Sharir [5],
who showed that it is NP-complete to determine the
minimum number of vertex guards that collectively
see the whole terrain. Based on such proof, Zhu [13]
showed that it is also NP-complete to compute the
smallest edge guard set. Both works, however, re-
quire the construction of elaborate terrains where a
reduction from 3-SAT is carried out. Employing re-
cent complexity achievements for the cycle transversal
problem on planar graphs, we have succeeded in de-
veloping an improved polynomial reduction that con-
structs a simpler terrain for demonstrating the NP-
hardness of the edge guarding problem.

Regarding lower and upper bounds on the num-
ber of edge guards, Everett and Rivera-Campo [6]
and Bose et al. [2] have simultaneously provided the
best known bounds so far. While any terrain can be
guarded using at most bn/3c edge guards [2, 3, 6],
the corresponding lower bound is only b(4n − 4)/13c
[2]. More recently, Kaučič et al. [9] have claimed to
find an inconsistency in Bose et al. [2]’s lower bound
demonstration, which would weaken it to the value of
b(2n−4)/7c. In response to [9], Bose [1] has presented
a more detailed proof ensuring that his previous result
[2] was in fact correct. Here, we also consider reduc-
ing the gap between the best known lower and upper
bounds so far. In this direction, we show a family of
maximal planar graphs on n vertices whose minimum
edge guard set is of size (n− 2)/3.

2 Preliminaries

Let G = (V,E) be an arbitrary graph, and let G1,
G2 be two subgraphs of G. If G1 and G2 are dis-
joint and there is no edge connecting both, then we
say that G1 and G2 are independent. A collection of
subgraphs of G is independent if their members are
pairwise independent.

Planar 3-SAT2+1. Given a 3-SAT formula ϕ in con-
junctive normal form, its incidence graph is a bipar-
tite graph G[ϕ] := (V,E), with partitions (Vc, Vv),
where the sets Vc and Vv correspond to clauses and
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variables in ϕ, respectively. The edges in G[ϕ] denote
inclusion between clauses and variables. If the graph
G[ϕ] is planar, we say ϕ is a planar 3-SAT instance.
The problem of deciding whether such a formula is
satisfiable is known to be NP-complete [10].

The 3-SAT2+1 problem is a 3-SAT variation charac-
terized by clauses with 2 or 3 literals, whose variables
occur exactly 3 times, twice positively and once neg-
atively. The standard decision problem defined over
these formulas is still NP-complete [11]. Based on ar-
guments from [10] and [11], we can state that Planar
3-SAT2+1 remains hard to solve:

Lemma 1 Planar 3-SAT2+1 is NP-complete.

Triangle transversal. Let G be an arbitrary graph
with no loops and multiple edges, and let H be any
given family of graphs. An H-subgraph of G is an in-
duced subgraph of G isomorphic to an element of H.
Let F be another fixed family of graphs. Then, a col-
lectionX of F -subgraphs of G is an (F,H)-transversal
of G if every H-subgraph in G is intersected by mem-
bers of X. In case F is composed by vertices only, the
set X is simply called an H-transversal.
Given a graph G and an integer k > 0, the problem

of deciding whether G has an H-transversal of size
at most k was proved to be NP-complete [12]. Di-
chotomy results about Ck-transversals were presented
in [8] for bounded degree graphs. In this paper, we
are interested on the case where H consists only of
triangles, and F is composed by edges, i.e., we deal
with (C2, C3)-transversals. For obvious reasons, these
are termed edge-triangle-transversals.

3 Main results

We use the fact that if the polyhedral surface is con-
vex then the visibility region of any vertex is limited
to its incident faces. Thus, the computation of an
edge guard set can be reduced to an edge-triangle-
transversal query on planar triangulations. First, we
show that the decision version of the edge-triangle-
transversal problem restricted to planar graphs is as
hard to solve as Planar 3-SAT2+1, which is guaran-
teed to be NP-complete by Lemma 1.

Theorem 2 The edge-triangle-transversal problem
for planar graphs is NP-complete.

Proof. Clearly, it is in NP. To prove its NP-hardness,
let F be an instance of planar 3-SAT2+1 with variables
x1, x2, . . . , xn and clauses C1, C2, . . . , Cm.

Variables. For each variable xi, we associate a sub-
graph Gi in G, as illustrated in Fig. 1a. Notice that
any transversal of Gi has at least 3 edges because it
has a maximum of three independent triangles. Ob-
serve that if either bi or b′i belongs to a transversal

bi b′i

b′′i

ai a′i

a′′i
(a)

x1 x1

x̄1 x̄2

x2
x2 x̄3 x̄3 x̄4 x̄4

x4
x3

C2

C4

C1

C3

(b)

Figure 1: (a) Subgraph Gi associated with variable xi.
(b) A schematic view of the resulting graph associated
to the Planar 3-SAT2+1 formula (x1∨ x̄2∨x4)∧ (x1∨
x̄3 ∨ x̄4) ∧ (x2 ∨ x3 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x̄3).

together with a′′i , then it will be necessary to use an
additional edge, e.g., b′i, so as to cover the remaining
untouched triangles. Furthermore, if ai is in the same
transversal as b′′i , then we can replace ai with bi with-
out changing the transversal size. The same holds for
a′i and b′i. Thus it is always possible to select either
sets {ai, a′i, a′′i } or {bi, b′i, b′′i }.
The upper vertices of edges bi and b′i, and any ver-

tex of edge a′′i are used as connectors between Gi and
the F clauses. Furthermore, if xi (resp. x̄i) occurs
twice in F then edges bi and b′i correspond to these
occurrences and edge a′′i to the occurrence of its nega-
tion x̄i (resp. xi).

Clauses. For each clause Cj , j = 1, 2, . . . ,m, con-
struct a triangle whose vertices represent its literals.
When the clause has only two literals, we simply add
an artificial vertex, since it has no influence on any
assignment of true values. To finish the reduction, let
k = 3n. Figure 1b illustrates the whole reduction.
Next, it is shown that F is satisfiable if and only if G
has an edge-triangle-transversal of size exactly 3n.
First, suppose F is satisfiable. Let X be an initially

empty transversal. If the variable xi occurs twice with
value true in F , we insert {bi, b′i, b′′i } into X. Other-
wise, we pick {ai, a′i, a′′i }. It is easy to see that every
triangle in G is covered by X and that |X| = 3n.
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Now, suppose X is an edge-triangle-transversal of
G of size 3n. Since each Gi has at most 3 independent
triangles and G has n independent copies of Gi, the
set X is irreducible. The smallest transversal of Gi
can be either {ai, a′i, a′′i } or {bi, b′i, b′′i }. If the first
subset is selected, we assign true to the literals xi
occurring only once. Otherwise, we assign true to the
literals xi with double occurrence. �

Actually, Theorem 2 implies a stronger result that
says the edge-triangle-transversal problem remains
NP-complete even for planar graphs of maximum de-
gree five. It is equally interesting that it remains a
hard computational task when restricted to triangu-
lations.

Theorem 3 The edge-triangle-transversal problem
is NP-complete for maximal planar graphs.

Proof. Let G be an arbitrary planar graph. The
proof consists in transforming G into a maximal pla-
nar graph G′ whose edge-triangle-transversal is triv-
ially determined from any transversal for G.

The triangles in G are kept untouched, while all
the other faces are triangulated as follows. Let f =
(v1, v2, . . . , vs) be a face in G of size s > 3. We begin
by splitting f into two cycles towards a path joining
the vertices v1 and vbs/2c+1. This path is composed by
8 edges, namely, (v1, u1), (u1, u2), . . . , (u7, vbs/2c+1).
This gives rise to two cycles Cr and Cl containing
bn/2c + 8 and n − bn/2c + 8 vertices each. In the
interior of cycle Cr (resp. Cl), we insert vertices r1
and r2 (resp. l1 and l2), which are then connected to
the vertices {v1, v2, . . . , vbs/2c+1} ∪ {u1, u2, u6, u7}
and {vbs/2c+1, vbs/2c+2, . . . , v1} ∪ {u2, u3, . . . , u6},
respectively. Figure 2 illustrates this construction for
4- and 5-faces. All vertices, edges, and faces created
during this step are called false. Otherwise, we call
such entities true.
Let ` denote the number of non-triangular faces in
G, and let G′ be a maximal planar graph resulting
from the construction process just described. Given
any positive integer k, we claim that G has an edge-
triangle-transversal of size at most k if and only if G′
has an edge-triangle-transversal of size not exceeding
k + 2`.
Suppose X is an edge-triangle-transversal for G of

size k. Let X ′ = X ∪ E∗, where E∗ is the set of all
edges of type (r1, r2) and (l1, l2) (see Fig. 2). We claim
that X ′ is an edge-triangle-transversal of G′. First,
observe that every false face has a vertex in E∗, while
the true ones are touched by elements ofX. Moreover,
the following holds: |X ′| ≤ |X|+ |E∗| ≤ k + 2`.

We shall now assume that there exists an edge-
triangle-transversal X ′ for G′ of size at most k + 2`.
Clearly, even if all true edges are selected, there will
be uncovered faces (see unshaded areas in Fig. 2).
The key observation is that, in any circumstance, we

v4v1

v3v2

r1

l1

r2

l2

u1

u2

u3

u4

u5
u6

u7

(a) 4-face.

v2

v3

v4 v5

v1

r1

r2

l1

l2

u1u2
u3

u4
u5u6

u7

(b) 5-face.

Figure 2: Examples of constructions of triangulations
for (a) 4-faces and (b) 5-faces. The shaded regions
indicate the sole triangles covered by edges with end
points at the outer cycle.

can always choose the edges belonging to E∗. Thus,
true faces must be covered only by true edges. Hence
X = X ′ \ E∗ is a transversal of G. Since E∗ has
exactly 2` edges, the inequality |X| ≤ k holds. �

Now, the computational complexity of the edge
guarding problem over polyhedral terrains turns out
to be easily characterizable:

Theorem 4 The edge guard problem for triangu-
lated polyhedral terrains is NP-hard.

Proof. Given a maximal planar graph G, we con-
struct a terrain T as follows. For each face f in G,
insert a point p at its centroid and connect it to the
boundary vertices of f . Then, slightly translate p by
h along the z direction, with h < 0, forming a small
pit. For convenience, the new edges are labeled false.
Otherwise they are called true.

LetX be an edge-triangle-transversal of G with size
k > 0. We claim that the collection X is an edge-
triangle-transversal of G if and only if it is also an
edge guard set for T .
Since every pit in T can be entirely seen from its

rim, the edges in X are always sufficient to cover the
whole terrain T constructed as above. Suppose now
that X ′ is an arbitrary guard set for T returned by
some algorithm, for example, a standard greedy one.
Mark the edges in X ′ as true or false. Note that any
true edge in X ′ covers at least the same number of
faces as a false one. Thus, it is likely that an optimal
solution for T consists only of true edges. Otherwise,
observe that we can always replace a false edge in X ′
by any true edge incident to it. Hence X = X ′ is an
edge-triangle-transversal of G. �

Lower bound. In Refs. [2] and [3], it was argued
whether it would be possible to reduce the gap be-
tween sufficiency and necessity for edge guarding
triangulated terrains. Alternatively, whether there
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· · ·×(k − 3)

Figure 3: Planar triangulation with n = 3k+2 vertices
that requires (n − 2)/3 edge guards, where k is the
number of independent triangles.

would be a planar triangulation on 9 vertices requir-
ing exactly 3 edge guards, because the gap between
b(4n − 4)/13c and bn/3c is only stressed for graphs
with more than 8 vertices. A brute-force solution
would be to enumerate all planar triangulations on
n vertices, to compute all possible edge guard sets for
each one of them, and check if their sizes are all above
b(4n − 4)/13c. We have observed, however, that the
two-connected planar graph presented in [2] for prov-
ing the best known lower bound so far could be tri-
angulated without the addition of new vertices, and
thus extending this result to planar triangulations:

Theorem 5 There exists a maximal planar graph on
n vertices, with n ≡ 2 mod 3, that requires bn/3c
edge guards.

Proof. We proceed by modifying the graph presented
in [2, Fig. 6]. It is composed by k disjoint triangles ar-
ranged side-by-side, and two vertices, one above and
the other below the base line where these triangles
are placed. Additionally, we insert k−1 edges linking
the upper and the lower vertices, passing through the
regions between pairs of consecutive triangles. The re-
sulting maximal planar graph G is composed by 3k+2
vertices, as shown in Fig. 3. Since G has a maximum
of k independent triangles, the size of any edge guard
set is at least (n− 2)/3. �

4 Conclusion

Recent results in graph theory [8] have motivated us
to provide a purely combinatorial proof for the edge
guarding problem. In fact, our results also extend to
the vertex guard version, after contracting some edges
in the gadgets we have designed.

In the proof of Theorem 2, we have produced a pla-
nar graph whose maximum degree does not exceed 5.
An interesting open question is whether there exists
an equivalent bound for maximal planar graphs.
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From invariants to predicates: example of line transversals to lines

Guillaume Batog∗

Abstract

This work explores a method that reduces the design
of evaluation strategies for geometric predicates to the
computation of polynomial invariants of a group ac-
tion. We apply it to the classical problem of count-
ing line transversals to lines in P3 and capture poly-
nomials previously obtained by more pedestrian ap-
proaches.

1 Introduction

In computational geometry, algorithms are often de-
signed over the reals but are implemented in floating-
point arithmetic, which may lead to inconsistent de-
cisions. To ensure correctness, refinement strategies
or exact computations can be used but they may be-
come very time–consuming, depending on the eval-
uation strategy of the decision problem or predicate.
Consider for example the problem of deciding if four
points in the plane are cocyclic. One approach is to
compute the circumscribed circle of three points and
test if the fourth point lies on it. Another approach
consists in testing the vanishing of the determinant∣∣∣∣∣∣∣∣

1 x1 y1 x2
1 + y2

1

1 x2 y2 x2
2 + y2

2

1 x3 y3 x2
3 + y2

3

1 x4 y4 x2
4 + y2

4

∣∣∣∣∣∣∣∣
where (xi, yi) are the coordinates of the points.
A major question is to find efficient and robust eval-
uation strategies for a given predicate.

We are here interested in strategies involving only
polynomial evaluations from the inupts of a predicate.
Robustness issues are guaranted through exact com-
putation paradigm [10] and efficiency can be improved
by using simplest possible polynomials. An imme-
diate approach to find such polynomials consists in
translating the problem into equations and extract-
ing polynomial constraints that characterize the solu-
tions of the resulting system. This has to be carried
out carefully in order to avoid polynomials of huge
degrees. Consider for example the problem of count-
ing line transversals to four lines of R3 given as pairs
of points. There may be 0, 1, 2 or infinitely many
ones. Indeed, consider the ruled quadric generated by
three input lines: the fourth line intersects it in at

∗LORIA–Nancy 2 Univ., VEGAS Project, batog@loria.fr

most two points or is contained in it. While the naive
approach gives polynomial of degree 24 [3], the pred-
icate can be decided with polynomials of degree at
most 12 [2]. This gap can become more substantial:
for ordering planes through a line `, each contain-
ing a line transversal to three lines and `, degree 144
in [3] collapses to degree 36 in [2]. These two ad-hoc
approaches provide polynomials whose “complexity”
strongly depends on the analytical formulation of the
problem.

A general approach mainly based on the geome-
try of the predicate would be more satisfying. From
this perspective, Petitjean [8] proposed an invariant–
based method he applied to the problem of deciding
the real intersection type of two projective planar con-
ics (four simple points, two double points, a quadru-
ple point,etc there are altogether 12 different types).
What are the symmetries of the problem? Given two
conics, observe that their intersection type is left un-
changed under any simultaneous projective transfor-
mation of the two conics. The same is true when
exchanging both conics or, more generally, replacing
their equations by linear combinations of them. All of
these symmetries are structured in a group that acts
on the set of pairs of conics: any element of the group
maps any pair of conics to another pair with the same
intersection type. All pairs of conics obtained in this
way from a fixed pair form an orbit of the group ac-
tion. Invariant theory provides polynomial invariants
that discriminate these orbits, and therefore distin-
guish intersection types.

In this work, we unfold the invariant–based method
of [8] on the problem of counting line transversals to
four linearly independent lines in P3. It provides the
same polynomial of degree 12 in [2] in a more geo-
metric manner and yields a better understand of the
geometry of the problem. In this article, we focus on
the construction of an appropriate group action and
leave apart the computation of its polynomial invari-
ants. For the latter problem, the interested reader
will find an introduction in [6] and two different tech-
niques in [4] and [5] among various existing strategies.

2 Preliminaries

Notations. The general linear group GLn over R is
the set of real invertible matrices of size n. (By ex-
tension, GL(W ) is the set of invertible linear trans-
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formations of the vector space W .) We denote by
Pn = Pn(R) the real projective space of dimension n
whose points are represented by homogeneous coor-
dinates [x0 : . . . : xn]. (By extension, PW represents
the quotient of the vector space W by nonzero scal-
ings.) A collineation (or projective transformation)
of Pn is defined by a matrix M of GLn+1: it maps
[x0 : . . . : xn] to [Mx0 : . . . : Mxn]. The set of hyper-
planes of Pn is denoted by Pn?. The duality operator
? : Pn → Pn? maps a point [x0 : . . . : xn] to the hy-
perplane defined by the equation

∑n
i=0 xiyi = 0. A

correlation of Pn is the composition of a collineation
with the duality operator.

2.1 Invariants of group actions

A transformation group is a subset of GLn containing
the identity matrix and closed by multiplication. In
what follows, G will denote an abstract group but it is
sufficient to restrict to transformation groups for the
sake of understanding.

Group action. The action ρ of a group G on a set
X is denoted by ρ : G 	 X and is defined as follows:
all ρ(g) with g ∈ G are bijections of X such that ρ(1)
is the identity map on X and ρ(gg′) = ρ(g) ◦ ρ(g′) for
any g, g′ ∈ G. For example, the group of isometries
preserving a cube acts on the set of diagonals of that
cube: applying two successive isometries on the cube
induces a composition of two permutations of its di-
agonals. A linear group action of G on a vector space
W is a group action ρ of G on W where the bijections
ρ(g) on W are linear1 (i.e. elements of GL(W )). We
denote it by ρ : G→ GL(W ).

Consider a fixed element x in X and form the set of
all y ∈ Y that can be obtained from x by a map ρ(g)
(with g ∈ G): this defines an orbit of ρ. These orbits
form a partition of X. In the previous example, there
is just one orbit because any diagonal of the cube can
be mapped to any other one by an isometry preserving
the cube. Let us give two another examples.

Example 1. Let G be the group of affine motions2 of
the real line R and ρ : G 	 R2 its action on pairs of
points defined by ρ(g)(x, y) = (g(x), g(y)). Figure 1
represents the orbits of ρ where we restrict to differ-
ent subgroup of G. We observe that the smaller (for
inclusion) the group, the larger the number of orbits.

Example 2. Consider the action S2
2 of GL2 on the

space S2(R2) of binary quadratic forms, defined by:

S2
2

(
α β
γ δ

)−1

(ax2 + 2bxy + cy2) = āx2 + 2b̄xy + c̄y2

1W is a representation of the group G in other words.
2An affine motion g of Rn is represented by a matrix of

GLn+1 in the form
` 1 0

~t M

´
where ~t is the translation vector of

g and M ∈ GLn its vector part. We define det g = detM .

x

y

y 6=x

(a) affine motions

x

y

y>x

y<x

(b) non-reversing
affine motions

x

y

(c) rigid motions

Figure 1: Orbits of ρ from Example 1.

where

 ā = α2a+ 2αγb+ γ2c
b̄ = αβa+ (αδ + βγ)b+ γδc
c̄ = β2a+ 2βδb+ δ2c

.

It simply consists of a change of coordinates induced
by g ∈ GL2 on the quadratic form. This action has
three orbits, depending on the number of distinct fac-
tors in which a quadratic form can be factored.

Invariant. Let ρ : G → GL(W ) be a linear group
action of a transformation group G ⊂ GLn. A homo-
geneous polynomial P on W is a (relative) invariant
for ρ if there exists λ ∈ Z such that

∀ (g, w) ∈ G×W P (ρ(g)(w)) = (det g)λ P (w). (1)

Some properties of an invariant remains unchanged on
each orbit, as the previous two examples illustrate.

In Example 1, the polynomial P (x, y) = x − y is
invariant for ρ (with λ = 1) since g(x) − g(y) =
(det g)(x − y). If we restrict G to rigid motions (for
which det g = 1), the invariant P is constant on each
orbit and its value discriminates the orbits.

In Example 2, a straightforward computation shows
that the discriminant is a polynomial invariant on
S2(R2) (with λ = 2):

b̄2 − āc̄ = (αδ − βγ)2(b2 − ac).
We observe that the sign (+, −, 0) of this invariant
is constant on each orbit and it entirely characterizes
the orbits.

Covariant. A covariant for ρ : G → GL(W ) is a
polynomial invariant C for some action ρ′ : G →
GL(W × (Rn)m) defined by ρ′(g)(w, x1, . . . , xm) =
(ρ(g)(w), g(x1), . . . , g(xm)). We write C ∼w 0 for
w ∈ W if C(w, x1, . . . , xm) = 0 for all (x1, . . . , xm) ∈
(Rn)m. By definition, either C ∼ 0 or C � 0 on a
whole orbit.

2.2 Line geometry

Plücker quadric. A line ` of P3 can be represented
by its (homogeneous) Plücker coordinates ξ = [ξ0 :
· · · : ξ5] that fullfill the quadratic Plücker relation

q(ξ) = ξ0ξ3 + ξ1ξ4 + ξ2ξ5 = 0. (2)
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It is the equation of a quadric G of P5 called the
Plücker quadric. We denote by γ(`) the Plücker coor-
dinates of a line `. For a line ` in R3, ~v = (ξ0, ξ1, ξ2) is
a direction of ` and (ξ3, ξ4, ξ5) the moment of ~v with
respect to the origin of R3. A complete presentation
can be found in [9].

Span of lines. For a subset H ⊂ P5, spanH is the
minimal (for inclusion) projective subspace of P5 con-
taining H. We define the span of a family of lines
as the span of their Plücker coordinates. A family of
k lines is said linearly independent if its span has di-
mension k−1. Any set L of lines contains a family L′
with at most six linearly independent lines and any
line of L is linearly dependent of those of L′.

Conjugation. The quadric q defines a bilinear form
� called side-operator. We can observe that two lines
` and `′ meet if and only if γ(`) � γ(`′) = 0 ([9]).
Given a set H of P5, we define its conjugate as

H◦ = {x ∈ P5 | ∀h ∈ H x� h = 0}.
Geometry of quadratic forms [1, 13.3] shows that H◦

is a subspace of P5 of codimension dim(spanH) and it
satisfies (H◦)◦ = spanH. In terms of transversality,
we immediately have

Observation 1 γ−1(H◦ ∩ G) is the set of line
transversals to all of the lines γ−1(H ∩G).

Transformations preserving G. We here consider G
as a homogeneous subset of R6. A transformation
M ∈ GL6 globally preserves G if and only if there
is µ ∈ R∗ such that q(Mx) = µq(x) for any x ∈ R6

([7, V.7]). Such transformations form a group GO6(q)
called the similarity group of q. The subgroup of sim-
ilarities M such that µ = 1 and detM = 1 is called
the rotation group of q and is denoted by SO6(q).

Since a projective transformation g maps lines to
lines and preserves incidences, it naturally induces a
bijection of G. The same is true for correlations. In
fact ([9, Theorem 2.2.1]), such a bijection extends to
a projective transformation ∧2

4g of P5 where ∧knM is
the kth compound matrix of the matrix M of size n
whose entries are the minors of size k of M .

Lemma 1 [9, Theorem 2.1.10] PGO6(q) is exactly
the set of transformations of P5 induced through ∧2

4

by collineations and correlations of P3.

3 Invariant–based method step by step

In this section, we unfold the invariant–based method
for the following predicate: given the Plücker coor-
dinates of four linearly independent lines, how many
lines intersect all of them? We denote by X the set
of inputs of a predicate.

Step 1: Find all symmetries of any kind on the in-
puts X that leave invariant the outputs of the pred-
icate and model them by a group G acting on X by
ψ : G 	 X.

Here, the inputs of the predicate are quadruplets
(ξ1, . . . , ξ4) of linearly independent lines (X is an open
subset of G4). Observe first that the order in which
the input lines are considered does not matter, hence
we can consider the action ψ1 of the permutation
group S4 on X defined by

ψ1(σ)(ξ1, . . . , ξ4) = (ξσ(1), . . . , ξσ(4)).

Since a projective transformation preserves inci-
dences between lines, the action of PGL4 on X de-
fined by ∧2

4 leaves the output of the predicate invari-
ant on an orbit. In other words, any change of coordi-
nates does not change the number of line transversals
to the input lines. By this process, lines are con-
sidered as intrinsic geometric objects. In the same
way, we can consider the action of correlations that
also preserves incidences between lines. According to
Lemma 1, the action of collineations and correlations
writes as ψ2 : PGO6(q) 	 X defined by

ψ2(g)(ξ1, . . . , ξ4) = (g(ξ1), . . . , g(ξ4)).

Altogether, we construct G = S4 × PGO6(q) and
ψ : G 	 X defined by ψ(σ, g) = ψ1(σ) ◦ ψ2(g). In the
point of view of Erlangen’s program, ψ encodes the
geometry of “sets of four lines”, that is, we identify
two ordered families of line coordinates if they repre-
sent the same set of lines. At this step, our method
differs from other approaches based on manipulations
of coordinates, here only geometry matters.

Step 2: Construct an encoding π : X → Y and a
group action ρ : G 	 Y with finitely many orbits in
π(X) and “simulating” ψ on Y , i.e.

∀ (g, x) ∈ G×X ρ(g)(π(x)) = π(ψ(g)(x)).

Hence the predicate has the same output on x and x′

if π(x) and π(x′) are in the same orbit of ρ.

According to Observation 1, the line transversals to
an input line family x ∈ X are exactly those of the
span H of x, that is, H◦∩G. Since the four lines of x
are linearly independent, H has dimension 3, thus H◦

has dimension one: it is a line of P5. As G is a quadric
in P5, either H◦ is contained in G or H◦ intersects G
in at most two points. The corresponding quadrics
H ∩ G are listed in Table 1. We observe that the
type of H ∩ G entirely characterizes the number of
line transversals to the family x. So we consider the
encoding π : x 7→ H that maps a line family x to its
span and Y the set G4,6 of 3-dimensional subspaces
of P5. We can show that π(X) = Y .
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H◦ ∩G H ∩G q|H
2 points hyperboloid (2, 2)
0 point ellipsoid (3, 1) or (1, 3)
1 point cone (2, 1) or (1, 2)

a line
two planes

sharing a line (1, 1)

Table 1: Types of spans of four linearly independent
lines. The third column denotes the inertia of the
restriction to H of the quadratic form q given in (2).

Let us “simulate” ψ on Y . Since π(ψ1(σ)(x)) =
π(x) for any x ∈ X, the action of S4 has no effect
on Y thus we can remove this group from G. We
construct ρ : PGO6(q) 	 G4,6 defined by ρ(g) = ∧4

6g.
By Witt’s Theorem [1, 13.7.1 and 13.7.9], the orbits
of ρ restricted to the group PSO6(q) (Figure 2b) are
characterized by the inertia of the quadric defined by
H ∩G (see Table 1). Since a similarity with negative
multiplicator µ change the sign of q (Equation (2)),
the orbits of ρ (Figure 2a) are obtained by merging
the previous orbits with the same unsigned inertia.

Step 3: Use appropriate techniques to compute some
polynomial invariants of ρ.

Here, we consider ρ′ : SO6(q)→ GL(R15) (Y is an
homogenous subset of R15) defined by ρ′(g) = ∧4

6g.
Using the symbolic method of [4], we obtain3 a poly-
nomial invariant of degree 2:

∆ = y2
4 + y2

8 + y2
13 − 2y1y10 − 2y14y2 − 2y3y15

+ 2y7y5 + 2y11y6 + 2y12y9

and a covariant Cov(y, x, x′) defined on Y×(R6)2 with
21 distinct coefficients in x, x′ of degree 2. Since ∆ is a
homogenous polynomial of degree 2, its sign remains
unchanged up to nonzero scalings, thus is invariant
on each orbit of ρ : PSO6(q) 	 Y . Since Cov is
homogeneous, Cov is a covariant of ρ.

Step 4: Evaluate the previous polynomials on some
representative of each orbit and observe if geometric
situations are discriminated.

Finally, we obtain the following algorithm for
counting line transversals to a family x of four lin-
early independent lines. We compute y = π(x). If
∆(y) > 0, there are 2 line transversals. If ∆(y) < 0,
there is no transversal. Otherwise, if Cov ∼y 0, then
there are infinitely many transversals, else there is
only one.

3In a symbolic form, ∆ is written as the bracket polyno-
mial [α(4)ab][β(4)ab] and Cov as [α(4)au][β(4)av] where α, β
are letters representing R15 = Λ4R6, a, b representing S2R6 (it
simulates SO6(q) ⊂ GL6) and u, v representing R6.

Y

0 21

∞
(a) G = PGO6(q)

Y

0
2

1

∞0
1

(b) G = PSO6(q)

Figure 2: Orbits of ρ.

4 Conclusion

For counting line transversals to four linearly indepen-
dent lines, our invariant–based method provides the
same polynomial ∆ as [2] but polynomials of higher
degrees than in [2] to discriminate the degenerate
cases. The same technique applies for five lines and
gives rise to the same polynomial as [2]. Finally, some
polynomials involved in predicates appear as invari-
ants of group actions, that is they originate from the
geometry of the problem. They might be essential in
any evaluation strategy for a predicate, based on poly-
nomials. This point of view seems to be a promising
approach to tackle optimality questions on predicates.
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On the Diameter of a Geometric Johnson Type Graph.∗

C. Bautista-Santiago† J. Cano† R. Fabila-Monroy‡ D. Flores-Peñaloza† H. González-Aguilar†

D. Lara† E. Sarmiento‡ J. Urrutia†

Abstract

An island of a set S of points on the plane is a subset
I of S with the property that Conv(I)∩S = I. In this
paper we introduce the (k, l)-island intersection graph
of S, J(S, k, l), as the graph whose vertex set is the set
of all islands of S of cardinality k, where two of them
are adjacent if their intersection consists of exactly l
elements. For sets of points in general position, we
show that if n is large enough with respect to k and
l, then J(S, k, l) is connected; we also give upper and
lower bounds on the diameter of this graph.

1 Introduction

Let S be a set of n points on the plane. A subset
I ⊆ S is called an island if Conv(I) ∩ S = I. We say
that an island is a k-island if it has k elements.

Given two integers k and l we define the (k, l)-island
intersection graph of S, J(S, k, l), to be the graph
whose vertex set is the set of all k-islands of S; where
two islands are adjacent if their intersection has ex-
actly l elements.

Various problems in Combinatorial Geometry can
be restated as the problem of determining some
graph-theoretic property of J(S, k, l). For example,
the number of empty triangles in S [2, 3, 4, 7, 9] is
the number of vertices in J(S, 3, l). In [1] the following
question is posed: what is the maximum number of
empty triangles that can share an edge? This trans-
lates to the problem of determining the clique number
of J(S, 3, 2).

A related graph J(n, k, l) (see [5]) has long been
studied. This graph has as vertices all the subsets of
k elements of a given set of cardinality n, two of which
are adjacent if their intersection has l elements. The
particular cases of J(n, k, 0) and J(n, k, k−1) are the
well known Kneser and Johnson graphs.

∗Part of the work was done in the 2nd Workshop on Discrete
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2009.
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When S is in convex position, every subset of S with
k elements is a k-island. Thus, in this case, J(S, k, l)
is isomorphic to J(n, k, l). For sets of points not in
convex position, J(S, k, l) is an induced subgraph of
J(n, k, l). We may regard J(S, k, l) as a geometric
version of J(n, k, l).

The paper is organized as follows: In Section 2
we give a sufficient condition for J(S, k, l) to be con-
nected. To do so, we first consider the case when all
the points are on a line, and then the case when all but
one point are on a line. In the first case J(S, k, l) is
disconnected for all but trivial cases; somewhat sur-
prisingly, in the second case J(S, k, l) is connected
provided that n is large enough with respect to k and
l.

In Section 3, we show that when S is in general
position, J(S, k, l) contains as a subgraph the case of
all but one point on a line. We then show that every
k-island is connected by a path to this subgraph, and
thus prove that J(S, k, l) is connected when n is large
enough with respect to k and l.

The upper bound on the diameter of J(S, k, l) im-
plied by the connectivity results, is improved in Sec-
tion 4 for the particular case when l ≤ k/2. In the
same section we conclude the paper by giving lower
bounds for the diameter of J(S, k, l).

We omit several proofs for lack of space. We indi-
cate that the proof of one result is omitted, with the
addition of a box at the end of its statement.

2 Collinear and almost collinear points

In this section we consider two classes of point sets:
when all the points are collinear, and when all the
points but one are on a line.

2.1 Collinear points

Let L be a set of n points on a straight line. Assume
an orientation of this line and let x1, . . . , xn be the
elements of L in the order induced by the line. In this
case, a k-island of L is a set of k consecutive elements
of L.

We say that a point xi ∈ L is to the left of an island
I ⊆ L if its index i is smaller than the index of each
point in I.

We now show that J(L, k, l) is the disjoint union of
paths. To see this, let Pr be the subgraph of J(L, k, l)
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1 2 3 4 5 6 7 8 9 10 11

x

Figure 1: Two 4-islands of L ∪ {x}.

induced by the set of all k-islands such that the num-
ber of points of L to its left congruent to r modulo
(k− l). We label the islands in Pr by Ar,i, where Ar,i

is the island with i(k − l) + r points in L to its left,
0 ≤ r < k − l. Clearly each k island of L is an Ar,i

island, for some i and r. Observe now that each k-
island of L has at most two neighbours in J(L, k, l):
one to its left and one to its right. It is easy to see
that J(L, k, l) is a union of disjoint paths: the paths
Pr, for 0 ≤ r < k − l. We thus have:

Theorem 1 The graph J(L, k, l) is the disjoint union
of all Pr (0 ≤ r < k − l).

Note that J(L, k, l) is connected when n = k or
l = k − 1, and disconnected otherwise. Remarkably,
the addition of one extra point makes the graph con-
nected, as we show next.

2.2 Almost collinear points

Let L be a set of n− 1 points on a straight line, and
let x be a point outside the line containing L, and let
L′ := L ∪ {x}. A k-island of L′ is either a k-island
of L, or a (k − 1)-island of L together with the point
x, see Figure 1. Note that J(L, k, l) is an induced
subgraph of J(L′, k, l).

Let Pr be the subgraph of J(L′, k, l) induced by the
set of all k-islands that do not contain x and have a
number of points of L to its left congruent to r modulo
(k − l). We label the islands in Pr as before: The
island Ar,i in Pr is the one having exactly i(k− l) + r
points to its left. Similarly, let P ′r, be the subgraph
of J(L′, k, l) induced by the set of all k-islands that
contain x and leave a number of points of L to its
left congruent to r modulo (k − l). Denote as A′r,i
the island in P ′r having exactly i(k − l) + r points to
its left. The following lemma, given without proof,
characterizes the edges of J(L′, k, l), as can be seen in
Figure 2.

Lemma 2 In J(L′, k, l):

1. Ar,i is adjacent to Ar,i+1 and A′r,i+1.

2. A′r,i is adjacent to A′r,i+1, and to Ar−1,i+1, if r ≥
1, or to Ak−l−1,i, if r = 0.

Furthermore, each edge of J(L′, k, l) falls in one of
these types of adjacencies.

A�
0,0

A�
0,1

A�
1,0

A�
1,1

A�
2,0

A�
2,1

A�
3,0

A�
3,1

A0,0

A0,1

A1,0

A1,1

A2,0

A2,1

A3,0

A3,1

A�
0,2 A0,2 A�

1,2

P �
0 P0 P �

1 P1 P �
2 P2 P �

3 P3

Figure 2: The graph J(L′, 6, 2) with |L′| = 15.
Dashed edges illustrate the path used in Theorem 3.

With the previous lemma, it is easy to prove the
connectivity of J(L′, k, l) for any sufficiently large n.

Theorem 3 For n ≥ 3k−2l−1, the graph J(L′, k, l)
is connected.

Proof. Note that by Lemma 2, the subgraphs Pr and
P ′r, 0 ≤ r ≤ k − l − 1, are paths, and thus are con-
nected.

Observe that if n ≥ k + (2k − 2l − 1), then the
following islands exist:

• the k − l islands Ar,0, with 0 ≤ r < k − l,

• the k− l− 1 islands Ar,1, with 0 ≤ r < k− l− 1,

• the k − l islands A′r,0, with 0 ≤ r < k − l, and

• the k − l islands A′r,1, with 0 ≤ r < k − l.

Let π = A′0,0A
′
0,1A0,0A0,1 · · ·A′k−l−1,0A

′
k−l−1,1Ak−l−1,0.

By Lemma 2, path π is in J(L′, k, l), see Figure 2.
Since π contains at least one vertex of each Pr

and P ′r, 0 ≤ r < k − l, it follows that J(L′, k, l) is
connected. �

It can be proved that the graph J(L′, k, l) is dis-
connected whenever n < 3k − 2l − 1. Furthermore,
the next bound on the diameter of J(L′, k, l) follows
directly from Lemma 2.

Proposition 4 The diameter of J(L′, k, l) is at most
n−k
k−l + 2(k − l) + 1. �

3 Points in General Position

Let S be a set of n points in general position in the
plane and let x be its topmost point. Sort the re-
maining points by angle around x, and denote them
as x1, . . . , xn−1. Note that a set of consecutive points
in this order is an island, as is a set of consecutive
elements together with x. We call both of these types
of islands projectable.
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Lemma 5 The subgraph of J(S, k, l) induced by the
projectable islands contains J(L′, k, l) as a subgraph.

Note that if n is large enough with respect to k
and l, then the subgraph of J(S, k, l) induced by the
projectable islands is connected (Theorem 3).

In order to show that J(S, k, l) is connected, we
exhibit a path in J(S, k, l) from any island to a pro-
jectable island.

Let i be the weight of xi, and define the weight of
an island with at least two elements as the difference
between the largest and the smallest indexes of its
elements (excluding x). An island of weight k − 1 is
always projectable.

Lemma 6 (Shrinking Lemma) If n > (k − l)(k −
l + 1) + k, then every non projectable island Ai has
a neighbour in J(S, k, l), which is either a projectable
island, or an island whose weight is at most the weight
of Ai minus k − l.

Proof. Let Ai be a k-island with its elements dis-
tinct from x being xi1 , . . . , xim (ordered also by angle
around x). Thus, m is equal to k or to k− 1 depend-
ing on whether Ai contains x or not. Consider the
following intervals of S \ {x}:

[x1, xil+1) := {xj ∈ S \ {x}|1 ≤ j < il+1},
(xim−l

, xn−1] := {xj ∈ S \ {x}|im−l < j ≤ n− 1},

and, for every h s.t. 1 ≤ h ≤ m− l − 1,

(xih
, xih+l+1) := {xj ∈ S \ {x}|ih < j < ih+l+1}.

We refer to the first two intervals as end intervals.
Note that there are at most k− l+ 1 such intervals,

each containing exactly l elements of Ai, and that
every element of S \ {x} is in at least one interval.

Thus, since n > (k − l)(k − l + 1) + k, one of these
intervals, I, must contain at least (k − l) points of
S \Ai.

If I is of the form (xih
, xih+l+1), set J :=

{xih+1 , xih+2 , . . . , xih+l
} (if l = 0, set J := ∅), and

set B to be the set of the k− l points of I \Ai closest
to Conv(J) (if l = 0, set B to be any k-island inside
I \ Ai). The k-island J ∪ B is a neighbour of Ai in
J(S, k, l), and its weight is smaller than the weight of
Ai by at least k − l.

If I is an end interval, then let xi and xi′ be the
first and last elements in Ai∩I. If [xi, xi′ ] contains at
least k − l elements of S \ Ai, then proceed as in the
previous case. Otherwise, there are r < k− l points of
S \Ai in I. On one hand, if I is the first interval, then
we take B to be the k− l− r previous points to xi in
S ∩ Ai. On the other hand, if I is the last interval,
then we take as B the k − l − r points after x′i. Note
that in either case, [xi, xi′ ]∪B is a projectable island
adjacent to Ai. �

As a consequence of Lemma 5 and Proposition 4 we
have the following result:

Theorem 7 If n > (k−l)(k−l+1)+k, then J(S, k, l)
is connected and has diameter at most 3 n

k−l −
k

k−l +
2(k − l) + 3.

Proof. Let A and B be k-islands. We apply Lemma
6 successively to find a sequence of consecutive
adjacent islands A := A0, A1, . . . , Am and B :=
B0, B1, . . . , Bm′ , in which each element has weight
smaller than the previous by at least k − l, and the
last element is a projectable island.

Since the weight of the initial terms is at most n,
these sequences have length at most n/(k − l) + 1.

As noted in Lemma 5 the subgraph of projectable
islands contains J(L′, k, l) as a subgraph. Simple
arithmetic shows that if n > (k− l)(k− l+1)+k, then
n > 3k−2l−2. Thus, this subgraph is connected and
has diameter at most n−k

k−l + 2(k − l) + 1 (Theorem 3
and Proposition 4).

Hence, the diameter of J(S, k, l) is at most 2(n/(k−
l)+1)+ n−k

k−l +2(k− l)+1 = 3 n
k−l −

k
k−l +2(k− l)+3,

as claimed. �

4 Diameter

4.1 Upper Bound

Theorem 7 yields an upper bound for the diameter of
J(S, k, l). For the case when l ≤ k/2 this bound can
be greatly improved. At the moment, in the comple-
mentary case of l > k/2, we are unable to do better
than Theorem 7.

Our general approach for finding short paths be-
tween two vertices A and B of J(S, k, l), is to use a
divide and conquer strategy; we find neighbours of A
and B and at each step of the process, we discard half
of the points.

We cannot do this indefinitely since J(S, k, l) may
be disconnected if S has few points. Just before ar-
riving at such a situation, we use Theorem 7.

The following lemma provides the divide and con-
quer part of the argument. Its proof is technical and
uses many of the same arguments as the proof of
Lemma 6.

Lemma 8 Let A and B be two k-islands of S. If
n ≥ 2((k − l)(k − l + 1) + k), and l ≤ k/2, then
there exists a semiplane H containing at most n/2
and at least (k− l)(k− l+ 1) + k elements of S, with
the property that A and B, considered as vertices of
J(S, k, l), each has a neighbour contained entirely in
H. �.

Theorem 9 If n ≥ 2((k−l)(k−l+1)+k) and l ≤ k/2,
then the diameter of J(S, k, l) is at most 2 log2(n) −
2 log2(((k − l)(k − l + 1) + k)) + 5 k

k−l + 8(k − l) + 7.
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Proof. Consider the following algorithm.
Let A and B be two k-islands of S. We start by

setting A0 := A, B0 := B, S0 := S, n0 := n, and
i = 0.

While ni ≥ 2((k − l)(k − l + 1) + k), we apply
Lemma 8 to Si, Ai, and Bi. At each step we ob-
tain the semiplane Hi containing at most ni/2 and at
least (k − l)(k − l + 1) + k elements of Si, with the
additional property that both Ai and Bi have neigh-
bours Ai+1 and Bi+1 in J(Si, k, l) contained entirely
in Hi. We set Si+1 := Hi ∩ Si, ni+1 := |Si+1|, and
i := i+ 1, and continue the iteration.

We can do this procedure at most log2(n) −
log2(((k − l)(k − l + 1) + k))− 1 times.

In the last iteration, we have a point set Sj with less
than 2((k−l)(k−l+1)+k) elements, and at least (k−
l)(k− l+ 1) + k elements. The islands Aj and Bj are
both contained in Sj , and both are joined by paths of
length at most log2(n)−log2(((k−l)(k−l+1)+k))−1
to A and B. We apply Theorem 7 to obtain a path of
length at most 6(k− l+ 1) + 5 k

k−l + 2(k− l) + 3 from
Ai to Bi.

Concatenating the three paths we obtain a path of
length at most 2 log2(n)− 2 log2(((k − l)(k − l+ 1) +
k)) + 5 k

k−l + 8(k− l) + 7 from A to B in J(S, k, l). �

4.2 Lower Bound

For the lower bound we use Horton sets [6]. We follow
the notation used in [8].

Given two point sets X and Y in the plane, we
say that X is high above Y if Y is below every line
containing two elements of X. Conversely we say that
Y is deep below X if X is above any line containing
two points of Y .

Now let X be a set of n points in the plane such
that not two of them define a vertical line, and let
x1, . . . , xn be the elements of X sorted by their x-
coordinate.

Define X0 to be the subset of X containing the ele-
ments with even index, and X1 the subset of elements
of X with odd index.

Definition 1 A finite point set H with no two of its
elements on a vertical line, is a Horton set if |H| ≤ 1,
or the following conditions are met:

• Both H0 and H1 are Horton sets.

• H0 is deep below H1.

• H1 is high above H0.

Horton sets of any size were shown to exists in [6].
Thus, let H be a Horton set of n points. Since by
definition H0 and H1 are Horton sets, we may speak of
H00, H01, H10, and H11. We will do so and in general
speak of Hb, where b is a word of 0’s and 1’s.

To every k-island A of H, we associate the only set
Hb with the property that Hb contains A but Hb0 and
Hb1 do not.

The following lemma follows from the definition of
H.

Lemma 10 Let A and B be two neighbouring ver-
tices in J(H, k, l), and let Ha and Hb be, respectively,
their associated sets. Then, a differs from b in at most
k − l letters. �

Theorem 11 The diameter of J(H, k, l) is at least
log2(n) + log2(k).

Proof. For the sake of clarity, assume that n is a
power of 2. If b0 and b1 are the words of length
log(n)+log(k) with only 0’s ( resp. only 1′s), then Hb0

and Hb1 are k-islands of H; by Lemma 10, they are
at distance at least log2(n)+log2(k) in J(H, k, l). �
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Abstract

Given a polygonal shape Q with n vertices, can it be

expressed, up to a tolerance ε in Hausdorff distance,

as the Minkowski sum of another polygonal shape

with a disk of fixed radius? If it does, we also seek

a preferably simple solution shape P; P’s offset con-

stitutes an accurate, vertex-reduced, and smoothened

approximation of Q. We give a decision algorithm for

fixed radius in O(n logn) time that handles any polyg-

onal shape. For convex shapes, the complexity drops

to O(n), which is also the time required to compute a

solution shape P with at most one more vertex than a

vertex-minimal one.

1 Introduction

Computing the offset of a polygon, namely points at

most some fixed distance r away from the polygon,

is a fundamental geometric operation recurring in a

variety of applications. A standard way to obtain it is

via the Minkowski sum of the polygon and a disk of

radius r, which results in a shape bounded by straight-

line segments and circular arcs. Modeling the disk in

the Minkowski sum with a (tight) polygon yields an

approximate piecewise-linear offset. Often, such an

approximation is the legacy data which a program has

to deal with – the original shape before offsetting is

unknown.

While offset computation and smoothening of

shapes have been extensively studied, we address

the (offset-)reconstruction problem, that seems not to

have been addressed in the literature: Given a polyg-

onal shape Q, is it the approximate offset of another

polygonal shape? And if so, is there a good such P

(say, one with a small number of vertices)? As offset-

ting blurs small features, a definite reconstruction of

the original shape from Q (or even of its topology) is

impossible in general. However, a good choice of P

could lead to a more compact and smooth representa-

tion of the shape given by Q.
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In Section 2, we present an algorithm that de-

cides for any given polygonal shape Q with n ver-

tices (possibly unbounded), and two real parameters

r,ε > 0, whether Q is within Hausdorff-distance ε
to the r-offset of some other (yet unknown) polyg-

onal shape P; if the answer is yes, we also return one

such P. It gives the exact answer after O(n logn) op-

erations in the real-RAM model by constructing off-

sets with increasing radii three times, exploiting this

increase in a particular fashion. For convex Q we re-

duce the running time to optimal O(n) in Section 3

and also compute a P as above which even minimizes

(up to one extra vertex) the number of vertices among

all valid choices. Furthermore, P’s r-offset consti-

tutes a tangent-continuous arc spline approximation

of Q where all circular arcs have the same radius.

This abstract summarizes [2] in which we give more

details and full proofs.

Related work LEDA and CGAL contain code to

compute Minkowski sums of polygons. The latter im-

plementation also computes the exact or approximate

offset of a polygon [5].

Smoothening polygonal shapes is desirable for

NC machining. Such aims at tangent-continuous arc-

splines consisting of segments and circular arcs which

enable a uniform and fast processing and often allevi-

ate the problem of overheating of the machine or the

material. For purely polygonal input one can distin-

guish results using single arcs or biarcs (besides seg-

ments). Drysdale et al. [3] compute a vertex-minimal

solution not adding new vertices, while Held et al. [4]

compute approximations with arbitrary vertex place-

ments and their tolerance band might even be asym-

metric. Our reconstruction approach constrains the

solution by allowing a single radius only. It disables

tangent-continuity in general. But this can also be

seen as a relaxation: We consider our reconstruction

approach as an interesting alternative to existing ap-

proaches because on success, it yields an approxima-

tion that reflects the construction history of Q.

We also seek a vertex-minimal P whose offset is

close to Q. P is actually constrained by a set of

shapes. A related problem is to find a minimal-link

polygon that is nested between two others; see [1]

from which our approach adapts some ideas.

2 The Decision for Polygonally Bounded Sets

For a set X ⊂ R
2 we denote its boundary by ∂X and

its complement by XC := R
2 \X . For a point p and
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a closed X , letting d(·, ·) be the Euclidean distance

function, we write d(p,X) := min{d(p,x) | x ∈ X}.

A polygonal region X ⊂ R
2 has a piecewise-linear

(finite number of lines) boundary. The points where

these straight-line segments intersect are the vertices

of the polygonal region. If X is bounded, ∂X is a

set of (weakly) simple polygons. For two sets X

and Y , we denote their Minkowski sum by X ⊕Y :=
{x+y | x∈ X ,y∈Y}. For any c∈R

2,v ∈R, we write

Dv(c) := {p ∈ R
2 | d(c, p) ≤ v} for the (closed) v-

disk around c, and Dv := Dv(O) for the disk centered

at the origin. The r-offset of a set X , offset(X ,r), is

the Minkowski sum X⊕Dr.

The (symmetric) Hausdorff distance of two closed

point sets X and Y is H(X ,Y ) := max{max{d(x,Y ) |
x ∈ X},max{d(y,X) | y ∈ Y}}. We say that X is ε-
close to Y (and Y to X) if H(X ,Y ) ≤ ε , which can

also be expressed alternatively:

Proposition 1 For X ,Y closed, X is ε-close to Y if

and only if Y ⊆ offset(X ,ε) and X ⊆ offset(Y,ε).

Decision algorithm From now, we fix r > 0, ε >

0, and a polygonal region Q, and consider the follow-

ing question: Can we find a polygonal region P such

that Q and the r-offset of P have Hausdorff-distance

at most ε? First of all, we can assume that r > ε; oth-

erwise, we can choose P := Q, because offset(Q,r)
and Q have Hausdorff-distance at most ε .

Definition 1 For r > 0, and X ⊂ R
2, the r-inset

of X is the set inset(X ,r) := offset(XC,r)C ={
x ∈ R

2 | Dr(x)⊆ X
}

.

Algorithm 1 Is there any closed polygonal region P

such that a given Q is ε-close to offset(P,r)?

(1) Qε ← offset(Q,ε)
(2) Π← inset(Qε ,r)
(3) Q̃← offset(Π,r+ ε)
(4) return Q⊆ Q̃

We next prove that Algorithm 1 correctly decides

whether Q is ε-close to some r-offset of a polygo-

nal region. A first observation is that for any polyg-

onal region P, offset(P,r) ⊆ Qε if and only if P⊆ Π.

This is an immediate consequence of the definition

of insets. This shows that for any offset(P,r) that

is ε-close to Q, P must be inside Π. Moreover, it

shows that any choice of P ⊆ Π already satisfies one

of Proposition 1’s inclusions. It is only left to check

whether Q⊆ offset(offset(P,r),ε) = offset(P,r+ ε).

Lemma 2 Q is ε-close to offset(P,r) if and only if

P⊆Π and Q⊆ offset(P,r+ ε).

To prove correctness of the algorithm, we have to

show that Q ⊆ offset(Π,r + ε) already implies that

there also exists a polygonal region P⊆ Π with Q ⊆

offset(P,r+ε). Indeed, Π is not polygonal in general;

we have to study its shape closer to prove that we can

approximate it by a polygonal region, maintaining the

property that the offset remains ε-close to Q.

The shape of offsets and insets For a polyg-

onal region Q, it is not hard to figure out the shape

of Qε = offset(Q,ε): It is a 2-manifold with bound-

ary that is bounded by straight-line segments and by

circular arcs, belonging to a circle of radius ε . It is

important to remark that all circular arcs are convex:

Definition 2 Let X ⊂ R
2 be a 2-manifold with

boundary with some circular arc γ bounding it. Then,

γ is called concave with respect to X , if each segment

connecting two distinct points on γ is not fully con-

tained in X . Otherwise, the arc is called convex.

We call X a convexly (resp. concavely) bounded

region with radius r, if ∂X consists of finitely many

straight-line segments and convex (resp. concave) cir-

cular arcs that are all of radius r, interlinked at the

vertices of the region.

Note that a convexly

bounded region (left) is

not necessarily convex.

The r-offset of a polygo-

nal region P is a convexly bounded region with ra-

dius r. The heart of this section is a proof that the

same also holds if P is concavely bounded (right) with

radius smaller than r:

Theorem 3 Let P be a concavely bounded region

with radius r1, and let r2 > r1. Then, there is a

polygonal region PL ⊆ P such that offset(P,r2) =
offset(PL,r2). In particular, offset(P,r2) is a convexly

bounded region with radius r2.

Note that the correctness of Algorithm 1 already

follows by noticing that Qε is a convexly bounded re-

gion with radius ε , and we can apply Theorem 3 to all

constructed offsets, since ε < r < r+ ε:

Corollary 4 Algorithm 1 returns true if and only if

there exists a polygonal region P such that offset(P,r)
is ε-close to Q.

x3
′′

y3

y2

x2
′′

y1

P′ \P′′
x′

P′′

x1
′′

We now give a sketch

of the proof of Theo-

rem 3. W.l.o.g., we as-

sume that each concave

circular arc γ spans less

than half a circle. The

arc’s linear cap is the re-

gion enclosed by γ and

the two lines tangent to

the circle through the endpoints of γ . The extended

linear cap is the region spanned by the two tangents

just mentioned and the two normals at the endpoints.
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We iteratively replace an arc γ of a concavely

bounded region P′ (starting with P) by a polyline end-

ing in the endpoints of γ , such that the polyline does

neither leave P′ nor γ’s linear cap, and such that other

boundary parts of P′ are not intersected. This yields a

concavely bounded region P′′ with one arc less.

We show that in each iteration, the r2-offsets of P′

and P′′ are the same. For that we consider any point

x′ ∈ P′ \P′′, in the region that is cut off by P′′, and

consider y= x′+v′ for an arbitrary v′ ∈Dr2 . We show

that in each case, y can also be written by y= x′′+v′′,

with x′′ ∈ P′′, and v′′ ∈ Dr2 .

The proof then proceeds by studying several cases

based on the location of the point y with respect to the

extended linear cap of γ; see y1,y2,y3 in the previous

figure and [2] for full details of the proof.

Theorem 5 Let P be concavely bounded with ra-

dius r1 having n vertices, and assume r2 > r1. Then,

offset(P,r2) has O(n) vertices and it can be computed

in O(n logn) time.

Proof. By Theorem 3, it suffices to consider a polyg-

onally bounded PL instead of P; a trapezoidal decom-

position leads to a PL with O(n) vertices. The Voronoi

diagram of PL’s vertices and (open) edges can be com-

puted in O(n logn) time and has size O(n) [6]. The r2-

offset boundary inside a Voronoi cell is formed by the

intersection of the cell with a parallel line (for the cell

of an edge of PL) or a circle (for the cell of a vertex).

Because the offset boundary intersects any Voronoi

edge only a constant number of times, the number of

vertices (and edges) of the offset is proportional to the

number of Voronoi edges. The offset is constructed

by sweeping the collection of all the boundary curves

from all Voronoi cells, which runs in O(n logn) be-

cause of the absence of interior intersections. �

The running time of Algorithm 1 follows by apply-

ing Theorem 5 for the first three steps. The fourth

step is easily seen to run in O(n logn) time as well.

3 Convex Polygons

Lemma 6 If Q is a convex polygonal region, then Π,

as computed by Algorithm 1, is also a convex polyg-

onal region, and it can be computed in O(n) time.

Proof. Q is the intersection of the halfplanes

bounded by lines that support the polygon edges. Ob-

serve that Π can be constructed by shifting each such

line by r− ε inside the polygon, which shows that Π
is convex. For the time complexity, we compute the

lower (upper) envelope for the lines supporting upper

(lower) edges of Q by dualizing the lines supporting

the edges to points and computing their upper (lower)

hull by Graham’s scan. We exploit the fact that we

already know the x-order of these points. �

The next step of Algorithm 1 would be to check

Q ⊆ offset(Π,r + ε). Let q1, . . . ,qn be the ver-

tices of Q (in counterclockwise order) and define

Ki = Dr+ε (qi). The following lemma together with

Lemma 6 implies that Algorithm 2 runs in linear time.

Algorithm 2 Is there any closed polygonal region P

such that a given convex Q is ε-close to offset(P,r)?

(1) Qε ← offset(Q,ε)
(2) Π← inset(Qε ,r)
(3) return

∧n
i=1 (Ki∩Π 6= /0)

Lemma 7 Q is ε-close to offset(Π,r) if and only if Π
intersects each of the Ki.

Reducing the number of vertices We assume

in the remainder of this section that offset(Π,r) is ε-

close to Q. Since our goal is to find a possibly simple

approximation of Q, we look for a P ⊆Π whose off-

set is ε-close to Q, but with fewer vertices than Π.

Any such P intersects each of the convex (convexly

bounded) regions κi := Ki ∩Π, i = 1, . . . ,n, of radius

r+ ε , which we call eyelets from now on. The con-

verse is also true: Any convex polygonal manifold

P ⊆ Π that intersects all eyelets κ1, . . . ,κn has an r-

offset that is ε-close to Q.

Proposition 8 If offset(P,r) is ε-close to Q, and P⊆

P′ ⊆Π, then offset(P′,r) is ε-close to Q.

We call a polygonal region P (vertex-)minimal, if

its r-offset is ε-close to Q, and there exists no other

such region with fewer vertices. Necessarily, a min-

imal P must be convex – otherwise, its convex hull

CH(P) has fewer vertices and it can be seen by Propo-

sition 8 that offset(CH(P),r) is also ε-close to Q.

Lemma 9 There exists a minimal polygonal region

P⊆Π whose vertices are all on ∂Π.

pi+1

pi
p′i

Proof. We pull each ver-

tex pi 6∈ ∂Π in direction of

the ray emanating from pi−1

towards pi until it intersects

∂Π in the point p′i (drag-

ging pi’s incident edges along

with it); see the enclosed illustration. For

P′ = (p1, . . . , pi−1, p
′
i, pi+1, . . . , pm): P ⊆ P′ ⊆ Π,

offset(P′,r) is ε-close to Q by Proposition 8. �

Thus, we can restrict our search to polygons with

vertices on ∂Π. We call a polygonal region P good,

if P⊆Π, all vertices of P lie on ∂Π, and P intersects

each eyelet κ1, . . . ,κn.

Definition 3 For two points u,u′ ∈ ∂Π, we denote

by [u,u′] ⊂ ∂Π all points that are met when travel-

ling along ∂Π from u to u′ in counterclockwise or-

der. Likewise, we define half-open and open intervals

[u,u′), (u,u′], (u,u′).
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Let κi = Ki ∩Π be qi’s eye-

let as before. We consider

κi ∩ ∂Π. The portion of that

intersection set that is visi-

ble from qi (considering Π as

an obstacle) defines an inter-

val [vi,wi] ⊂ ∂Π. We call vi
the spot of the eyelet κi. Fi-

nally, for u,u′ ∈ ∂Π, we say

that the segment uu′ is good, if

for all spots vi ∈ (u,u′), uu′ in-

tersects the corresponding eye-

let κi. The figure on the right

illustrates these definitions: The segment pp′ is good,

whereas pp′′ is not good, because v2 ∈ (p, p′′), but it

does not intersect κ2.

Theorem 10 Let P be a convex polygonal region

with all its vertices on ∂Π. Then, P is good if and

only if all its bounding edges are good.

Proof. Any spot vi of an eyelet κi either corresponds

to some vertex pℓ of P, or lies inside some interval

(pℓ, pℓ+1). Since pℓpℓ+1 is good, it intersects κi. For

the converse, assume that pℓpℓ+1 is not good, which

encloses with the interval (pℓ, pℓ+1) a polygonal re-

gion R ⊆ Π \P. Hence, there is a spot vi ∈ R such

that pℓpℓ+1 does not intersect the eyelet κi. It follows

that the entire κi is inside R (see the above illustration,

considering pp′′ and κ2). Thus, P∩κi = /0, and so P

cannot be good. �

For u ∈ ∂Π, we define its horizon hu ∈ ∂Π as the

maximal point (when travelling from u in counter-

clockwise order on ∂Π) such that the segment uhu
is good. An example is depicted in the previous fig-

ure: The segment uhu is tangential to κ2, so if going

any further than hu from u, the segment would miss

κ2 and thus become non-good.

Lemma 11 Let P be a good polygonal region, and

u ∈ ∂Π. Then, P has a vertex p ∈ (u,hu].

Proof. Assume that P has no such vertex, and let

p1, . . . , pℓ be its vertices on ∂Π. Let p j be the ver-

tex of P such that u ∈ (p j, p j+1). Then, also hu ∈

(p j, p j+1), because otherwise, p j+1 ∈ (u,hu]. Since

P is good, the segment p jp j+1 is good, too. It is not

hard to see that, consequently, both p ju and up j+1 are

good. However, the latter contradicts the maximality

of the horizon hu. �

For an arbitrary initial vertex s ∈ ∂Π, we finally

specify a polygonal region Ps by iteratively defining

its vertices. Set p1 := s. For any j ≥ 1, if the segment

p js, which would close Ps, is good, stop. Otherwise,

set p j+1 := hp j . Informally, we always jump to the

next horizon until we can reach s again without miss-

ing any of the eyelets. By construction, all segments

of Ps are good, so Ps itself is good.

Theorem 12 Let P be a minimal polygonal region

for Q, having OPT vertices. Then, for any s ∈ ∂Π,

Ps has at most OPT+1 vertices

Proof. We first prove that Ps has the minimal num-

ber of vertices among all good polygonal regions that

have s as a vertex. Let s := p1, . . . , pm be the vertices

of Ps. There are m−1 segments of the form pℓhpℓ
. By

Lemma 11, any good polygonal region has a vertex

inside each of the intervals (pℓ,hpℓ
]. Together with

the vertex at s, this yields at least m vertices, thus Ps

is indeed minimal among these polygonal regions.

Next, consider any minimal polygonal region P⋆.

We can assume that all its vertices are on ∂Π by

Lemma 9. If s is not a vertex of P⋆, we add it to

the vertex set and obtain a polygonal region P′ with

at most OPT+1 vertices that has s as a vertex. Ps has

at most as many vertices as P′, so m≤ OPT+1. �

As each visit of an eyelet requires constant time,

the construction of a horizon is proportional to the

number of visited eyelets, and there are only linearly

many eyelets, we can state:

Theorem 13 For an arbitrary initial vertex s, Ps can

be computed in O(n) time.

Additional Material In the extended version of

this paper [2] we also present a new approximation of

a polygonal shape’s r-offset by line segments and cir-

cular arcs aiming at an accurate and compact descrip-

tion. Its vertices are rational and the Hausdorff dis-

tance to the exact offset is at most some prescribed ε .

In addition we discuss there some immediate exten-

sions of the algorithms presented here.
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The Class Cover Problem with Boxes

S. Bereg∗ S. Cabello † J.M. Dı́az-Báñez‡ P. Pérez-Lantero § C. Seara ¶ I. Ventura‡

Abstract

In this paper we study the following problem: Given
sets R and B of red and blue points respectively on
the plane, find a minimum-cardinality set H of axis-
aligned open rectangles such that every point in B is
covered by at least one rectangle of H, and no rect-
angle of H contains a point of R. We prove the NP-
hardness of the original version of the stated problem,
and give exact or approximated algorithms depending
on the type of rectangles considered.

1 Introduction

Let R and B be sets of red and blue points respectively
on the plane. Denote S = R∪B, r = |R|, and b = |B|.
The x- and y-coordinates of the point p are denoted
by x(p) and y(p) respectively. We say that a set X
is R-empty if X contains no red points. Given S,
a classical problem in data mining and classification
problems is the Class Cover problem [3]. It consists
in finding a minimum-cardinality set of R-empty disks
such that every point in B is contained in at least one
of the disks. In [3], the authors considered the case in
which the disks are centered at some point in B. They
showed that this version is NP-hard. In this paper we
consider another variation by considering axis-aligned
rectangles (i.e. boxes) as the covering objects. It can
be defined as follows:
The Boxes Class Cover problem (BCC-
problem): Given S = R ∪ B, find a minimum-
cardinality set H of R-empty axis-aligned open rect-
angles such that every point in B is contained in at
least one rectangle of H.
Let H be a solution to the BCC-problem. We can
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Politècnica de Catalunya, SPAIN, carlos.seara@upc.edu. Par-
tially supported by projects MEC MTM2009-07242 and Gen.
Cat. DGR2009GR1040.

extend each box H ∈ H until each side of H passes
through a red point or reaches infinity. Thus we will
only consider the setH∗ of all the R-empty open boxes
whose sides pass through red points or are in infinity.
Up to symmetry, such types of boxes are depicted in
Fig. 1.

a) b) c)

d) e)

Figure 1: Types of boxes in H∗. a) A rectangle, b) a
half-strip, c) a strip, d) a quadrant, e) a half-plane.

The outline of this paper is as follows. In Section 2 we
prove that the BCC-problem is NP-hard. In Section 3
we mention related results concerning range spaces
and epsilon-nets that give approximation algorithms.
In Section 4 we study the BCC-problem when we re-
strict the boxes to be strips or half-strips. Finally, in
Section 5, we consider the version of the BCC-problem
in which the boxes are axis-aligned squares, and prove
its NP-hardness.

2 Hardness

We prove here that the BCC-problem is NP-hard
based on a reduction from the Rectilinear Polygon
Covering problem (RPC-problem), that is defined as
follows: Given a rectilinear polygon P , find a mini-
mum cardinality set of axis-aligned rectangles whose
union is exactly P . The RPC-problem is NP-hard [5].

Theorem 1 The BCC-problem is NP-hard.

Proof. Suppose we are given a rectilinear polygon P
as an instance of the RPC-problem. Let A1 be the set
of all distinct axis-parallel lines that pass through an
edge of P . For every two consecutive vertical (resp.
horizontal) lines in A1, draw a vertical (resp. hor-
izontal) line in between. Denote as A2 these addi-
tional lines. Let G be the grid defined by A1 ∪ A2.
We put a red (resp. blue) point in every vertex of
G \ P (resp. G ∩ P ) (see Figure 2). Let S be the
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Figure 2: The reduction from an instance of the RPC-
problem to an instance of the BCC-problem. Red points
are solid dots, and blue points are circles.

above set of red and blue points. Clearly, any cover-
ing set of the polygon P corresponds with a solution
to the BCC-problem on S with the same cardinality.
Conversely, any solution H for the BCC-problem on
S can be adjusted to be a covering set of P . Namely,
consider that each box in H is maximal (i.e. it can-
not be enlarged for covering more blue points) and let
H′ = {BB(H) | H ∈ H}, where BB(H) is the axis-
parallel bounding box of H ∩ B. Every box in H′ is
fully contained in P , and the union of the boxes in H′
covers P . ¤

3 Related results

In this section we relate our problem with ε-nets. A
finite1 range space (X,R) is a pair consisting of an
underlying finite set X of objects and a finite collec-
tion R of subsets of X called ranges. Given a range
space (X,R) the SET COVER problem [6] asks for
the minimum-cardinality subset of R that covers X.
Then the BCC-problem is an instance of the SET
COVER problem in the range space (B,H∗). The
dual of the SET COVER problem is the HITTING
SET problem [6]. Given the range space (X,R), its
dual range space is (R, X∗) where X∗ = {Rx | x ∈ X}
andRx is the set of all ranges inR that contains x [2].
A set cover in the primal range space is a hitting set in
its dual, and vice versa. In [2], a general approach for
finding an approximated hitting set for range spaces
is given, and it is based on finding small size subsets
called ε-nets, as candidate hitting sets, and works for
range spaces with finite VC-dimension [2, 7, 9]. In
terms of our problem, an ε-net is a subset B′ ⊂ B
such that any box in H∗ that contains ε|B| points
covers an element of B′. In the dual space an ε-
net is a subset H ⊂ H∗ that covers all points p of
B such that p is covered by at least ε|H∗| boxes of
H∗. Note that the VC-dimension of our range space
(B,H∗) is at most four. For range spaces with con-
stant VC-dimension, the method in [2] reports a hit-

1A range space can be infinite, but for the purpose of our
problem we only define it as finite.

ting set of size at most a factor of O(log c) from the
optimal size c. Then, since our range space (B,H∗)
has constant VC-dimension (and thus the dual range
space does), the technique in [2] can be applied to
obtain an O(log c)-approximation algorithm for the
BCC-problem, where c is the size of an optimal cov-
ering.

4 Solving particular cases

Here we study some special cases. Namely, we con-
sider only certain boxes of H∗ having at most three
points on their boundary. In Subsection 4.1 we use
both horizontal and vertical strips for covering. In
Subsection 4.2 we consider only one type of half-
strips, say top-bottom half-strips, as covering rect-
angles. Finally, in Subsection 4.3 we prove that the
BCC-problem remains NP-hard if we cover with half-
strips in the four possible directions, and that there
exists a constant factor approximation algorithm.

4.1 Covering with horizontal and vertical strips

A box in H∗ is a strip if it does not contain red points
in two consecutive sides (see Fig. 1 c) and e)). Thus
we consider as covering objects vertical or horizon-
tal strips, and axis-aligned half-planes. Notice that
a covering set exists if and only if every blue point
can be covered by an axis-parallel line avoiding red
points. Also, if a blue point and a red point lie on
the same vertical (resp. horizontal) line then the blue
point can only be covered by a horizontal (resp. ver-
tical) strip. First we sort S by x-coordinate and by
y-coordinate (two orders) in O(r log r + b log b) time.
Preprocess in linear time the x-order to assign for each
blue point p the references r−x (p) and r+

x (p) to its pre-
vious and next red points respectively. Do the same
with the y-order to assign r−y (p) and r+

y (p). A so-
lution does not exist if and only if there is a blue
point p such that x(p) = x(r−x (p)) or x(p) = x(r+

x (p)),
and y(p) = y(r−y (p)) or y(p) = y(r+

y (p)). It can be
checked in O(r + b) time. Thus suppose now that
a solution exists. We can assume that there are no
red and blue points on the same horizontal or vertical
line. Otherwise we can apply the following linear-time
preprocessing and after that, solve the same problem
for the blue points not yet covered. Given a blue
point p let Hv(p) be the vertical strip bounded by
r−x (p) and r+

x (p), and Hh(p) be the horizontal strip
bounded by r−y (p) and r+

y (p). From each non-covered
blue point p, if x(p) = x(r−x (p)) or x(p) = x(r+

x (p))
then include in the solution the strip Hh(p). Else,
if y(p) = y(r−y (p)) or y(p) = y(r+

y (p)) then include
Hv(p). Consider a graph G whose set of vertices V is
the set of strips, and whose set of edges E is as fol-
lows. For each blue point p put an edge between the
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horizontal strip Hh(p) and the vertical strip Hv(p);
different blue points may define the same edge. The
graph G is bipartite, has O(r) vertices and O(b) edges,
and can be constructed in O(r + b) time. Since each
blue point is covered by exactly two strips the prob-
lem reduces to finding a Minimum Vertex Cover [6]
in G. For bipartite graphs the Vertex Cover Prob-
lem is equivalent to the Maximum Matching Problem
because of the König’s theorem, and thus it can be
solved in O(

√
|V ||E|) = O(

√
rb) time [8].

Theorem 2 The BCC-problem can be solved in
O(r log r + b log b +

√
rb) time if we only use axis-

aligned strips as covering objects.

4.2 Covering with half-strips in one direction

A box of H∗ is a half-strip if it contains at most three
points on its boundary (see Fig. 1 b), c), d), and e)),
and is top-bottom if either contains a red point on
its top side or is a vertical strip. We give an exact
O(r log r + b log b + b log r)-time algorithm based on a
simple data structure
Consider the structure of rays that is obtained by
drawing a bottom-top red ray starting at each red
point. Every time we select the highest blue point p
not yet covered, and let sp be the maximum-length
horizontal segment passing through p whose interior
does not intersect any red ray. Let pl (resp. pr) be
the red point such that the left (resp. right) endpoint
of sp is located in the ray corresponding to pl (resp.
pr). We say that pl and pr are the left and the right
red neighbors of p. We include in the solution the top-
bottom half-strip Hp whose top side is sp translated
upwards until it touches a red point or reaches the
infinite, i.e. the top-bottom half-strip in H∗ covering
p and the maximum number of other blue points. We
finish when all blue points are covered.
The correctness of the algorithm follows from the fact
that, if p is the blue point not yet covered that has
maximum ordinate, then the strip Hp satisfies that
for any other non-covered blue point p′ not in Hp, p
and p′ cannot be covered with the same top-bottom
half-strip. This is because any top-bottom half-strip
covering p and p′ contains at least one of the two red
neighbors of p. In the algorithm we first preprocess
S to obtain the decreasing y-order and to build two
balanced binary search trees TB and TR containing
respectively the blue and the red points sorted lexico-
graphically. The first one allows deletion of elements
and in the second one each node v is labeled with the
element of minimum ordinate in the subtree rooted at
v. This labeling permits us to obtain the red neigh-
bors for a given blue point p and to determine the top
side of Hp both in O(log r) time. The preprocessing
time is O(r log r + b log b) in total. Now for each blue

point p in the decreasing y-order such that p is not
still covered (i.e. p is in TB) we do: find the left and
the right red neighbors pl and pr of p, determine Hp,
include Hp in the solution, and remove in O(kp log b)
time the kp blue points in TB covered by Hp.

Theorem 3 The BCC-problem can be solved in
O(r log r + b log b + b log r) time if we only use half-
strips in one direction as covering objects.

4.3 Covering with half-strips

Here we study the BCC-problem when the covering
boxes are half-strips oriented in any of the four possi-
ble directions. We firstly show that this variant is also
NP-hard, and afterwards we give a constant-factor
approximation algorithm due to results in [2, 4]. We
name this version as The Half-Strip Class Cover prob-
lem (HSCC-problem), and use a reduction from the
3-SAT-problem [6] to prove that it is NP-hard.

Theorem 4 The HSCC-problem is NP-hard.

Proof. Given an instance F of the 3-SAT-problem
with t variables x1, . . . , xt and m clauses C1, . . . , Cm,
we construct an instance of the HSCC-problem as fol-
lows. Let α be a set of t pairwise disjoint vertical
strips of equal width such that the i-th strip from left
to right αi represents the variable xi. Similarly, let β
be a set of t + m pairwise disjoint horizontal strips of
equal width, such that the clause Cj is represented by
the (t + j)-th strip βt+j from bottom to up. Consec-
utive strips in α and β are well separated. Let δi be
the dividing line of αi. We say that the part of the
interior of αi that is to the right (resp. to the left) of
δi is the true (resp. false) part of αi. For each variable
xi (1 ≤ i ≤ t) we put in αi ∩ βi a set Vi of red and
blue points as shown in Fig. 3 a). For each clause Cj

(1 ≤ j ≤ m) we add a set Wj of bicolored points in
the following manner. Suppose that Cj involves the
variables xi, xk, and xl (1 ≤ i < k < l ≤ m). Define
the lines `1, `′1, `2, `′2, `3, and `′3, and add a set of
red points as depicted in Fig. 4. Put a blue point in
the intersection of `′1 and `3, and another one in the

b) c)

xi

βi

αi

δi

xi

βi

αi

βi

αi

δi

p

p′

p′′
q

q′

xi

a)

Figure 3: In a) the point set Vi for the variable xi. In b)
and c) the two ways of optimally covering the blue points
in Vi. b) xi is equal to true, c) xi is equal to false.
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αl

δl. . .
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. . .
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`′

1

`′

2

`2

`3 `′

3

Figure 4: The set Wj of red and blue points for the clause
Cj = (xi ∨ xk ∨ ¬xl).

intersection of `′3 and the bottom boundary of βt+j .
If xi is not negated in Cj then put in the true part of
αi (otherwise in the false part) two blue points, the
first one over `′1 and the second one over the bottom
boundary of βt+j . If xk is not negated in Cj put one
blue point in the center of the intersection of βt+j and
the true part of αk (otherwise in the false part). Fi-
nally, if xl is not negated in Cj put in the true part of
αl (otherwise in the false part) two more blue points,
one over the top boundary of βt+j and another one
over the bottom boundary.
Let S =

⋃t
i=1 Vi ∪

⋃m
j=1 Wj be the instance of the

HSCC-problem. Note that we can cover optimally
the blue points in Vi in two ways, the first one with a
right-left half-strip covering the two lowest blue points
in Vi and a vertical strip covering the true part of αi

(see Fig. 3 b)), and the second one with a vertical strip
covering the false part of αi and a left-right half-strip
that covers the upper two blue points of Vi (see Fig. 3
c)). We say that the first way is a true covering of
xi (i.e. xi is true), and that the second one is a false
covering of xi (i.e. xi is false). For each clause Cj

(1 ≤ j ≤ m) that involves the variables xi, xk, and xl

(1 ≤ i < k < l ≤ m) we observe that if at least one
variable, say xi, is such that the covering of Vi covers
the blue points in Wj ∩ αi (i.e. the value of xi makes
Cj true), then at least two half-strips are needed to
cover Wj \ αi. Otherwise, at least three half-strips
are needed. We claim that F is satisfiable if and only
if the blue points in S can be covered with 2t + 2m
half-strips. ¤

Theorem 5 There exists a polynomial-time O(1)-
approximation algorithm for the HSCC-problem.

Proof. Let HS be the set of all half-strips in H∗,
and partition HS into the subsets HSv and HSh

of all
vertical and horizontal half-strips, respectively. Note
that HSv and HSh

are families of pseudo-disks. In [4],
the authors showed that if the geometric range space
(X,R) is such that R is a family of pseudo-disks, then
ε-nets of size O( 1

ε ) exist for the dual range space, and
that a cover of size with a factor O(1) from the op-
timal can be found in polynomial time. Therefore,
given ε > 0, the dual of the range space (B,HSv )
has (by using [4]) an ( ε

2 )-net Nv of size O( 2
ε ). Anal-

ogously, the dual of the range space (B,HSh
) has an

( ε
2 )-net Nh of size O( 2

ε ). We claim that Nv ∪Nh is an
ε-net of size O( 4

ε ) = O( 1
ε ) for the dual of (B,HS). In

fact, if p is a blue point covered by ε|HS | half-strips,
then at least ε

2 |HS | of them are either vertical or hor-
izontal. Thus p is covered by a half-strip in Nv ∪Nh

since Nv and Nh are ( ε
2 )-nets. Hence, there exists,

by [2] and also by [4, Theorem 3.2], a polynomial-
time O(1)-approximation algorithm. ¤

5 The Class Cover problem with Squares

In this section we consider the variant of the BCC-
problem in which we use axis-aligned squares instead
of general rectangles as covering objects. In [1], the
following problem is studied: Given an image repre-
sented by an array of

√
n×√n black-and-white pixels,

cover the black pixels with a minimum set of (possi-
bly overlapping) squares. They proved that obtaining
a solution for a polygonal binary image with holes is
NP-hard. By a reduction from it we can prove:

Theorem 6 The BCC-problem remains NP-hard if
we use squares as covering objects.

Note that a set of axis-aligned squares is a family of
pseudo-disks, thus we can give an O(1)-approximation
algorithm by using [2, 4].
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Abstract

Let R be a finite set of red point sites in Rd and let
B be a set of n blue point sites in Rd. We want to
establish “safe” connections between the red sites by
deleting a minimum number of blue sites such that
the region controlled by the red sites is connected.
More precisely, we want to find a minimum-size sub-
set Bdel ⊆ B such that the red cells in the Voronoi
diagram of R∪B \ Bdel form a connected region. For
|R| = 2 we present an optimal O(n log n)-time algo-
rithm for d = 2, and an O(nd−1)-time algorithm for
d > 3; we also show that the problem is 3sum-hard for
d = 3. Furthermore, we show that the general prob-
lem, where the number of red sites is not a constant,
is np-hard.

1 Introduction

Let R be a set of red cities and let B be a set of
blue cities. Suppose each city controls a subset of
the space, namely the set of all points for which it
is the closest city. The red people would like to be
able to travel safely between any two points in the
red region, without having to cross through hostile
(blue) territory. This may not always be possible,
however, since the red region need not be connected.
Then some blue cities will have to be eliminated, in
order to make the red region connected. As the red
people are a friendly people, they wish to do so by
eliminating as few blue cities as possible.

In a more abstract setting, the problem above can
be formulated using Voronoi diagrams: we are given a
set R of red point sites in Rd and a set B of blue point
sites in Rd, and we want to find a subset Bdel ⊆ B such
that the red cells in the Voronoi diagram ofR∪B\Bdel
form a connected region. We call every such subset a
connectivity set, and we want to find a connectivity set
of minimum size. We call the problem of computing
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lands’ Organisation for Scientific Research (NWO) under
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†Institute of Theoretical Informatics, Karlsruhe Institute of
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many.

such a set Min Voronoi Connectivity. We obtain
the following results:

• We solve the problem for two red sites, see Sec-
tion 2. Our algorithm runs in O(n log n + nd−1)
time, where n is the number of blue sites and
d ≥ 2 is the dimension of the underlying space.
We show that this is optimal for d = 2 and that
the problem is 3sum-hard for d = 3.

• We show that the general problem, where the
number of red sites is not a constant, is np-hard,
see Section 3.

Terminology and notation. We denote the Voronoi
diagram of a set S of sites by Vor(S). We say that
two sites p, q ∈ S are neighbors if the boundaries of
their Voronoi cells have a (d−1)-dimensional overlap.
In other words, two sites are neighbors if they share
an edge in the Delaunay graph of S.

We denote the bisector of p and q by β(p, q). For
a third site r, we call the part of β(p, q) that lies
inside or on the boundary of the Voronoi cell of r
in Vor({p, q, r})—that is, the part of β(p, q) lying at
least as close to r as to p and q—the shadow region of
r on β(p, q). We say that r covers this part of β(p, q).

2 The Case of Two Red Sites

In this section we consider the special case that R
consists of only two sites.

Theorem 1 Let R be a set of two points in Rd and
B be a set of n points in Rd. Then Min Voronoi
Connectivity can be solved in O(n log n) time for
d = 2, and in O(nd−1) time for d > 3.

Proof. Let R = {p, q}, and let β := β(p, q) be the
bisector of p and q. For each site b ∈ B, the shadow
region σ(b) on β is a (d − 1)-dimensional half-space
within the (d−1)-dimensional space β. Observe that p
and q are neighbors in Vor(B∪{p, q}) if and only if the
union of the shadow regions σ(b) over all b ∈ B does
not fully cover β. Hence, we can solve the problem as
follows.

1. Let h(b) denote the (d − 2)-flat bounding σ(b),
and let H := {h(b) : b ∈ B}. Construct the
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arrangement A(H) on β induced by the (d− 2)-
flats in H.

2. Compute for each cell of A(H) in how many
shadow regions it is contained. Let C be a cell for
which this number is minimum. Report the set
Bdel of blue sites whose shadow regions cover C.

For d > 3, we can construct the (d − 1)-dimensional
arrangement in O(nd−1) time [2]. For d = 2, we have
to construct a 1-dimensional arrangement. This boils
down to sorting the endpoints of the shadow regions
on β, which takes O(n log n) time. After constructing
the arrangement, Step 2 can be done in O(nd−1) time,
by traversing the dual graph of A(H) and maintaining
the number of shadow regions containing the cells as
we move from cell to cell in the dual graph. �

The general algorithm can be adapted so as to handle
other types of sites. The time complexity again de-
pends on the running time of the subroutine that com-
putes the arrangement of the shadow-region bound-
aries on the bisector of the red sites.

Note that even in the plane, for some types of sites
such as disks and ellipses, a shadow regions can consist
of more than one connected component [3]. If, how-
ever, the number of connected components of each
shadow region is bounded by a constant, then the
number of intervals in the overlay of the blue shadow
regions is linear (in the case d = 2). Even if β and
the blue shadow regions are not of linear algebraic
nature, this does not affect the time complexity of
the algorithm, assuming that the necessary basic al-
gebraic computations still take constant time.

Next we show lower bounds for Min Voronoi
Connectivity.

Theorem 2 Min Voronoi Connectivity with
two red sites in R2 is in Ω(n log n).

Proof. Consider the problem ε-Closeness, which is
defined as follows:

ε-Closeness
Input: A set X of n reals and a real ε > 0.
Output: yes if there are at least two elements in
X whose distance is less than ε, no otherwise.

ε-Closeness has been proven to be in Ω(n log n)
for the linear decision tree model [4] and with simi-
lar arguments the same lower bound can be proven
in the fixed-order algebraic decision-tree model [1].
We shall now describe a linear-time reduction from
ε-Closeness to Min Voronoi Connectivity for
point sites in R2 with |R| = 2.

Let (X , ε) be an instance of ε-Closeness. We
create an instance of Min Voronoi Connectiv-
ity as follows. Let R = {(0, 1), (0,−1)}. The bi-
sector β : y = 0 of the two red sites represents the
real axis for the instance of ε-Closeness. For each
ξ ∈ X we construct two blue sites such that their

shadow regions are the rays {(x, 0) : x ≤ ξ − ε} and
{(x, 0) : x ≥ ξ+ε}. Clearly, our reduction takes linear
time.

The set X is a yes instance of ε-Closeness if and
only if Min Voronoi Connectivity with input R
and B has a solution that eliminates less than n − 1
blue sites. �

Point sites in 3-space. We now prove that Min
Voronoi Connectivity in R3 is 3sum-hard. The
class of 3sum-hard problems was introduced by
Gajentaan and Overmars [5]. Similar to the conjec-
tured computational intractability of np-hard prob-
lems, 3sum-hard problems are conjectured to not al-
low for subquadratic algorithms (depending on the
model of computation). One can show that a prob-
lem Π is 3sum-hard by giving a reduction that trans-
forms in o(n2) time instances of a known 3sum-hard
problem Π′ to instances of Π.

Theorem 3 Min Voronoi Connectivity with
two red sites in R3 is 3sum-hard.

Proof. We define a strip to be the area between two
parallel lines. We consider the following problem:

Strips Cover Box
Input: A set S of n strips in the plane and an
axis-parallel rectangle ρ.
Output: yes if the union of the strips completely
covers the area of ρ, no otherwise.

Strips Cover Box is 3sum-hard [5]. We give
a linear-time reduction from Strips Cover Box to
Min Voronoi Connectivity for point sites in R3

with |R| = 2.
Let (S, ρ) be an instance of Strips Cover Box.

We create an instance of Min Voronoi Connec-
tivity as follows. Let R = {(0, 0, 1), (0, 0,−1)}. The
bisector β : z = 0 of the two red sites represents the
plane that contains ρ and the strips in S.

For each edge e of ρ, we construct n + 1 blue sites
such that their shadow regions are identical, having
a boundary on β that coincides with the support line
of e, and they do not contain ρ. We can make multiple
sites have the same shadow region by placing them on
the perimeter of a circle that lies on a plane orthogonal
to β. Thus, every point of β outside ρ is covered by at
least n+ 1 sites. For each strip in S we construct two
blue sites such that the intersection of their shadow
regions on β coincides with the strip. Clearly, our
reduction takes linear time.

The instance (S, ρ) is a yes-instance for Strips
Cover Box if and only if any solution to Min
Voronoi Connectivity with input R and B elim-
inates at least n + 1 blue sites. This shows that
in 3-space Min Voronoi Connectivity is 3sum-
hard. �
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3 The General Case

We now investigate the complexity of the decision ver-
sion of Min Voronoi Connectivity for point sites
in R2 where we drop the restriction that |R| = 2. In
other words, we consider the following problem:

Voronoi Connectivity
Input: Two sets R and B of point sites in the
plane and a natural number k.
Output: yes if there exists a connectivity set
Bdel ⊆ B with |Bdel| 6 k, no otherwise.

For a given undirected graph G = (V,E) a set of
vertices C ⊆ V is a connected vertex cover if the sub-
graph induced by C is connected and C is a vertex
cover of G, that is, C contains at least one endpoint of
each edge of G. To show that Voronoi Connectiv-
ity is np-hard, we reduce from the following special
case of connected vertex cover, which is np-hard [6].

Planar Connected Vertex Cover
Input: A planar 2-connected graph G = (V,E) of
maximum degree 4 and a positive integer k.
Output: yes if there exists a connected vertex
cover of G that consists of at most k vertices, no
otherwise.

The reduction. Let (G, k) be an instance of Pla-
nar Connected Vertex Cover. Our approach is
as follows. We first construct a rectilinear embedding
of G on a grid of size polynomial in n = |V |. Then
we use the grid coordinates of the vertices of G to
place the red and blue sites. We prove that in the
induced Voronoi diagram we can connect the Voronoi
cells of the red sites by deleting at most k blue sites
if and only if G has a connected vertex cover of size
at most k.

First we compute a planar grid embedding of G us-
ing the algorithm of Tamassia and Tollis [7]. Their
linear-time algorithm maps the vertices of G to dis-
tinct points of an O(n2)-size section of the integer
grid and maps the edges of G to non-intersecting rec-
tilinear paths over grid points. To any grid point
p = (xp, yp) that appears in this embedding, we assign
the square [xp − 1/2, xp + 1/2]× [yp − 1/2, yp + 1/2].
Let E1(G) denote the set of grid squares occupied
by the resulting embedding of G. We subdivide each
square δ ∈ E1(G) into a grid of (2n + 1) × (2n + 1)
squares that we denote by grid(δ). We denote the
set of squares of the latter, refined embedding of G
by E2(G). We place either a red or a blue site in the
center of each square of grid(δ). We call such a square
a red or blue square according to the color of the site
that we placed in its center. We place the red sites
so that the red squares in E2(G) form a rectilinear
embedding of G very similar to E1(G) yet now the
vertices and the rectilinear edge paths have the thick-
ness of one square of E2(G). In Figure 1 we show the

patterns in which we place red and blue sites in the
grid squares of grid(δ) for each δ ∈ E1(G). If δ corre-
sponds to a vertex in G, then we place a blue site in
the center square of grid(δ). We call this site a vertex
site. If δ does not correspond to a vertex, we place a
red site in this square. In each grid square in E2(G)
that is not occupied by a red site or a vertex site, we
place a blue site. Hence, on each side of a rectilinear
path of red squares, there is a “padding” of n disjoint
rectilinear paths of blue squares.

Note that in the induced Voronoi diagram no two
red neighbors of a vertex site share a common bound-
ary edge of their cells.

We denote the sets of red and blue sites that we
place into the squares of E2(G) by R(G) and B(G),
respectively. Note that in the Voronoi diagram in-
duced by R(G) and B(G), the Voronoi cells of the red
sites form one connected component for each embed-
ded edge of G. We call these components edge com-
ponents. We can construct R(G) and B(G) in time
polynomial in n.

Lemma 4 The Voronoi diagram of R(G) and B(G)
has a connectivity set of size at most k if and only if
G admits a connected vertex cover of size at most k.

Proof. “if”: Let C be a connected vertex cover of G,
and let Bdel ⊆ B(G) be the set of vertex sites that
correspond to the vertices in C. Clearly, |C| = |Bdel|.

We argue that Bdel is a connectivity set for
Vor(R(G) ∪ B(G)). Take any two red sites s 6= s′.
Each of these lies on the embedding of an edge of G.
Since C is a vertex cover, each of the two edges has an
endpoint in C. Since C is a connected vertex cover,
the graph induced by C contains a path between the
two endpoints. Consider the set of sites that lie be-
tween s and s′ on the embedding of this path plus the
two initial edges. All blue sites in this set lie in Bdel.
Removing Bdel from B(G) connects the Voronoi cells
of all red sites in the set, in particular, those of s
and s′. Hence Bdel is a connectivity set.

“only if”: Let Bdel ⊆ B(G) be a connectivity set
for Vor(R(G) ∪ B(G)). We first assume that all sites
in Bdel are vertex sites. Let C be the set of vertices
in G that correspond to sites in Bdel. Then C is a
vertex cover of G. Otherwise there is at least one edge
component in Vor(R(G) ∪ B(G) \ Bdel) that has not
merged with any of the other components. The graph
induced by C must also be connected—otherwise the
red cells in Vor(R(G) ∪ B(G) \ Bdel) form more than
one connected component.

It remains to examine the case that Bdel contains
also padding sites. We show that there is a connectiv-
ity set B′del ⊆ B(G) with |B′del| ≤ |Bdel| that contains
more vertex sites than Bdel. (We can repeat this argu-
ment until we have only vertex sites.) Let c and c′ be
two distinct edge components in Vor(R(G) ∪ B(G)).
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: Square traversed by embedding of an edge

Figure 1: The coarser grid embedding E1(G) (gray shaded squares) along with the induced Voronoi diagram
of the three main possible patterns for grid(δ) in the reduction of Voronoi Connectivity. The dark gray
squares correspond to the vertices of G.

Let s be a site whose cell belongs to c, and let s′ be a
site whose cell belongs to c′. We consider two cases.

First, suppose the cells of s and s′ are adjacent
in Vor(R(G) ∪ B(G) \ Bdel). If there is no vertex site
whose cell is incident to both c and c′ then it is easy to
see that at least 2n blue sites must be deleted so that
the cells of s and s′ become adjacent. Thus |Bdel| >
2n, and we simply let B′del be the set of all n vertex
sites.

Now suppose c and c′ are both incident to the
square δ ∈ E1(G) of some vertex site s′′. If the
squares in E2(G) occupied by s and s′ both lie in
grid(δ) then there is at least one blue site s′′′ in Bdel
whose square lies in grid(δ), too. In that case we let
B′del = (Bdel \ {s′′′}) ∪ {s′′}. If at least one of the
squares of s and s′ in E2(G) does not lie in grid(δ)
then again |Bdel| > 2n, and we let B′del be the set of
all vertex sites. In each case, we have a new connec-
tivity set B′del with more vertex sites than Bdel and
with |B′del| ≤ |Bdel|. �

We have just proved that Voronoi Connectiv-
ity is np-hard since Planar Connected Vertex
Cover is np-hard. Voronoi Connectivity is in
np since, given R and B, we can guess a potential
solution Bdel with positive probability and then check
in time polynomial in |R|+ |B| whether Bdel is indeed
a solution by computing Vor(R∪ B \ Bdel).

Theorem 5 Voronoi Connectivity is np-complete.

Remark 6 The proof of Theorem 5 also holds if the
sites in B(G) and R(G) are perturbed slightly away
from the centers of the squares in E2(G). Hence, the
theorem is also applicable for non-degenerate distri-
butions of the input sites.

4 Concluding remarks

We have introduced the problem Min Voronoi Con-
nectivity, and shown how it can be solved in
O(n log n + nd−1) time for two red sites and n blue

sites in Rd. The running time of our algorithm is op-
timal for d = 2, and also for d = 3 if the conjectured
lower bound for 3sum holds. Our algorithm can also
be used to compute all connectivity sets which are
minimal under inclusion. This allows us to find an op-
timal connectivity set for any constant number of red
sites: for every spanning tree of the complete graph
on the red sites, try every combination of inclusion-
minimal connectivity sets for the edges. For a non-
constant number of red sites, the problem is np-hard.
O(|B|)- and O(|R|)-approximations are not difficult,
but we haven’t come up with an O(1)-approximation.
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Approximation algorithms for free-label maximization

Mark de Berg∗ Dirk H.P. Gerrits∗

Abstract

Inspired by applications where moving objects have
to be labeled, we consider the following (static) point
labeling problem: given a set P of n points in the
plane and labels that are unit squares, place a label
with each point in P in such a way that the number of
free labels (labels not intersecting any other label) is
maximized. We develop efficient constant-factor ap-
proximation algorithms for this problem, as well as
PTASs, for various label-placement models.

1 Introduction

Map labeling involves associating textual labels with
certain features on a map such as cities (points), roads
(polylines), and lakes (polygons). Manually perform-
ing this task is estimated to take cartographers 50%
of the total time in creating a map [11]. It is therefore
unsurprising that map labeling was listed as an impor-
tant research area in the ACM Computational Geom-
etry Impact Task Force report [4], and has generated
a lot of algorithmic research, especially for point fea-
tures. See for instance the on-line Map Labeling Bib-
liography [15], currently containing 371 references.

Label models. A good labeling for a point set has
legible labels, and an unambiguous association be-
tween the labels and the points. The latter puts re-
strictions on the shape of labels and the way they can
be placed in relation to points. Various such label
models have been proposed, most often with labels
assumed to be axis-aligned rectangles slightly larger
than the text they contain.

In the fixed-position models, every point has a finite
number of label candidates (often 4 or 8), each being a
rectangle having the point on its boundary. In partic-
ular, in the 1-position (1P) model one designated cor-
ner of the label must coincide with the point, in the 2-
position (2PH, 2PV) models there is a choice between
two adjacent corners, and the 4-position (4P) model
allows any corner of the label to coincide with the
point (see the upper-left 2x2 block in Figure 1). The
slider models, introduced by Van Kreveld et al. [14]
generalize this. In the 1-slider (1SH, 1SV) models
one side of the label is designated, but the label may
contain the point anywhere on this side. In the 2-

∗Dept. of Computer Science, TU Eindhoven, the Nether-
lands, mdberg@win.tue.nl, dirk@dirkgerrits.com

slider (2SH, 2SV) models there is a choice between
two opposite sides of the label, and in the 4-slider (4S)
model the label can have the point anywhere on its
boundary (see the fourth row and column in Figure 1).
Erlebach et al. [5] introduced terminology analogous
to the slider models for fixed-position models with a
non-constant number of positions (1MH, 1MV, 2MH,
2MV, 4M; see the third row and column in Figure 1).

1P 2PH 1MH, kPH 1SH

2PV 4P 2MH 2SH

1MV, kPV 2MV 4M

1SV 2SV 4S

1 2 k ∞

1

2

k

∞

x
y

optimal

1/4-approx.

1/4-approx.

1/4-approx.

1/4-approx.

1/16-approx.

1/16-approx.

1/12-approx.

1/4-approx.

1/16-approx.

1/32-approx.

1/32-approx.

1/4-approx.

1/12-approx.

1/32-approx.

1/24-approx.

Figure 1: The fixed-position and slider models, and
our approximation results for them for the free-label-
maximization problem (assuming unit-square labels).
The x-axis (y-axis) indicates the number of allowed
horizontal (vertical) positions for a label.

Static labeling. Intersecting labels and small font
sizes hinder legibility. The size-maximization problem
asks to label all points with pairwise non-intersecting
labels of maximum size. For a given placement of the
labels it is a fairly simple geometric task to find the
optimal scale factor, so the problem can be solved op-
timally for the 1P model. For two or more label candi-
dates the problem is APX-hard, even for unit-square
labels [6]. Constant-factor approximation algorithms
exist for various label models [6, 9].

The more widely studied number-maximization
problem asks to label a maximum-cardinality sub-
set of the n points with pairwise non-intersecting la-
bels of given dimensions. Even if all labels are unit
squares, this problem is known to be strongly NP-
hard for the 1P [7], 4P [6, 10], and 4S models [14].
A generalization of this problem concerns weighted
points [12] and asks for a maximum-weight subset
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of the points to be labeled so that, for example, a
big city will more likely get a label than a small
town. For unit-height rectangular labels this prob-
lem admits a polynomial-time approximation scheme
(PTAS) for static points in all fixed-position and slider
models, both in the weighted [5, 12] and the un-
weighted case [1, 14]. For arbitrary rectangles in the
unweighted case an O(1/ log log n)-approximation al-
gorithm is known for the fixed-position models [3],
but the slider models, the weighted case, and the
(non-)existence of a PTAS remain open problems.

Labeling of moving points. Mobile devices with in-
teractive displays and GPS have vastly increased both
the availability of motion data and our ability to view
them. An important aspect of displaying such data is
the association of textual labels with points of inter-
est. Yet, despite the large body of work on labeling
static points, virtually no results have been published
on labeling moving points. Been et al. [2] studied the
unweighted number-maximization problem for static
points under continuous zooming in and out by the
viewer, which can be seen as points moving on a very
specific kind of trajectories. Rostamabadi and Ghod-
si [13] studied how to quickly flip and scale the labels
of static points to avoid one moving point.

There is not only a lack of results on label-
ing moving points, but in fact the size- and
number-maximization problems are ill-suited to mov-
ing points. Continuously scaling labels under size
maximization would be hard to read, and the
(dis)appearance of a label under number maximiza-
tion can be disturbing for the viewer. We instead
propose the free-label-maximization problem, where
the labels have given dimensions (as in the number-
maximization problem), but all points need to be la-
beled (as in the size-maximization problem). Instead
of disallowing intersections, we want to maximize the
number of labels which are not intersected, and call
such labels free. Ideally, an algorithm for free-label
maximization on moving points would move the la-
bels continuously in such a way that the number of
free labels is close to the static optimum at all times.

Our results. As a first step towards this goal we
have studied the free-label-maximization problem for
static points. For unit-square labels we have devel-
oped a simple O(n log n)-time, O(n)-space constant-
factor approximation algorithm, as well as a PTAS.
This makes free-label maximization easier than size
maximization, as the latter is APX-hard even for
unit-square labels. In contrast, techniques used for
(approximate) number maximization for unit-square
labels easily extend to unit-height labels of different
widths, which seems not to be the case for free-label
maximization. Thus the complexity of free-label max-
imization seems to fall in between that of the size- and
number-maximization problems.

We present our constant-factor approximation al-
gorithm in the next section, leaving our PTAS to the
full version of this paper. The algorithm’s approxima-
tion guarantees for the various label models are listed
in Figure 1. We prove them for the 2PH, 4P, 1SH,
2SH, and 4S label models, the other models being
analogous. We assume that no two points have the
same x- or y-coordinate, and that labels are open sets
(their boundaries may intersect). Neither assumption
is essential, but they make our exposition simpler.

2 Constant-factor approximations for unit squares

Consider the algorithm GreedySweep, which works
as follows. Going through the points from left to right,
we label them one-by-one. We call a label candidate `
for a point being processed freeable if none of the pre-
viously placed labels intersect `, and every point still
to be labeled has at least one label candidate that does
not intersect ` or any previously placed freeable label.
We always choose a freeable label candidate if possi-
ble, and then also call the resulting label freeable. If
a point has no freeable label candidate we pick a non-
freeable label candidate that does not intersect any
previously placed freeable label (which is always pos-
sible by the definition of freeable). In case of ties, we
pick the label candidate farthest to the left. (Further
ties between equally leftmost label candidates can be
broken arbitrarily.)

Lemma 1 For the free-label-maximization problem
with unit-square labels, algorithm GreedySweep
gives a 1/4-approximation for the 2PH and 1SH mod-
els and this ratio is tight.

Proof. Let Opt be some optimal solution, and let
Alg be the solution computed by GreedySweep.
Now suppose a point p is labeled with a free label
`Opt
p in Opt, but that the label candidate `Opt

p was
not freeable when p was being processed by Greedy-
Sweep. Call a label candidate for a point rightmost
if it is farthest to the right of all label candidates for
that point, and define leftmost analogously. Since p
and all points that already have a label lie to the left
of every unprocessed point p′, their labels cannot in-
tersect the rightmost label candidate for p′ without
intersecting all other label candidates for p′ as well.
Thus all unprocessed points can be labeled with their
rightmost label candidate without intersecting `Opt

p .
Hence, `Opt

p not being freeable must be caused by a
label `Alg

p′ (either freeable or not) that was placed ear-
lier. We note that `Alg

p′ cannot be leftmost. (If the
leftmost label candidate for a point p′ left of p inter-
sects `Opt

p , then all other label candidates for p′ do
as well, contradicting that `Opt

p is free in Opt.) That
`Alg
p′ is not leftmost can mean two things. Either `Alg

p′

is freeable, in which case we charge `Opt
p to `Alg

p′ , or
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`Alg
p′′`Alg

p′′

`Alg
p′

`Alg
p′

`Opt
p

`Opt
p

`Opt
p

`Opt
p

`Alg
p′

`Alg
p′

`Opt
p

`Opt
p

`Opt
p

`Opt
p

. . .

︸ ︷︷ ︸
repeated k times

`Alg
p′′

︸ ︷︷ ︸

Figure 2: A labeling computed by GreedySweep for
the 2PH model, where the k + 1 labels marked `Alg

p′′

are free. In the optimal solution the 4k labels marked
`Opt
p are free. Thus the 1/4-approximation is tight

for the 2PH model, and the same can be shown for
the 1SH model by moving the points closer together
horizontally.

making `Alg
p′ leftmost will cause it to intersect some

freeable label `Alg
p′′ , in which case we charge `Opt

p to
`Alg
p′′ . With a careful case analysis one can argue that

at most four free labels of Opt get charged to a sin-
gle freeable label of Alg by the above scheme. Fig. 2
shows that resulting approximation ratio is tight.

We still need to consider the case where a point p
has a free label `Opt

p in Opt that is also a freeable la-
bel candidate when p is being processed by Greedy-
Sweep. Then `Alg

p must be a freeable label, and we
charge `Opt

p to `Alg
p . The label `Alg

p can at most be
as far to the right as `Opt

p , otherwise GreedySweep

would have picked `Opt
p over `Alg

p . One can argue that
this implies `Alg

p will only be charged once. �

Already for the 4P model, GreedySweep can be
as bad as an O(1/

√
n)-approximation. We instead

take the best solution over running GreedySweep
several times with different sweep directions. For the
4P model we do one left-to-right sweep (as before)
and one right-to-left sweep (preferring rightmost label
candidates). For the 2SH model we do one top-to-
bottom sweep (preferring topmost label candidates)
and one bottom-to-top sweep (preferring bottommost
label candidates). For the 4S model we sweep in all
four of these directions. This yields the following:

Theorem 2 There are O(n log n)-time and O(n)-
space algorithms for free-label maximization on n
points with unit-square labels, having the following
approximation ratios: 1/4 (tight) for the 2PH and
1SH models, 1/12 for the 2SH model, 1/16 for the 4P
model, and 1/24 for the 4S model.

Proof. We will prove the approximation ratio for the
4P model; the proofs for the 2SH and 4S models are
similar, and the ratio for the 2PH and 1SH models was
proved in Lemma 1. Let Opt be an optimal solution
for the 4P model, and consider the solution Alg com-
puted in the left-to-right sweep. We can assume that

at least half of the labels in Opt are placed in one
of the two rightmost positions. (If not, at least half
must be placed in one of the two leftmost positions
and we can instead consider the right-to-left sweep in
a completely symmetric way.) We will argue that the
rightmost free labels in Opt can be charged to free la-
bels of Alg so that no label receives more than eight
charges, yielding the stated 1/16-approximation.

Suppose p is a point with a rightmost free label
`Opt
p in Opt, but with a non-free label `Alg

p in Alg.
At the time p was being processed, the label candi-
date `Opt

p must not have been freeable, either because
some unprocessed point would inevitably get a label
intersecting `Opt

p , or because some processed point al-
ready had a label intersecting `Opt

p . We consider these
two cases separately.

(1) Suppose every label candidate of some unpro-
cessed point p′ intersects either `Opt

p or some previ-
ously placed freeable label. (This cannot occur in the
2PH and 1SH models.) Of the rightmost label can-
didates for p′ one must be topmost, say `∧p′ , and one
must be bottommost, say `∨p′ . Since p and all points
that already have a label lie to the left of p′, if `Opt

p or
a freeable label intersects a rightmost label candidate
for p′, then it also intersects the label candidate(s)
for p′ with the same y-coordinate but lying more to
the left. So if all rightmost label candidates for p′

are intersected by previously placed freeable labels,
then all label candidates for p′ are intersected by pre-
viously placed freeable labels, meaning that at least
one of them was in fact not freeable. Thus `Opt

p must
intersect some rightmost label candidate of p′. This
implies that `Opt

p does not intersect the horizontal line
through p′, for otherwise `Opt

p would contain p′. Thus
`Opt
p intersects either `∧p′ or `∨p′ but not both, so there

must be a freeable label `Alg
p′′ in Alg which intersects

`∨p′ if `Opt
p intersects `∧p′ , or vice versa. Charge `Opt

p

to `Alg
p′′ . One can argue that any freeable label can be

charged at most twice this way (see Figure 3(b)).
(2) Suppose some already processed point p′ has

a label `Alg
p′ (either freeable or not) that intersects

`Opt
p . Because `Opt

p is rightmost, `Alg
p′ cannot be left-

most. So either `Alg
p′ is freeable, and we charge `Opt

p

to `Alg
p′ , or making `Alg

p′ leftmost will cause it to in-
tersect some freeable label `Alg

p′′ , and we charge `Opt
p

to `Alg
p′′ . One can argue that any freeable label can be

charged at most six times this way for the 4P model
(see Figure 3(a)).

Combining the charges of these two cases yields at
most eight charges per free label for the 4P model,
and we argued that at least one half the free labels
in Opt could be charged, yielding the claimed 1/16-
approximation. We have not yet charged free labels
in Opt which label points that also have a free label
in Alg. One can argue that charging such labels does

79



26th European Workshop on Computational Geometry, 2010

`Alg
p′′

`Opt
p

`Opt
p

`Opt
p

`Opt
p

︸ ︷︷ ︸
six charges to `Alg

p′′

︸ ︷︷ ︸
eight charges to `Alg

p′′

`Opt
p

`Opt
p

`Opt
p

`Alg
p′′

`Opt
p

`Opt
p

`Opt
p

`∧p′

`∨p′

`Opt
p

`Alg
p′′

`∧p′

`∨p′

`Opt
p

(b)(a)

`Alg
p′

`Alg
p′`Alg

p′`Alg
p′

`Alg
p′`Alg

p′

(c)

Figure 3: (b) If every `Opt
p charged to `Alg

p′′ is inter-
sected by labels placed later, `Alg

p′′ is charged at most
twice. If every `Opt

p charged to `Alg
p′′ is intersected by

labels placed earlier, `Alg
p′′ is charged (a) at most six

times for the 4P model, and (c) at most four times for
the 2SH and 4S models.

not cost us extra charges, as one of the charges to `Alg
p′′

in Figure 3(b) must disappear if `Opt
p′′ is free.

The proofs for the 2SH and 4S models are similar,
but each free label can get at most six charges (see
Figure 3(b)–(c)). In the 2SH model every free label
in Opt is either topmost or bottommost so that we
can again charge at least half of them, but in the 4S
model a label can also be leftmost or rightmost so that
we can charge only one fourth.

With some clever use of standard data structures,
similar to the 1/2-approximation algorithm for num-
ber maximization by Van Kreveld et al. [14], Greedy-
Sweep can be implemented to run in O(n log n) time
and O(n) space. We omit the details. �

3 Conclusion

We have presented a simple and efficient constant-
factor approximation algorithm for a new variant of
the labeling problem motivated by the wish to la-
bel moving points. Our algorithm works for the
case where all labels are unit squares (or, equiva-
lently, if all labels are rectangles of the same dimen-
sions). For this case we also developed a PTAS us-
ing a variation on the “shifting technique” due to
Hochbaum and Maass [8]. Details can be found in
the full version of this paper. The cases of labels
being unit-height rectangles or arbitrary rectangles
are still open. For the number-maximization prob-
lem these cases allow, respectively, a PTAS and an
O(1/ log log n)-approximation, and it would be inter-
esting to see if these results can be matched. If not,
the free-label-maximization problem is strictly harder
than the number-maximization problem, while easier
than the size-maximization problem. The weighted
version of the free-label-maximization problem is an-
other interesting direction for future research.
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On Rectilinear Partitions with Minimum Stabbing Number∗

Mark de Berg† Amirali Khosravi†

Abstract

Let S be a set of n points in Rd, and let r be a pa-
rameter with 1 6 r 6 n. A rectilinear partition for
S is a collection Ψ(S) := {(S1, b1), . . . , (St, bt)} such
that the sets Si form a partition of S, each bi is the
bounding box of Si, and n/2r 6 |Si| 6 2n/r for all
1 6 i 6 t. The (rectilinear) stabbing number of Ψ(S)
is the maximum, over all axis-parallel hyperplanes h,
of the number of bounding boxes used in Ψ(S) that
are intersected by h. We study the problem of find-
ing an optimal rectilinear partition—a rectilinear par-
tition with minimum stabbing number—for a given
set S. We obtain the following results.

• Computing an optimal partition is np-hard.
• There are point sets such that any partition with

disjoint bounding boxes has stabbing number
Ω(r1−1/d), while the optimal partition has stab-
bing number 2.
• A 2-approximation algorithm for computing op-

timal partitions, running in polynomial time if r
is a constant.

1 Introduction

Motivation. Range searching is one of the most fun-
damental problems in computational geometry. In its
basic form it can be stated as follows: preprocess a
set S of objects in Rd into a data structure such that
the objects intersecting a query range can be reported
(or counted) efficiently. A range-searching data struc-
ture that is popular in practice is the bounding-volume
hierarchy, or bvh for short. This is a tree in which
each object from S is stored in a leaf, and each inter-
nal node ν stores a bounding volume b(ν) of the ob-
jects in its subtree. Often the bounding volume being
used is a bounding box : the smallest axis-aligned box
containing the objects in the subtree. When a bvh
is stored on external memory, one usually uses a B-
tree [3, Chapter 18] as underlying tree structure; the
resulting structure (with bounding boxes as bound-
ing volumes) is then called an R-tree. R-trees are one
of the most widely used external-memory data struc-
tures for spatial data, and they have been studied

∗This research was supported by the Netherlands’ Or-
ganisation for Scientific Research (NWO) under project
no. 639.023.301 and project no. 612.000.631.
†Department of Computing Science, TU Eindhoven.

P.O. Box 513, 5600 MB Eindhoven, the Netherlands.

extensively—see for example the book by Manolopou-
los et al. [5]. In this paper we study a problem related
to the construction of R-trees, as explained next.

There are two main strategies to construct R-trees:
top-down and bottom-up. A top-down construction
algorithm will partition S into a number of subsets Si,
and then recursively construct a subtree Ti for each Si.
Thus the number of subsets corresponds to the degree
of the R-tree. When a range query with a range Q is
performed, one has to recursively search in the sub-
trees Ti for which the bounding box of Si (denoted
bi) intersects Q. Note that if bi ⊂ Q, then all objects
from S stored in the subtree Ti lie inside Q; if, how-
ever, bi intersects ∂Q (the boundary of Q) then we do
not know if the objects stored in Ti intersect Q. Thus
the overhead of the search algorithm is determined by
the bounding boxes intersecting ∂Q. If Q is a box, as
is often the case, then the number of bounding boxes
bi intersecting ∂Q is bounded, up to a factor 2d, by
the maximum number of bounding boxes intersecting
any axis-parallel plane. Thus we would like to parti-
tion S into subsets so as to minimize the number of
bounding boxes intersecting any axis-parallel plane.

Further background and problem statement. Let
S be a set of n points in Rd, and let r be a pa-
rameter with 1 6 r 6 n. A rectilinear partition
for S with respect to r is a collection Ψ(S) :=
{(S1, b1), . . . , (St, bt)} such that the sets Si form a
partition of S, each bi is the bounding box of Si, and
n/2r 6 |Si| 6 2n/r for all 1 6 i 6 t. Note that even
though the subsets Si form a (disjoint) partition of S,
the bounding boxes bi need not be disjoint. The stab-
bing number of an axis-parallel plane h with respect
to Ψ(S) is the number of boxes bi whose interior inter-
sects h, and the (rectilinear) stabbing number of Ψ(S)
is the maximum stabbing number of any axis-parallel
plane h. Observe that our rectilinear partitions are
the axis-parallel counterpart of the (fine) simplicial
partitions introduced by Matoušek [6].

It is easy to see that there are point sets S for
which any rectilinear partition has stabbing number
Ω(r1−1/d); this is for example the case when the points
in S form a grid of size n1/d × · · · × n1/d. Moreover,
any set S admits a rectilinear partition with stab-
bing number O(r1−1/d); such a rectilinear partition
can be obtained by a construction similar to a kd-tree.
Thus from a worst-case and asymptotic point of view
the problem of computing rectilinear partitions with
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(a) (b) (c)

stabbing number 4

stabbing number 2

Figure 1: (a) The variable gadget. The dark grey squares are barrier gadgets, and the light grey rectangles
indicate that no other bounding box can cross that strip. (b) True setting. (c) False setting.

low stabbing number is solved. However, any spe-
cific point set may admit a rectilinear partition with
a much lower stabbing number than O(r1−1/d). For
instance, if the points from S are all collinear, then
there is a rectilinear partition with stabbing number 1.
The question now arises: given a point S and a pa-
rameter r, can we compute a rectilinear partition that
is optimal for the given input set S, rather than worst-
case optimal? In other words, we want to compute a
rectilinear partition that has the minimum stabbing
number over all rectilinear partitions for S.

Our results. In Section 2 we show that already in R2,
finding an optimal partition is np-hard. We then turn
our attention to approximation algorithms. We show
in Section 3 that algorithms only considering disjoint
partitions cannot have a good approximation ratio:
there are point sets such that any partition with dis-
joint bounding boxes has stabbing number Ω(r1−1/d),
while the optimal partition has stabbing number 2.
Finally, in Section 4 we give a 2-approximation algo-
rithm for computing optimal partitions, which runs
in polynomial time if r is a constant.

2 Finding optimal rectilinear partitions is np-hard

We prove the following problem to be np-hard.

Optimal Rectilinear Partition
Input: A set S of n points in R2 and parameters r, k.
Output: yes if S admits a rectilinear partition w.r.t. r
with stabbing number at most k, no otherwise.

Our reduction (from 3-sat) is similar to the proof by
Fekete et al. [4] of the np-hardness of minimizing the
stabbing number of a matching on a planar point set.

Let U := {x1, . . . , xm} be a set of m boolean vari-
ables, and let C := C1 ∧ · · · ∧ Cs be a cnf formula
defined over these variables, where each clause Ci is
the disjunction of three variables. The 3-sat prob-
lem is to decide whether such a boolean formula is

satisfiable; 3-sat is np-hard [7]. Our reduction will
be such that there is a rectilinear partition with stab-
bing number 5 for the Optimal Rectilinear Par-
tition instance if and only if the 3-sat instance is
satisfiable. We only sketch the construction, leaving
the proof of correctness to the full version of the pa-
per. We first describe the various gadgets we need,
and then explain how to put them together.

The barrier gadget. A barrier gadget is constructed
by taking a tiny square, partitioning it into 5×5 sub-
squares, and placing 2n/r points in each of the sub-
squares. Obviously we can partition these 25 · (2n/r)
points into 25 subsets in such a way that both the
horizontal and the vertical stabbing number of the 25
bounding boxes is 5. We need that any partitioning of
these points with stabbing number 5 in fact has hor-
izontal and vertical stabbing number at least 5. (Of
course we should take care that ”borrowing” points
from other parts of the construction is not possible,
or at least does not change the argument.) Thus no
other bounding box can cross the horizontal strip de-
fined by the lines through the top and bottom of the
square, and similarly for the vertical strip defined by
the left and right edge.

The variable gadget. Fig. 1(a) shows the variable
gadget. The three subsets in the left part of the con-
struction, and the tree subsets in the right part, each
contain n/2r points. Because of the barrier gadgets,
the points from one subset cannot be combined with
other points and must be put together into one rect-
angle in the partition. The six subsets in the middle
part of the construction each contain 4n/r points. To
make sure the stabbing number does not exceed 5,
these subsets can basically be grouped in two dif-
ferent ways. One grouping corresponds to setting
the variable to true, the other grouping to false—see
Fig. 1(b) and (c). Note that the gadget defines two
vertical slabs. If the variable is set to true then the
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left slab of xi right slab of xj left slab of xk

Figure 2: A clause gadget for (xi ∨ xj ∨ xk), and one
possible grouping of the points.

left slab has stabbing number 2 and the right slab has
stabbing number 4, otherwise the opposite is the case.

The clause gadget. A clause gadget consists of
three subsets of 4n/r points, arranged as shown in
Fig. 2, and placed in the left or right slab of the cor-
responding variables: a positive literal is placed in
the left slab, a negative lateral in the right slab. If
the stabbing number of the slab is already 4, which is
the case when the literal evaluates to false, then the
subset of 4n/r points in the clause gadget must be
grouped into two “vertical” rectangles. Hence, not all
literals in a clause can evaluate to false if the stabbing
number is to be at most 5.

The global structure. Fig. 3 shows the global struc-
ture. The variable gadgets are placed diagonally. The
clause gadgets are placed below the variables. We
also place barriers separating the clause gadgets from
each other and from the variable gadgets; these are
not shown. Finally, the gadgets for occurrences of the
same variable in different clauses should be placed
such that they are not stabbed by a common vertical
line. This concludes our sketch of the construction,
which gives the following theorem.

Theorem 1 Optimal Rectilinear Partition is
np-complete.

3 Arbitrary versus disjoint rectilinear partitions

Since computing optimal rectilinear partitions is np-
hard, we should look at approximation algorithms.
It may be easier to develop an approximation algo-
rithm considering rectilinear partitions with disjoint

x1

x2

xm

C1

Cs

variable gadgets

regions where clause
gadgets are placed

Figure 3: The global structure.

bounding boxes. The next theorem shows that such
an approach will not give a good approximation ratio.

Theorem 2 Let d be a constant, and assume r <√
2n. Then there is a set S of n points in Rd whose

optimal rectilinear partition has stabbing number 2,
while any rectilinear partition with disjoint bounding
boxes has stabbing number Ω(r1−1/d).

Proof. Let G be a (r/4)1/d×· · ·×(r/4)1/d grid in Rd.
(We assume for simplicity that (r/4)1/d is an integer.)
We put each grid point in S. We call these points
black points, and we call the hyperplanes forming the
grid G black hyperplanes. Note that there are Θ(r)
black points. Fig. 4 shows an example for d = 2 with
r = 64. Next we refine the grid using d((r/4)1/d − 1)
additional axis-parallel grey hyperplanes; see Fig. 4.
At each of the new grid points—the grey dots in the
figure—we put a tiny cluster of 2n/r points, which
we also put in S. If the cluster lies on one or more
black hyperplanes, then all points from the cluster lie
in the intersection of those hyperplanes, as shown in
Fig. 4. (So far we used less than n points; the remain-
ing points can be placed far enough from the construc-
tion, not influencing the coming argument.) Next, we
rotate the whole construction slightly so that no two
points have the same coordinate in any dimension.
This rotated set is our final point set S.

To obtain a rectilinear partition with stabbing num-
ber 2, we make each of the clusters into a separate
subset Si, and we put the black points into one sep-
arate subset; the latter is allowed since r < 2n/r. (If
r < n/2r we can use some of the remaining points to
fill up the subset.) If the clusters are small enough,
then the rotation we have applied to the point set
guarantees that no axis-parallel hyperplane can inter-
sect two clusters at the same time. Hence, the stab-
bing number of this rectilinear partition is 2.

We claim that any disjoint rectilinear partition for
S has stabbing number Ω(r1−1/d). To see this, ob-
serve that no subset Si in a disjoint rectilinear parti-
tion can contain two black points. Indeed, the bound-
ing box of any two black points contains at least one
full cluster and, hence, too many points. We conclude
that each black point is assigned to a different bound-
ing box. Let B be the collection of these bounding
boxes. Now consider a set H of O(r1/d) axis-parallel
hyperplanes such that each bounding box in B inter-
sects at least one hyperplane from H. (Such a set can
be found by duplicating each of the black hyperplanes,
and moving the two duplicates of each black hyper-
plane slightly apart.) Then the total number of inter-
sections between the boxes in B and the hyperplanes
in H is r, which implies that there is a hyperplane in
H with stabbing number Ω(r1−1/d). �
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clusters

Figure 4: Every rectilinear partition with disjoint
bounding boxes has stabbing number Ω(

√
r) while

there exists a partition with stabbing number 2.

4 A 2-approximation algorithm

We present a polynomial-time algorithm that finds,
for a given set S and parameter r, a rectilinear parti-
tion with stabbing number at most twice the optimal
stabbing number. Our algorithm works as follows.

1. For 1 6 i 6 d, let Hi be a collection of 3r hyper-
planes orthogonal to the xi-axis such that there
are at most n/3r points from S in between any
two consecutive hyperplanes in Hi. Let C be
the set of all boxes defined by the hyperplanes in
H := H1 ∪ · · · ∪Hd. Note that |C| = O(r2d).

2. For each t with r/2 6 t 6 2r, proceed as follows.
Consider all O(r2dt) possible subsets B ⊂ C with
|B| = t. Check whether B induces a valid solu-
tion, that is, whether we can assign the points in
S to the boxes in B such that (i) each point is
assigned to a box containing it, and (ii) each box
is assigned between n/2r and 2n/r points. How
this is done will be explained later.

3. Over all sets B that induce a valid solution, take
the set with the smallest stabbing number. Re-
place each box in it with the bounding box of the
points assigned to it, and report the partition.

Lemma 3 The above algorithm reports a rectilinear
partition with stabbing number at most twice the op-
timal stabbing number.

Proof. Let Ψ := {(S1, b1), . . . , (St, bt)} be an opti-
mal rectilinear partition for S, and let opt denote
the stabbing number of Ψ. Expand every bj in all di-
rections until each facet of bj is contained in a hyper-
plane from H. Let bj denote the expanded box, and
let Ψ := {(S1, b1), . . . , (St, bt)}. The set {b1, . . . , bt}
is one of the subsets B considered in Step 2, and it
induces a valid solution. Hence, the stabbing num-
ber of the reported partition is at most the stabbing
number of Ψ.

Now consider any axis-parallel hyperplane h. As-
sume without loss of generality that h is orthogonal

to the x1-axis and that h lies in between hyperplanes
hi, hi+1 ∈ H. Let bj be a box intersecting h. Note
that bj must intersect hi or hi+1 (or both), otherwise
bj contains too few points. Hence, the h intersects at
most 2 · opt boxes bj . �

To implement Step 2 we construct a flow network with
node set {vsource, vsink} ∪ S ∪ B. The source node
vsource has an arc of capacity 1 to each point p ∈ S,
each p ∈ S has an arc of capacity 1 to every bj ∈ B
that contains p, and each bj ∈ B has an arc of ca-
pacity 2n/r to the sink node vsink. The arcs from
the boxes to the sink also have (besides the upper
bound of 2n/r on the flow) a lower bound of n/2r
on the flow. The set B induces a valid rectilinear
partition if and only if there is an integer flow of n
units from vsource to vsink. Such a flow problem can
be solved in O(min(V 3/2, E1/2)E log(V 2/E+ 2) log c)
time [1], where V is the number of vertices in the net-
work, E is the number of edges, and c is the max-
imum capacity of any arc. We have V = O(n),
E = O(nr), and c = 2n/r. Since we have to
check O(r · r4dr) subsets B, the running time is
O(r·r4dr ·min(V 3/2, E1/2)E log(V 2/E+2) log c) which
is polynomial (assuming r is a constant). Note that
by enumerating all the partitions , the running time
would already be Ω(2n/2) for r = 2.

Theorem 4 Let S be a set of n points, and r a con-
stant. Then we can compute in polynomial time a
rectilinear partition with stabbing number at most
2opt, where opt is the minimum stabbing number of
any rectilinear partition for S.
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Finding Structures on Imprecise Points

Mark de Berg∗ Elena Mumford† Marcel Roeloffzen‡

Abstract

An imprecise point is a point in R
2 of which we do

not know the location exactly; we only know for each
point a region in R

2 containing it. On such a set
of imprecise points, structures like the closest pair or
convex hull are not uniquely defined. This leads us
to study the following problem: Given a structure of
interest, a set R of regions and a subset C ⊆ R, we
want to determine if it is possible to place a point
in each region of R such that the points placed in
regions of C form the structure of interest. We study
this problem for the convex hull, with various types of
regions. For each variant we either give a NP-hardness
proof or a polynomial-time algorithm.

1 Introduction

Many geometric problems involve finding a structure
in a set of points in R

2, such as the convex hull or the
closest pair. These structures are well defined for any
given set of points and many algorithms are available
for computing these structures efficiently [1].

Most real-world data, however, is not exact. It
often comes from finite-precision computations or
imprecise measurements, such as GPS coordinates.
Even though such data specifies coordinates for each
point, we do not know the exact location: We only
know for each point that it is within some region
around the given coordinates. This imprecision can
be modeled using a region in space for each point.
For example, discs can be used to model the impreci-
sion caused by measurement errors, whereas squares
can be used to model imprecision on the coordinates
caused by finite precision computations. The input is
then a set of regions in R

2, where somewhere inside
each region a point is located. Now different place-
ments of points inside their regions can lead to dif-
ferent convex hulls and closest pairs on those points.
Thus it is not immediately clear what we want to
compute on a set of such imprecise points.

Related work. Löffler and van Kreveld [4] try to
find the placement of points which maximizes or min-
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imizes the area or perimeter of the convex hull. They
describe algorithms for this with running times rang-
ing from O(n log n) to O(n13) for various restrictions
on the input regions. They also prove NP-hardness for
finding the convex hull with the largest area and for
finding the convex hull with largest perimeter. They
did similar work for the smallest bounding box, small-
est enclosing circle, width, diameter and closest pair
of a set of imprecise points [3].

Löffler and van Kreveld [3, 4] focus on some nu-
merical values, such as the area or distance, of the
structures that can be made from a set of imprecise
points. They do not consider the combinatorial prop-
erties. This is the focus of our work: To determine if
a set of imprecise points can induce a structure with
certain combinatorial properties. For example, given
a set S of imprecise points, we want to determine if
it is possible that two given points p, q ∈ S form the
closest pair. Next, we define this more precisely.

Problem description. The problem we study is
defined as follows. We have a structure of interest,
such as the convex hull or a closest pair, a set R of
regions in R

2 and a subset C ⊆ R. The question we
then want to answer is: Is it possible to place a single
point in each region of R such that the points placed
in the regions of C form the structure of interest?

We use sets of line segments, sets of squares or sets
of discs as the input set R. For different structures we
may impose additional constraints on these regions,
for example that regions have to be disjoint. For the
rest of this paper we use R to denote the input set
of regions and C to denote the given subset of R. We
focus on the convex hull as the structure of interest.

Results. We consider three variations of the convex
hull problem: the exact convex hull, subset convex hull
and superset convex hull. In the exact convex hull
problem the points placed in regions of C should be
exactly its vertices, whereas for the subset (and super-
set) convex hull problem the points placed in regions
of C should be a subset (or superset) of the vertices.

The results for the decision problem to determine if
it is possible to place a point in each region such that
the points placed in regions of C form a given structure
are summarized in Table 1. Note that n = |C| and
k = |R|.

The results for the exact and subset convex hull
problems can be found in Sections 2 and 3. Results
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Problem Regions Restrictions Complexity

Possible Closest Pair

line segments disjoint, unit length, parallel NP-hard

squares disjoint, unit size, axis aligned NP-hard

discs disjoint, unit size NP-hard

Exact Convex Hull line segments none NP-hard

Superset Convex Hull
line segments none NP-hard

line segments disjoint, unit size, parallel O(k2n log n)

Subset Convex Hull

line segments disjoint, parallel O(n log n + k2)

rectangles disjoint, axis aligned O(n log n + k4+ε)

Table 1: Results on the decision problems.

on the superset convex hull and closest pair can be
found in the master thesis by Roeloffzen [6].

Preliminaries. Given a set R of regions, a choice
of points, one from each region of R, will be called
a placement. Unless otherwise indicated, a placement
refers to a choice of points from the regions of R.
Formally, a placement is a function π : R → R

2 that
maps each region P ∈ R to a point π(P ) ∈ P .

We will use calligraphic letters (R, C) to indicate
sets of regions, capital letters (P,Q) to indicate re-
gions, and lower case letters (p, q) to indicate points.
Furthermore when a point corresponds to a certain
region, the region and point will be indicated by the
same letter (p ∈ P, q ∈ Q). We denote |C| by k and
|R| by n. Lastly if S is a set of point then CH(S)
is the convex hull of S and CHvert(S) is the set of
vertices of CH(S).

2 Exact convex hull

In this section we show that Exact Convex Hull

is NP-hard for arbitrary line segments. The convex
hull problem on imprecise points is defined as follows.

Exact Convex Hull

Input: A set of regions R and a subset C ⊆ R.
Output: yes if there is a placement π for R such that

π(C) = CHvert(π(R)), no otherwise.

To prove that Exact Convex Hull is NP-hard
we use a reduction from 3-SAT. For a given 3-sat
formula φ we will construct a set R(φ) of line segments
and define a subset C(φ) ⊆ R(φ) such that Exact

Convex Hull returns yes on (R(φ), C(φ)) if and
only if φ is satisfiable.

Literal gadget. Literal gadgets are placed around
a circle as indicated by the grey areas in Figure 1a.
The gadgets are placed such that the literals of the
same clause are next to each other. Each gadget con-
sists of two point regions, P and Q, on the endpoints
of the circle arc, a segment region A and a point region
L. A point placed at the endpoint at of A will corre-
spond to the variable being true, and a point placed at
af corresponds to the variable being false. All regions

L

at afA

P Q

(a) (b)

Figure 1: (a) Placement of literal gadgets. (b) Non-
negated literal gadget.

except L are in C(φ); this also includes the regions in
variable and clause gadgets which are described next.
Figure 1b shows the gadget for a non-negated literal.
A negated literal has basically the same gadget except
the endpoints at and af switch places.

Variable gadget. We want to enforce different oc-
currences of the same variable to have the same place-
ment: either all should be in the true position (at)
or all should be in the false position (af ). We do
this by putting in line segments Vi = wivi between
consecutive occurrences in a circular manner; Fig-
ure 2a and 2b illustrate this for the three occurrences
of the variable a. The endpoints vi and wi are placed
such that any point placed on A will cause at least one
of these endpoints, vi or wi+1, to be inside the convex
hull. Since Vi is in C(φ) a point on it should be a ver-
tex of the convex hull. Let Am and Al be in the literal
gadgets where vi and wi are located respectively. If a
point is placed at at,m then a point cannot be placed
near af,l since then Vi could not have a point occur-
ring as a vertex of the convex hull. Since all literals of
the same variable are connected in a circular manner
this implies that either all points are placed around
the true endpoints or all at the false endpoints.

Lemma 1 For all literal gadgets of the same variable,

either all points on the line segments A have to be

placed near the at endpoint or they all have to be

placed near the af endpoint.

Clauses. Consider a clause involving three literals,
a, b, c. Recall that for each of these literals we have
a gadget as in Figure 2b and recall that the point
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¬b

¬d

V1
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b
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L

at afA

P QVi

Vi+1

vi wi+1

(a) (b) (c)

C1

C2

Figure 2: (a) Variable line segments for the variable a. (b) Non-negated literal. (c) Clause line segments.

region L should not be on the convex hull. For the
clause involving a, b, c we now add two more segment
regions, C1 and C2, one going between the gadgets
for a and b, and one going between the gadgets for b

and c—see Figure 2c. By placing the points for these
two segments inside the gadget for a (or b or c) we can
ensure that the point for L in a (or b or c) does not
show up on the convex hull, as required. However, we
only have two clause segments, so we can only enforce
this for two of the three literals a, b, c. Preventing the
region L for the third literal from showing up on the
convex hull can only be done using the A region in
that gadget, and requires that literal to be true.

Lemma 2 For each clause there is a placement that

ensures that the point L in any of the literal gadgets

of this clause is not a vertex of the convex hull if and

only if at least one literal is true.

Theorem 3 There is a placement π for R(φ), such

that π(C(φ)) = CHvert(π(R(φ))), if and only if φ is

satisfiable.

Proof. If φ is satisfiable then it follows from
Lemma 1 and 2 that for the placement πs corre-
sponding to a satisfying assignment it holds that
πs(C) = CHvert(πs(R(φ))). If φ is not satisfiable then
every possible valuation of the variables has a clause
that is false. Hence, for every placement for the literal
gadgets corresponding to such a valuation there is a
clause in which none of the literals is true. Lemma 2
implies that no correct placement is possible for that
valuation. Lemma 1 implies that other placements
for the literal gadgets, that do not correspond to a
specific valuation also do not lead to a solution. �

For every literal only a constant number of line seg-
ments is added to R(φ). These line segments can be
computed in polynomial time, so we conclude:

Theorem 4 Exact Convex Hull is NP-hard

when the input regions are arbitrary line segments.

3 Subset convex hull for vertical line segments

For Subset Convex Hull we do not require the
points placed in regions of C to be exactly the vertices
of the convex hull, but merely a subset of the vertices.

Subset Convex Hull

Input: A set of regions R and a subset C ⊆ R.
Output: yes if there is a placement π for R such that

π(C) ⊆ CHvert(π(R)), no otherwise.

In this section we describe an algorithm that solves
Subset Convex Hull for the case when R is a set
of disjoint vertical line segments. Our algorithm relies
on the following observation.

Observation 1 Let π be a placement for R such

that there is a region P with π(P ) 6∈ CHvert(π(R)).
If P has a point outside CH(π(R)) then we can

define a placement π′ such that CHvert(π
′(R)) =

CHvert(π(R)) ∪ {π′(P )}. In π′ all points are placed

the same as in π except the point for P , which is

placed such that π′(P ) 6∈ CH(π(R)).

Because of this observation it suffices to look at
minimal convex hulls. A convex hull of a placement
π is minimal if there is no placement π′ such that
CH(π′(R)) ⊂ CH(π(R)). We look at the following
problem:

Minimal Convex Hull

Input: A set of regions R and a subset C ⊆ R.
Output: yes if there is a placement π such that

CH(π(R)) is minimal and for every region
P ∈ C, either P\CH(π(R)) 6= ∅ or π(P ) ∈

CHvert(π(R)), no otherwise.

Mukhopadhyay et al. [5] introduce the notions of
a bottom and top chain on a set of vertical line seg-
ments. The bottom chain is the lower boundary of
the convex hull of all upper endpoints of the line seg-
ments, whereas the top chain is the upper boundary
of the convex hull of lower endpoints. In Figure 3a
the top and bottom chains are indicated with dashed
lines for a set of vertical line segments.
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(a) (b) (c)

Sl P

pu

Sr

str(pu)
stl(pu)

(d)

Figure 3: (a) Top and bottom chains. Minimal convex hulls (b) where the top boundary contains part of the
top chain and (c) where it is a line between sl and sr. (d) stl(pt), str(pt) and tangent lines through pt.

With these chains we can specify every minimal
convex hull with two points, one on the leftmost line
segment Sl and one on the rightmost line segment Sr.
Given a point sl ∈ Sl and a point sr ∈ Sr we define
CHmin(sl, sr) as follows. Let Ct be the vertices of the
top chain that are above the line slsr and Cb the ver-
tices of the bottom chain that are below the line slsr

then CHmin(sl, sr) = CH(Ct ∪ Cb ∪ {sl, sr}). The
proof that shows that every minimal convex hull is
equal to CHmin(sl, sr) for some sl ∈ Sl and sr ∈ Sr

can be found in Roeloffzen’s thesis [6].

If we now represent the placement of sl on Sl and of
sr on Sr by parameters in [0, 1], then we can represent
every minimal convex hull by a point in [0, 1]2. We
call this the solution space. In the Minimal Convex

Hull problem we look for a minimal convex hull such
that every region P ∈ C either contributes a vertex to
the convex hull or has some part outside. We define
constraints on sl and sr such that these constraints
are satisfied if an only if P either contributes a vertex
or has some part outside the minimal convex hull. The
constraints define an area SP of the solution space.
The intersection of SP over all regions P ∈ C gives us
the area of the solution space which holds solutions
to Minimal Convex Hull.

A region P has a part outside the convex hull if the
top endpoint pt is above the convex hull or the bottom
endpoint pb is below the convex hull. If pt is below
the top chain or on it but not a vertex, then it cannot
be above the convex hull. For a top endpoint pt which
is above the top chain or a vertex on it, we define the
constraints C1–C3. To this end, define stl(pt) to be
the point on Sl or the vertical extension of it, such
that the line through stl(pt) and pt is tangent to the
top chain, where the tangent point is not between
stl(pt) and pt—see Figure 3d.

(C1) sl is below stl(pt)

(C2) sr is below str(pt)

(C3) pt is above the line slsr

With these constraints the following lemma holds.
The proof is omitted here due to space limitations.

Lemma 5 The top endpoint pt of a line segment P

is above the convex hull CH(sl, sr) if and only if con-

straints C1–C3 hold, assuming pt is above the top

chain or a vertex of it.

These constraints (and symmetric ones for the lower
endpoint pb) define the region SP of the solution
space. Since each of the constraints defines a half
plane in the solution space SP is bounded by a con-
stant number of half planes. Therefore, the intersec-
tion Ssol =

⋂
P∈C SP can be found by computing

the arrangement of the half planes that define the
regions SP and traversing that arrangement. This
can be done in O(k2) time by using a topological
sweep [2]. The half planes themselves can be com-
puted in O(log n) time, because the points stl(pt) and
str(pt) can be computed in O(log n) time.

Theorem 6 Subset Convex Hull can be solved

in O(n log n + k2) time when the input regions in R

are parallel line segments.
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The time-optimal helicopter trajectory is a circle segment

André Berger * Alexander Grigoriev * Natalya Usotskaya ∗

Abstract

This paper addresses the problem of determining a
time-optimal helicopter trajectory between two points
in three-dimensional space without any obstacles.
The absolute value of the helicopter speed decreases
linearly in altitude, i.e., v(y) = max{v0−qy, 0}, where
v0 is the helicopter velocity at the ground level and q
is the velocity loss per one meter altitude. Although
intuitively one might think that the optimal trajec-
tory is a straight line, in most of the cases this is not
true. We show that the time-optimal trajectory is, in
fact, a circle segment. For the simplicity of the proof,
we restrict ourselves to the class of continuously dif-
ferentiable trajectories, although the circle segment is
optimal even in the class of continuous functions, a
natural assumption to any helicopter trajectory.

1 Introduction

The classical trajectory optimization problems in
computational geometry usually assume a constant
speed of the moving objects. Moreover, many fun-
damental geometric problems assume that a moving
object, a mover, is a single point in two- or three-
dimensional space. Under these two assumptions,
length-optimal and time-optimal trajectories are the
same. Therefore, dealing with a time-optimization
problem, we can apply, for instance, the shortest-
paths algorithms; see, for instance, [1, 2]. The si-
tuation is totally different when we assume that the
speed of the mover depends on the position in the
space. In this case, length-optimal and time-optimal
trajectories can deviate from each other significantly.
In this paper we investigate one such problem.

Given a mover in three-dimensional Euclidean
space, assume that the absolute value of the mover’s
speed decreases or increases in one of the space coor-
dinates. This is the real-life setting in any helicopter
flight. The greater the altitude of the helicopter, the
less the atmospheric pressure and, consequently, the
less the air density. In turn, the reduction in air den-
sity will reduce the power available, and then, the
maximum speed of the helicopter decreases with al-
titude. Though the (concave) function of the heli-
copter’s maximum velocity in altitude is quite com-

∗Department of Quantitative Economics, Maastricht Uni-
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{a.berger,a.grigoriev,n.usotskaya}@maastrichtuniversity.nl

plex and hardly admits a closed analytical form, it
is widely accepted to approximate it by linear func-
tions or piece-wise linear functions with one break-
point [3]. Therefore, we can formulate the basic heli-
copter problem as follows. Given is a source point A
and a destination point B in three-dimensional Eu-
clidean space, where, traditionally, the vertical y-axis
represents points altitudes while the x- and z-axes
represent the surface coordinates. No obstacles (also
no ground level) are present. The absolute value of
the mover’s speed decreases linearly in altitude, i.e.,
v(y) = max{v0 − qy, 0}, where v0 > 0 is some speed
intercept (for instance, the helicopter’s maximum ve-
locity at the ground level) and q ≥ 0 is the velocity
degradation rate. One has to find a time-optimal tra-
jectory to fly the mover (helicopter) from A to B. No-
tice that this three-dimensional problem can be easily
reduced to the two-dimensional problem. This is be-
cause the time-optimal trajectory clearly belongs to
the plane orthogonal to the surface and containing
points A and B.

The general helicopter problem reads: given points
A and B in three-dimensional Euclidean space, along
with a set of polyhedral obstacles, find a time-optimal
trajectory to fly the helicopter from A to B with-
out hitting the interior of any of the obstacles. It
is noticeable that the general helicopter problem is a
generalization of the classical three-dimensional Eu-
clidean shortest-path problem: if q = 0, the prob-
lems are equivalent. It is well known that the two-
dimensional Euclidean shortest-path problem is poly-
nomially solvable [9], the three-dimensional prob-
lem is NP-hard [6], but admits polynomial time ap-
proximation schemes [1]. Notice that one can eas-
ily derive a polynomial-time approximation scheme
to the three-dimensional general helicopter problem
with obstacles by discretizing/scaling the space and
constructing a weighted complete graph, where the
edge weight is the time to travel between two vertices
(points in the discrete space) using the straight line
trajectory. The presence of obstacles can be easily
taken into account setting the edge weight to positive
infinity if the straight line between two vertices hits
interior of an obstacle. Now, we can search for the
shortest path in the obtained graph.

In the time-optimization setting, to tackle the gen-
eral problem with obstacles, one might need a com-
plete characterization of the set of optimal solutions
to the basic problem without obstacles, the set of,
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so-called, motion primitives. A typical illustration of
lifting from motion primitives to solutions to the gen-
eral problem can be found, for example, in robotics.
In this paper we concentrate on deriving a complete
characterization for the basic helicopter problem. We
show that the trajectory following a certain circle seg-
ment with endpoints A and B is the time-optimal
trajectory in the class of continuously differentiable
functions. The proof uses Euler-Lagrange equations
from the calculus of variations. One can see this
also as a variant of the Pontryagin Maximum (Mini-
mum) Principal [10]. This type of techniques is quite
common in optimal control theory in general, and in
robotics in particular; see, e.g., [4, 5]. This paper
leaves two interesting open questions: 1) whether the
two-dimensional general helicopter problem admits a
polynomial time algorithm; and 2) whether the ba-
sic helicopter problem with piece-wise linear velocity
degradation admits a polynomial time algorithm.

2 The unique time-optimal trajectory is the circle
segment

First, we notice that if the points A(x1, y1) and
B(x2, y2) lay on the same vertical line (i.e., they share
the same x−coordinate: x1 = x2), then the optimal
trajectory is just a piece of the straight line x = x1

between A and B. We omit the proof as it is straight-
forward. We also assume that q > 0, for otherwise
we are in the well-studied setting of the classical Eu-
clidean shortest-path problem. Thus, from now on
we consider only the case where x1 6= x2 and q > 0.
We show that in this case the circle segment is the
unique time-optimal trajectory. The first observation
is about the convexity of any time-optimal trajectory.

Lemma 1 For any two points A and B in R2 ∩
{(x, y) : vo − qy > 0}, a time-optimal trajectory
between A and B is a convex function of x.

Proof. The proof is based on comparison of the
straight line segment between A and B and any con-
cave trajectory above this line. The distance to
travel along the straight line is smaller and the ve-
locity increases with the drop of altitude. Hence,
the straight line trajectory is better than any concave
function. �

Now, we are ready to present the main theorem
of this section claiming that there is a unique time-
optimal trajectory between A and B, which is a circle
segment. The concise proof of Theorem 2 relies on the
fact that we choose the polar system of coordinates
with an observation point being in the center of the
optimal circle segment.

Theorem 2 Let C be the intersection point of the
line y = v0

q and the line equidistant from A and B.

The segment TAB of the circle with center C and ra-
dius R = |CA| = |CB| is the unique time-optimal
trajectory between A and B. The time needed to
travel along TAB is

topt = tTAB =
1
q

ln

∣∣∣∣∣ tan β
2 + tan γ

2

tan β
2 − tan2 β

2 tan γ
2

∣∣∣∣∣ , (1)

where β is the angle between CA and the x-axis, and
γ is the angle between CA and CB.

T

A(x1, y1)

B(x2, y2)

C(x0, y0)

R(α)

α
γ

β

D(x, y)

E

d

L

Figure 1: Convex trajectory T in the polar system of
coordinates

Proof. By Lemma 1, we can restrict our search for
time-optimal trajectories to the class of convex (in x)
functions. Let T be an arbitrary continuously differ-
entiable convex trajectory between A and B. Let L be
the line equidistant from A and B. Since T is convex
in x, it is possible to observe every point of T from any
point C on L that lies above the line segment AB. We
consider the trajectory T in the polar system of co-
ordinates with observation point C = (x0, y0), where
C ∈ L is chosen in such a way that the velocity in C
is 0, i.e., y0 = v0

q .
Consider an arbitrary point D = (x, y) of the tra-

jectory T . In the chosen polar system of coordinates,
the point D is completely determined by α and R(α),
where α is the angle between CA and CD, and R(α)
is the length of the interval CD:

x = x0 −R(α) cos(α+ β), (2)
y = y0 −R(α) sin(α+ β). (3)

For illustration see Figure 1.
First, we write the integral representing the time

needed to travel along T . For a sufficiently small
piece of the trajectory, we may assume that the ve-
locity v remains constant within the piece. Let the
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length of the piece be denoted by ∆x, then the time
to travel along the piece is ∆t ≈ ∆x

v . The velocity v is
completely determined by the altitude of D = (x, y).
Therefore, by Equation (3), we have v = v0 − qy =
qR(α) sin(α + β), as v0 − qy0 = 0 by choice of C.
From mechanics we know that for continuously dif-
ferentiable trajectories the length of the piece ∆x is
determined by ∆x =

√
R′2(α) +R2(α)∆α. There-

fore, the time needed to travel along T is determined
by the following integral:

tT =
∫ γ

0

√
R′2(α) +R2(α) dα
qR(α) sin(α+ β)

, (4)

tT =
1
q

∫ γ

0

√(
R′(α)
R(α)

)2

+ 1
dα

sin(α+ β)
.

Notice, this integral is well defined as 0 < α+β < π
for any α ∈ [0, γ] (β and γ are two of the three angles
of the triangle ABC). Furthermore, for the trajectory
T we have that R(0) = R(γ) = R = |CA| = |CB|, as
the point C is equidistant from A and B.

Now, we replace R(α) with the function f(α) =
ln(R(α)). Since R(α) is continuously differentiable,
the function f(α) is continuously differentiable as
well. Furthermore, f ′(α) = R′(α)

R(α) , and the follow-
ing boundary conditions hold: f(0) = f(γ) = lnR,
where R = |CA| = |CB|. For the function f(α) the
travel time is calculated as follows:

tT =
1
q

∫ γ

0

√
1 + f ′2

dα

sin(α+ β)
. (5)

Now, we have to find all minimizers of the func-
tional (5). The following theorem of the calculus of
variation is used:

Theorem 3 ([8], p. 21; see also [7]) Given a

functional S(y) =
∫ b
a
F (t, y(t), y′(t))dt, where

y : [a, b] ⊂ R → X is differentiable and
y(a) = ya, y(b) = yb, y

′ is the continuous derivative of
y and F is a real-valued function with continuous first
partial derivatives. If the function y(t) is a stationary
point of the functional S(y), then it satisfies the
equation:

Fy(t, y(t), y′(t))− d

dt
Fy′(t, y(t), y′(t)) = 0. (6)

Notice that the trajectory is a circle segment if and
only if the radius-vector R(α) is constant, which is
possible if and only if the function f(α) = ln(R(α))
is also a constant. Therefore, we can concentrate on
Equation (5) proving that f(α) = const is the unique
minimizer of the functional.

1) We prove first that the circle segment with the
center C and radius R = |CA| is a time-optimal
trajectory.

Consider an arbitrary trajectory T . f ′2(α) ≥ 0
for any T , therefore, the following lower bound
exists:

tT ≥
1
q

∫ γ

0

dα

sin(α+ β)
.

On the other hand, the last integral represents
the time needed to travel along the circle segment
TAB with the center C and radius R = |CA|.
Therefore, the derived circle segment is at least
as good as any other trajectory.

2) Now, we show that TAB is the unique time-
optimal trajectory in the class of continuously
differentiable functions. Consider the functional
(5) with the integrand F (α, f, f ′) =

√
1+f ′2(α)

sin(α+β) .
Suppose f(α) is a minimizer of the functional.
Therefore, the Euler-Lagrange Equation (6) holds
for f(α), because it is a necessary condition
for the stationary point of any functional. The
continuous partial derivatives of the integrand
F (α, f, f ′) are:

Fα = −
√

1+f ′2 cos(α+β)

sin2(α+β)
,

Ff = 0,
Ff ′ = f ′√

1+f ′2 sin(α+β)
.

We obtain from Equation (6) that d
dα (Ff ′) = 0.

Hence,

f ′√
1 + f ′2 sin(α+ β)

= const. (7)

Since
√

1 + f ′2 ≥ 1 and sin(α + β) > 0, (0 <
α + β < π), the denominator in Equation (7) is
always positive. Now, we consider three cases:

1. If const = 0, then f ′ = 0 and f(α) = const.
Therefore, R(α) = ef(α) = const. The value
of this constant is determined by the bound-
ary condition R = |CA| = |CB|. This is ex-
actly the circle segment TAB with the center
C and the radius R = |CA|.

2. If const > 0, then f ′ > 0 and the func-
tion f(α) is strictly increasing. Therefore,
f(γ) > f(0). This contradicts the bound-
ary conditions f(0) = f(γ) = lnR. Thus,
there are no optimal trajectories, when the
constant is strictly positive.

3. If const < 0, then f ′ < 0 and the func-
tion f(α) is strictly decreasing. Once again,
the contradicts the boundary conditions as
f(γ) < f(0). Therefore, there are no
optimal trajectories, when the constant is
strictly negative.

Summarizing all three cases, there are no other
time-optimal radius-vector functions but the cir-
cle segment TAB with the center C and the radius
R = |CA| = |CB|.
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The formula for the time needed to travel along the
circle segment TAB can be easily computed as follows:

topt =
1
q

∫ γ

0

dα

sin(α+ β)
=

1
q

∫ β+γ

β

dτ

sin τ
=

=
1
q

∫ tan β+γ
2

tan β
2

dt

t
=

1
q

ln

∣∣∣∣∣ tan β+γ
2

tan β
2

∣∣∣∣∣ =

=
1
q

ln

∣∣∣∣∣ tan β
2 + tan γ

2

tan β
2 − tan2 β

2 tan γ
2

∣∣∣∣∣ .
Here, tan γ

2 and tan β
2 can be determined in terms of

coordinates A(x1, y1) and B(x2, y2). Point C(x0, y0)
has an altitude y0 = v0

q . Since C belongs to the line
L equidistant from A and B, we have that

x0 = − y2 − y1

x2 − x1

v0

q
+
x2

1 + y2
1 − x2

2 − y2
2

2(x1 − x2)
.

Straightforwardly,

R = |CA| =
√

(x0 − x1)2 + (y0 − y1)2,

d = |CE| =

√(
x0 −

x1 + x2

2

)2

+
(
y0 −

y1 + y2

2

)2

.

Now, tan γ
2 =

√
R2−d2
d . Finally, since sinβ = y0−y1

R

and cosβ = x0−x1
R , we derive tan β

2 = sin β
1+cos β =

y0−y1
R+x0−x1

. �

3 Conclusion

In this paper we have addressed the problem of deter-
mining a time-optimal helicopter trajectory between
two points in three-dimensional Euclidean space,
where the speed of the helicopter depends on the fly-
ing altitude. We have characterized the time-optimal
trajectories which are either line or circle segments.

Two interesting research directions can be followed
using the results of this paper. First, it is an open
question whether the basic helicopter problem with
piece-wise linear velocity degradation admits a poly-
nomial time algorithm (here we have considered linear
velocity degradation).

Moreover, the time-optimal line or circle segments
are optimal if no obstacles are present. Hence, the
second open problem is whether the two-dimensional
general helicopter problem with obstacles admits a
polynomial time algorithm. As mentioned in the in-
troduction the three-dimensional problem with obsta-
cles is NP-hard as it is a generalization of the Eu-
clidean shortest-path problem with obstacles in three-
dimensional space.
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A Traveller’s Problem

Florian Berger∗ Rolf Klein∗

Abstract

A traveller is planning a tour from some start posi-
tion, s, to a goal position g in d-dimensional space.
Transportation is provided by n carriers. Each car-
rier is a convex object that results from intersecting
finitely many closed linear subspaces; it moves at con-
stant speed along a line. Different carriers may be
assigned different velocity vectors. While using car-
rier C, the traveller can walk at innate speed v ≥ 0
in any direction, like a passenger on board a vessel.
Whenever his current position on C is simultaneously
contained in some other carrier C ′, the traveller can
change from C to C ′, and continue his tour by C ′.

Given initial positions of the carriers and of s and g,
is the traveller able to reach g starting from s? If so,
what minimum travel time can be achieved?

We provide the following answers. For a 1 1
2 -

dimensional situation similar to the “Frogger” game,
where the traveller has to cross a river on which n
consecutive rectangular barges move at m different
speeds, we provide an O(n logm) solution. In dimen-
sion 8 and higher, the Traveller’s Problem is unde-
cidable, even for innate speed zero. An interesting
case is in dimension 2. We prove that the problem
is NP-hard, even if all carriers are vertical line seg-
ments. It turns out that an s-to-g path of finite
duration may require an infinite number of carrier
changes. Despite this difficulty, we can show that
the two-dimensional problem is decidable. In addi-
tion, we provide a pseudo-polynomial approximation
algorithm.

Keywords: Affine mappings, computational ge-
ometry, continuous Dijkstra, frogger, motion plan-
ning, NP-hardness, partition, pseudo-polynomial ap-
proximation, undecidability.

1 Problem description

Motion planning in dynamic environments is one of
the challenging problems in computational geometry.
A classical, and important question is how to avoid
collision with obstacles that move in time. In this
paper we take a different view and consider a situa-
tion where moving objects can be used as a means of
transportation.

∗University of Bonn, Institute of Computer Science I,
D-53117 Bonn, Germany.

A carrier in dimension d is a non-empty intersec-
tion of finitely many closed linear subspaces. Thus,
in dimension 2, a carrier can be a point, a line seg-
ment, a half-line, a line, a possibly unbounded con-
vex polygon, or the plane itself. Each carrier is as-
signed its own velocity vector, causing it to move lin-
early at constant speed. The traveller is modelled as
a point, p. At time t = 0, his journey begins at a
start point, s, which is located on some carrier Cs.
Like a passenger on board a cruiser, traveller p will
be moved along with Cs. In addition, he can walk
on Cs (and any other carrier) at maximum speed v,
called innate speed for short, as long as he does not
fall off. If, at some time t > 0, traveller p is located
in the intersection of Cs and some other carrier, C,
he may decide to change from Cs to C, and continue
his journey by C. The traveller’s ultimate goal is to
reach a goal point, g, located on some carrier Cg.

We observe that our definition of changing the car-
rier allows for the following implementations. First,
the traveller can change at some point where two car-
riers touch each other, since such touch point belongs
to either carrier. Second, we could introduce a special
carrier C0 that equals the whole plane and does not
move. Then the traveller could, in our model, get off
his current carrier anytime and wait for another car-
rier to arrive or, if v > 0, walk some distance in the
plane, and board another carrier.

In general it is not clear if g can be reached from s at
all. Thus, we are interested in the following questions.

• Given initial positions for the carriers at time t =
0, is it possible for the traveller to reach g when
starting from s?

• If so, what is the quickest way to get there, using
only the carriers for transportation?

2 Crossing a river

As a warm-up example, we consider a special case
that resembles the well-known “Frogger” game. Our
traveller wants to cross a river whose banks are mod-
elled as two horizontal line-shaped carriers that do
not move.

On the river, n rectangular barges are sailing hori-
zontally, at individual speeds and in both directions;
see Figure 1.

The ith barge in bottom-up order is Bi. The strips
defined by Bi and Bi+1 touch each other; B1 and Bn

93



26th European Workshop on Computational Geometry, 2010

s = p

g

Figure 1: Barges on a river.

touch the lower resp. the upper lines, where start
point s resp. goal point g are located. The traveller
cannot swim. But, as in the well-known “Frogger”
game, he can walk on the barges in X- or Y -direction
at maximum innate speed v = 1. Also, where two
barges touch, he can jump from one to the next.

Starting from s at time t = 0, is the traveller able
to reach g? If so, what is the earliest possible arrival
time? Clearly, this is a special case of the general
Traveller’s Problem defined in the Introduction.

Using the continuous Dijkstra technique [4] and ap-
plying an argument of [3], we obtain

Theorem 1 Suppose that the n barges are running
at m different speeds. Then Traveller’s Problem can,
in this case, be solved in time O(n logm).

3 Higher dimensions

The ease of the solution stated in theorem 1 is owed to
the special situation. In this section, we will establish
that the general Traveller’s Problem is undecidable in
dimension d ≥ 8.

To this end we employ the following recent result
by Bell and Potapov [1].

Theorem 2 The following problem is undecid-
able [1]. Given five affine mappings f1, f2, . . . f5
from Q2 to Q2 and two rational vectors q = (x, y)
and q′ = (x′, y′). Is there a finite product of map-
pings from {f1, f2, . . . f5} that maps q to q′?

Now we use this result to prove the following.

Theorem 3 Traveller’s Problem with innate speed
zero is undecidable in dimension d ≥ 8.

Proof. First, we demonstrate how to simulate the
application of a single linear function of one vari-
able, f(X) = a · X, where a > 0, using seven un-
bounded carriers moving in XY ZV -space. In our
construction, only the directions of their speed vec-
tors matter, not their lengths.

Figure 2 depicts the projection of the correspond-
ing journey to XY Z-space. We start with the trav-
eller at an arbitrary point e > 0 on the X-axis. Our
first carrier is the XY -plane itself, moving upwards.
The traveller can use it to get up to the graph of

X

Y

Z

f(X)=aX

ef(e) = ae

(e, ae, 0)

(e, ae, 1)(0, ae, 1)

(ae, 0, 1)

Figure 2: A linear mapping f : Q → Q simulated by
carrier movements.

the mapping f(X) = aX. Here he can change to
the plane {(x, ax, z)|x, z ∈ R} that moves into direc-
tion (0, 0, 1). At Z = 1, he can get off, and change
to the third carrier—the plane {(x, y, 1)|x, y ∈ R}
moving leftwards. It gets the traveller to (0, ae, 1).
At this point, he can enter dimension 4 by means of
the plane {(0, y, 1, v)|y, v ∈ R}, which moves in pos-
itive V -direction.1 At (0, ae, 1, 1) the traveller can
board the plane {(x, y, 1, 1)|x, y ∈ R} whose veloc-
ity vector equals (1,−1, 0, 0). It gets him to the
point (ae, 0, 1, 1), where he can change to the sixth
carrier, the plane {(x, 0, 1, v)|x, v ∈ R} moving in neg-
ative V -direction. Back to 3-space at (ae, 0, 1), he can
finally catch the plane {(x, 0, z)|x, z ∈ R}; it moves in
negative Z-direction and gets the traveller back to
the X-axis, at point ae = f(e).

Two observations are crucial. While the definition
of carriers does depend on the coefficient a of map-
ping f , it works for any argument e.2 Second, if the
traveller leaves the X-axis (at some point e), then his
only chance of returning to the X-axis is to ride the
seven carriers the way explained above. This gets him
to point f(e).

Our construction generalizes to two-dimensional
affine mappings f(X1, X2). Here, we need to make
sure that the traveller, after starting from some
point (e, g) in the X1X2-plane, can return to this
plane only at the point (r, s) = f(e, g). This can be
achieved by introducing extra dimensions, so that the
computations of r and s take place in disjoint affine
subspaces and, consequently, do not interfere. We can

1This part of the journey is not visible in Figure 2, as it
projects onto the point (0, ae, 1). The same holds for the ride
back on the 6th carrier.

2We must add three alternative carriers to deal with argu-
ments e < 0.
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deal similarly with five such affine mappings acting
independently on the X1X2-plane, and thus simulate
the problem of Theorem 2. It turns out that dimen-
sion 8 provides us with sufficiently many disjoint affine
subspaces for this purpose. �

4 Dimension two

4.1 NP-hardness

Our NP-hardness reduction is from the NP-complete
problem

Partition Given n natural numbers a1, a2, . . . , an,
let S :=

∑n
i=1 ai. Does there exist a subset I ⊂

{1, . . . , n} such that S/2 =
∑
i∈I ai?

Theorem 4 Traveller’s Problem in dimension two is
NP-hard for arbitrary innate speed v. There is no
constant factor approximation, unless P=NP.

Proof. Let us first assume that v = 0 holds. Our con-
struction uses vertical carriers C,C ′ and Ai, Bi, 1 ≤
i ≤ n, of height S each. C and C ′ are aligned
and do not move. The bottommost point of C
equals s, while g is the center point of C; see Fig-
ure 3. For each i, carrier Ai moves in such a way
that, at some time, it is congruent with C, and has
gained ai in height on reaching C ′ afterwards. Bi
traverses the horizontal strip containing C,C ′ from
right to left. These carriers pass over C,C ′ in the or-
der A1, B1, A2, B2, . . . , An, Bn, with plenty of time in
between so that no interference is possible.

The traveller, located at some point on C, may
choose to board a carrier Ai. It will get him to C ′,
at a point by ai higher than his point of departure
from C. Then, he can use Bi, or one of the later car-
riers Bj , to return to C while maintaining his height.
In other words, for each index i, the traveller has the
option to move a distance ai upwards on C. Thus, he
is able to reach its middle point, g if, and only if, a
partition of the given numbers is possible.

Now assume that a partition is impossible. Then
the traveller misses g by a distance at least 1/2, since
all ai are natural numbers. If v = 0 the traveller
will never get to g. Now let v > 0, and assume
that there exists an approximation algorithm with ap-
proximation factor < α. By speeding up the carriers
we can ensure that T = 1

2αv holds for the time T
where Bn hits C. At this point, the traveller has
walked a total distance of at most Tv = 1

2α , so that
he is at least d := 1

2 − 1
2α away from g, if he has

reached C at all. To walk distance d takes time at
least d

v = d2αT = (α − 1)T , so that the whole jour-
ney needs time αT at least. Thus, the approximation
algorithm would decide Partition. �

s

g

C C ′

Ai

ai
Bi

ai

S

Figure 3: Proving Traveller’s Problem NP-hard.

4.2 Decidability

The main difficulty in showing decidability comes
from the fact that there are scenes where the goal
can be reached in finite time, but only by an infinite
number of carrier changes. An example is shown in
Figure 4. The three line segments A,B,C are very
long, but bounded. Their velocity vectors have large
axial and small lateral components. This causes the
segments to intersect in point z at some time T . The
fast point-shaped carrier D will pass through z at
time T , too, and then speed on to meet carrier E
that consists just of the goal point, g. The traveller’s

z

s
A

B

C

D

E = g

Figure 4: The traveller must pass through the cy-
cle A,B,C infinitely often before he can board car-
rier D at Zeno point z.

innate speed is zero. He sets out from point s on A.
In order to reach g, he needs to catch carrier D, be-
cause A’s upward movement is too slow, and because
staying on A would get the traveller too far to the
left, anyway. The only occasion when one of A,B,C
contains D is at time T in point z. Until then, the
traveller must keep cycling through the ever contract-
ing triangle formed by A,B,C — an infinite number
of times! Using a notation from the field of hybrid
automata [2], we call z a Zeno point, because the
situation resembles the paradox of Achilles and the
tortoise. At least three carriers are necessary to give
rise to a Zeno point and each triple of carriers causes
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at most one Zeno point. Hence, their total number is
in O(n3).

Although Zeno points cause complications, they are
not strong enough to provide universal computing
power in our model. Indeed, we have the following
result.

Theorem 5 Traveller’s Problem is decidable in the
plane (if all carriers are lines, half-lines, or line seg-
ments).3

4.3 Pseudo-polynomial approximation

Now we present a pseudo-polynomial approximation
algorithm for the case of bounded carriers in the
plane. Let v = 1. Let us assume that an s-to-g paths
exists in our model, and let P ∗ be a path of minimum
travel time, W . We will establish an algorithm that
computes an s-to-g path of almost minimum travel
time. However, this path may only be feasible in a
relaxed model, where the traveller can walk at innate
speed 1+ε, and use a carrier although it is a distance
of µ away. Both relaxation parameters, ε and µ, can
be chosen arbitrarily small.

Our algorithm works by discretising time and space.
The time difference between two consecutive discrete
time points is ∆ := µ

4+8vmax
, where vmax denotes the

maximum speed of all carriers. Space is discretised
by a regular grid of width κ := 1

4 min(µ, ε∆).
It is easy to show the following lemma.

Lemma 6 There exists a function Q : [0,W ] → R2,
such that

• ‖Q(t)‖ ≤
√
2
2 κ for all t ∈ [0,W ], and

• P ∗+Q is a path visiting grid points at all discrete
time points j∆, and

• P ∗ +Q is feasible in the relaxed model.

Thanks to Lemma 6, we need only consider such
paths that visit grid points at all times j∆. This will
get us to the goal location at most ∆ later than W .

Suppose, the traveller is located at the grid point p
at time j∆. Which grid points can be reached from
there at time (j + 1)∆? The crucial idea is to re-
strict this path planning to a set of θ-usable carriers,
which contains all carriers having distance at most

θ :=
√
2
2 κ+ (1 + 2vmax)∆ from p at time j∆.

If a carrier has distance greater than θ from p at
time j∆, it is redundant by Lemma 6. Namely, the

traveller’s distance to this carrier exceeds
√
2
2 κ not

only at time j∆, but throughout a time interval of
length ∆, during which traveller and carrier could get
closer by (1+2vmax)∆. On the other hand, if a carrier

3We put this requirement in brackets because we do not
think that it is essential.

is at most θ away from p at time j∆, then the distance
cannot exceed θ+(1+2vmax)∆ < 3

4µ during the time
interval from j∆ to (j + 1)∆. Hence, no matter how
the traveller changes between the θ-usable carriers, or
walks on them, all extended carrier restrictions are
respected.

This freedom allows to linearly combine carrier mo-
tions. It turns out that the reachability from p at
time j∆ to q at time (j+ 1)∆ is related to the convex
hull of the velocity vectors of the θ-usable carriers.

Finally, we obtain:

Theorem 7 A feasible path in the relaxed model
with travel time at most W + ∆ can be computed
in running time:

O

(
n L log(L) W

G

H

)
where L denotes the total number of edges of the n
carriers, G equals the maximum carrier diameter
squared times the maximum speed to the 5th power,
and H = ε4µ3.

5 Conclusion

We have introduced a new motion planning problem
and shown that its complexity ranges from near lin-
ear, in simple cases, to undecidable in higher dimen-
sions. For dimension 2, the problem is decidable,
but NP-hard. Its “true” complexity in dimension 2
and 3 remains open. We believe that our pseudo-
approximation algorithm can be generalized to higher
dimensions. Whether it can be strengthened is an-
other interesting question.
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The edge rotation graph
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Abstract

For a given point set V in the plane in general po-
sition, consider the set PG(V, k) of non-crossing geo-
metric graphs on V with a fixed number k of edges.
For a given non-crossing geometric graph G = (V,E)
and an edge xy ∈ E, an edge rotation of xy around x
replaces xy by an edge xw 6∈ E, if the open triangle
4xyw does not intersect any edge e ∈ E nor does
it contain any vertex of V . The edge rotation graph
has vertex set PG(V, k) and two vertices are adja-
cent if they differ by an edge rotation. We show that
if PG(V, k) contains no triangulations, then the edge
rotation graph is connected and has diameter O(|V |2).
This also generalizes to edge-labeled geometric graphs
and directed geometric graphs.

1 Introduction

Let V be a finite point set on the plane in general
position. A non-crossing geometric graph (also called
plane straight line graph) on V is a graph whose ver-
tex set is V and whose edges are straight-line seg-
ments with pairwise disjoint interior, joining pairs
of elements in V . For the case when the number
of edges is maximal, this graphs are triangulations
on V . Transformations of triangulations by replace-
ment of edges (edge-flips) has been widely studied
among other things, for their applications on gen-
erating high quality meshes on V like the Delaunay
triangulation [7, 8], or in enumeration of all triangu-
lations on V [2]. We study non-crossing geometric
graphs with fewer edges than in a triangulation and
consider another operation to locally transform geo-
metric graphs.
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§Instituto de Matemáticas, Universidad Nacional Autónoma
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Figure 1: Three types of edge rotations (a-c) and an
edge flip (d).

Given a non-crossing geometric graph G = (V,E)
and an edge xy ∈ E, an edge rotation of xy around x
replaces xy by an edge xw 6∈ E, if the open triangle
4xyw does not intersect any edge e ∈ E nor does it
contain any vertex of V .

Figure 1 shows an edge rotation for a geometric
graph (a). Variants of the definition of edge rotations
are possible, for example neglecting the conditions im-
posed on the triangle 4xyw, Case (b) in Figure 1. A
more restrictive rotation allows us to replace xy by xw
only if y and w are consecutive vertices in the cyclic
order of visible (as seen from x) vertices around x, see
Case (c). An edge flip is shown in (d). We will use
the definition of Case (a); the same arguments can
be applied to show connectivity of the edge rotation
graph for (b) and (c).

Edge rotations are a well known operation for
graphs, see [5] for example. In the geometric setting,
edge rotations have been considered for the class of
trees by Bose, Czyzowicz and Hurtado, see [3]. A
transformation for trees are edge-slides, studied by
Aichholzer and Reinhardt [1]. We refer to the sur-
vey [3] for more details and related works.

We are concerned with the question whether and
how fast two geometric graphs can be transformed
into each other by means of edge rotations. In terms
of graph theory, we are asking for connectivity and
diameter of the edge rotation graph.

Let V be a set of points in the plane in general po-
sition, and let PG(V, k) be the set of all non-crossing
geometric graphs on V with k edges. The edge ro-
tation graph ERG(V, k) has vertex set PG(V, k) and
two vertices are joined by an edge if and only if they
differ by an edge rotation.
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To make things easier to understand, in what fol-
lows, we will augment a non-crossing geometric graph
to a triangulation by adding extra edges which we
call absent edges. These additional edges do not in-
fluence edge rotations in geometric graphs. In what
follows, we will also assume that the geometric graphs
in PG(V, k) are not triangulations, and thus have at
least one absent edge. Hence, k can be any value in
the range between 1 and the number of edges of a
triangulation on V minus 1.

This work is organized as follows. In Section 2 we
prove that the edge rotation graph is connected and
give tight asymptotic bounds on its diameter. In Sec-
tions 3 and 4 we show that this also holds for non-
crossing geometric graphs with labeled edges and for
directed non-crossing geometric graphs. Some proofs
are omitted or not given in full detail; we refer to [4]
for a more detailed study on edge rotations.

2 Connectivity

The following two lemmas will be the main tools for
proving connectivity.

Let T be a triangulation, and let a and e be two
edges of T .

Lemma 1 There is a sequence of edge rotations that
transform T − a to T − e.

Proof. Let T ′ be the dual graph of T and let P be a
shortest path in T ′ between a face of T containing a
and a face containing edge e. The proof proceeds by
induction over the path length of P .

Base case: The path length is zero. Hence, a and e
are edges of a triangle of T . By definition, we can
rotate the edge e to the position of a using the vertex
incident to both edges as pivot.

Inductive case: The path length is ` > 0. The
path P induces a strip of triangles in T connecting a
with e. Consider the edge c of T incident to the tri-
angle that contains a and the next triangle in the P .
Since a and c are in the same triangle, we can ex-
change the positions of a and c. This gives a shorter
path P ′ whose length is `−1. By induction hypothesis
we can move the edge a to the edge e. �

In other words, Lemma 1 tells us the following: Let
T be a triangulation with an absent edge a. Then
a can be exchanged with any other edge e of T by a
sequence of edge rotations. Clearly, this also holds for
triangulations with more absent edges.

Lemma 2 Given a triangulation with at least one
absent edge, any edge flip can be simulated with edge
rotations.

Proof. Recall that an edge flip replaces a diagonal
of a convex quadrilateral by the other one, see Fig-
ure 1 (d). Note first that a diagonal d (that is flip-
pable) that is an absent edge can simply be replaced
by the other diagonal, because the absent edge is not
part of the geometric graph. Assume that d is not an
absent edge. We can simulate the edge flip of d by a
sequence of edge rotations:

• Using Lemma 1 move an absent edge a to the
boundary of the convex quadrilateral; call its ver-
tices p, q, r, s in cyclic order. Say a = pq and
d = pr.

• Rotate d to the position of a.

• Replace the (absent) diagonal a′ = pr by the (ab-
sent) diagonal a′′ = qs.

• Rotate the edge d′ = pq to d′′ = qs.

• Finally, the absent edge can be moved back to
its original position by reversing the sequence of
edge rotations from Lemma 1.

�

We now prove:

Theorem 3 ERG(V, k) is connected.

Proof. Recall that we are assuming that the graphs
in PG(V, k) are not triangulations, for otherwise no
edge rotation is possible. We now show that given two
plane straight line graphs G1 and G2 in PG(V, k), we
can convert G1 into G2 using edge rotations.

First complete G1 and G2 to triangulations T1 and
T2 by adding absent edges. Given any two triangu-
lations on the same point set, it is always possible
to convert one triangulation into the other one us-
ing edge flips [6, 7]. By Lemma 1 we can move an
absent edge to any place in the triangulation. By
Lemma 2, we can simulate an edge flip with edge ro-
tations. Therefore, simulating a sequence of edge flips,
T1 can be transformed into T2 using edge rotations:
move an absent edge to the quadrilateral where we
want to do a flip; simulate this edge flip with rota-
tions; and move an absent edge to the next quadri-
lateral where we want to perform a flip. Once T1

is transformed into T2, we can reallocate the absent
edges in T2 by Lemma 1, such that we are left with
G2 when the absent edges are ignored. �

Corollary 4 Under edge rotations of type (b)
and (c), ERG(V, k) remains connected.

Proof. For edge rotations of type (b) we only need
to observe that an edge rotation of type (a) is also of
type (b). For edge rotations of type (c) we only need
to observe that an edge rotation of type (a) from xy
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to xw can be replaced by a sequence of edge rotations
of type (c), visiting all visible vertices (as seen from x)
from y to w in the cyclic order around x. �

2.1 Diameter bounds

In this section we show tight asymptotic bounds on
the diameter of the edge rotation graph.

Theorem 5 The diameter of ERG(V, k) has an up-
per bound of O(|V |2).

Proof. The procedure described in Theorem 3 tells
us how to transform an arbitrary plane straight line
graph into any other one. Essentially, we simulate
edge flips by edge rotations. Any triangulation on
a point set V can be transformed into the Delau-
nay triangulation by applying at most O(|V |2) edge
flips [7, 8]. This gives an upper bound of O(|V |3)
for the diameter of ERG(V, k). We now show how to
reduce this to O(|V |2).

When considering edge rotations, only a constant
number of rotations is necessary to simulate an edge
flip if the considered quadrilateral contains an absent
edge. In general this is not the case, and one might
need to do a linear number of edge rotations to sim-
ulate a flip.

An amortized counting will show that at most a lin-
ear number of times an absent edge has to be moved
along more than a constant number of faces. We ex-
ploit the local nature of the propagation of flips in the
Delaunay edge flip algorithm. Recall that an edge e
of a triangulation can be flipped by the Delaunay flip
algorithm if the circumcircle of a triangle incident to e
contains the opposite corner of the other triangle in-
cident to e in its interior.

We simulate a Delaunay edge flip with edge rota-
tions. Initially we may have to perform a number k of
edge flips to simulate such a Delaunay flip. Consider
the edges of the quadrilateral containing the flipped
edge. If for at least one of them, the circumcircle of a
triangle containing this edge contains a fourth point
of V , then the absent edge only needs to be moved
along a constant number of faces to simulate the next
Delaunay flip. Otherwise, if a circumcircle of three
points does not contain any point of V in its inte-
rior then the triangle ∆ formed by these three points
is already a triangle of the Delaunay triangulation.
Charge the initial k edge rotations to ∆, and restart
the counting argument. Since any triangulation con-
tains only O(|V |) triangles, this situation happens at
most O(|V |) times. Since k is O(|V |), it follows that
O(|V |2) edge rotations are sufficient. �

We remark that for edge rotations of type (c) this
arguments yield a bound for the diameter of O(|V |3).

Figure 2: An example that requires Ω(|V |2) edge ro-
tations.

Theorem 6 There exist point sets V such that the
diameter of ERG(V, k) is Ω(|V |2), for k equal the num-
ber of edges of a triangulation on V minus a constant.

Proof. We look at the example for the Ω(|V |2) bound
of the edge flip graph from [6], see Figure 2. Now,
for edge rotations, we remove a constant number of
edges from the left and from the right in the example,
that is, the dashed edges in Figure 2. One can verify
that the same arguments as for edge flips from [6]
can be applied to edge rotations here. We omit the
details. �

3 Labeled graphs

In this section we consider plane geometric graphs
where the edges are labeled; each edge has a different
label. Let V be a set of points on the plane in gen-
eral position, and let PGL(V, k) be the set of all non-
crossing geometric graphs on V with k edges labeled
e1, . . . , ek. Clearly, |PGL(V, k)| = k! |PG(V, k)|.

The labeled edge rotation graph ERGL(V, k) is the
graph whose vertex set is PGL(V, k) and two vertices
are joined by an edge if and only if they differ by an
edge rotation, see Figure 3.

Lemma 7 Let G be a graph in PGL(V, k), and ei
and ej two edges in G. Then the labels of ei and ej

ei ej ei

ei ej ei

ej

ej

Figure 3: Exchanging labels using edge rotations.
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can be exchanged, leaving the labels of the remaining
edges in G unchanged.

Proof. Let ei and ej denote the labeled edges to be
interchanged. As in the proof of Lemma 1 we consider
the dual graph of the triangulation (obtained from G
by adding absent edges) and find a path between the
edge ei and the edge ej . We prove the lemma using
induction over the length of a shortest path (in the
dual graph) between them.

Base case ` = 0: The case when ei and ej are edges
of the same triangle ∆, and it has an absent edge is
easy to check. If ∆ containing ei and ej has no absent
edge, we move an absent edge to the position of the
third edge of ∆ (using Lemma 1). After ei and ej are
interchanged, we reverse the sequence of moves of the
absent edge to its original position. This guarantees
that the structure of the triangulation stays the same
and only the labels of ei and ej have been exchanged.

Inductive case: If the path between ei and ej has
length ` > 0, we first exchange the label of ei with that
of the next edge, say em of the triangle strip induced
by the path between ei and ej . We can do this without
modifying the triangulation and the label assignment
using the base case. Then we have a shorter path
between ei and ej and by induction, we can exchange
the labels of ei and ej . We then exchange the labels
of ej and em. �

Theorem 8 ERGL(V, k) is connected.

Proof. Suppose we have two labeled graphs G and
H in ERGL(V, k). By Theorem 3, ignoring the labels
on the edges of H and G, transform G to H. At this
point the labels on the edges of H are permuted. Now
using Lemma 7, we move each labeled edge to its final
position. �

We remark that when considering edge flips in la-
beled triangulations, the labeled edge flip graph is not
necessarily connected any more, as can be seen by
assigning labels to the graph shown in Figure 2.

4 Directed graphs

In this section we consider plane geometric graphs
with oriented edges. Let V be a set of points in the
plane in general position, and let PGD(V, k) be the
set of all non-crossing geometric graphs on V with k
oriented edges. Clearly, |PGD(V, k)| = 2k |PG(V, k)|.
The directed edge rotation graph ERGD(V, k) is the
graph whose vertex set is PGD(V, k) and two vertices
are joined by an edge if and only if they differ by an
edge rotation.

Theorem 9 ERGD(V, k) is connected.

Figure 4: Two cases for inverting the direction of an
edge with a sequence of edge rotations.

The theorem can be proved similar to the proceed-
ing section. We omit the proof and only show here
two elementary cases of reorienting an edge inside a
triangle with an absent edge, see Figure 4.

5 Concluding remarks

We have proved that transforming geometric graphs
with edge rotations has, in general, the same complex-
ity as transformations using edge flips. Our proofs
strongly rely on the connectivity of the edge flip
graph. It would be of interest to study problems re-
lated to the hamiltonicity of edge rotation graphs.
Some results on hamiltonicity of these graphs are
given in [4]. For instance, it is straightforward to
prove that ERG(V, k) is hamiltonian for k = 1, 2 and
edge rotations of type (c) but it is not if we restrict
the rotation angle to be less than π.
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Delaunay Triangulations of Point Sets in Closed Euclidean d-Manifolds

Manuel Caroli∗ Monique Teillaud∗

Abstract

We give a definition for Delaunay triangulations of
point sets in closed Euclidean d-manifolds and de-
scribe an algorithmic test to check whether the De-
launay triangulation in a closed Euclidean d-manifold
exists for a given point set. We provide an algorithm
to compute the Delaunay triangulation if it exists.
Otherwise the algorithm returns the Delaunay trian-
gulation in a finitely sheeted covering space.

1 Introduction

The Delaunay triangulation of a point set in Ed is a
well-studied structure in computational geometry. Ef-
ficient algorithms are known and there exist various
implementations. We extend the definition of the De-
launay triangulation of a point set to closed Euclidean
d-manifolds and give an algorithm to compute it.

This abstract is a generalization of [4], which dis-
cusses the case of the three-dimensional flat torus
T3. We start with a short summary of it in Sec-
tion 2. In Section 3, we introduce closed Euclidean
d-manifolds and their properties. Finally, in Section 4,
we present the generalization of [4] to closed Euclidean
d-manifolds and describe briefly the algorithm.

2 Review of Triangulations in T3

Let E3 denote the three-dimensional Euclidean space,
and P be a finite point set in E3. The three-
dimensional flat torus T3 is defined as the quotient
space E3/G with G = (Z3,+). Let π : E3 → T3 denote
the quotient map and DT (GP) denote the Delaunay
triangulation of GP = {p + z | p ∈ P, z ∈ Z3} in E3.

We now give a summary of [4].

Definition 1 If π(DT (GP)) is a simplicial complex
in T3, then we call it the Delaunay triangulation of
π(P) in T3.

For example, if P consists of only one point, then
π(DT (GP)) is not a simplicial complex.

Theorem 1 If the 1-skeleton1 of π(DT (GP)) does
not contain cycles of length ≤ 2, then π(DT (GP)) is
a triangulation in T3.

∗INRIA Sophia Antipolis – Méditerranée,
{Manuel.Caroli,Monique.Teillaud}@sophia.inria.fr

1The graph of all vertices and edges

This yields a geometric criterion for π(DT (GP)) to be
a triangulation.

Corollary 2 Let B denote the largest 3-ball in E3

that does not contain points of GP in its interior. If B
has diameter < 1

2 , then π(DT (GP ′)) is a triangulation
in T3 for any finite P ′ ⊇ P.

Note that the geometric criterion also holds for super-
sets of P, which will be useful for the algorithm later
on. Consider the quotient space T3

27 := E3/G27 with
G27 := ((3Z)3,+). Then T3

27 is a 27-sheeted covering
space of T3.2

Theorem 3 For any finite point set P in E3, the pro-
jection of the Delaunay triangulation of GP in E3 onto
T3

27 is a triangulation.

Theorem 3 and Corollary 2 lead to a modified ver-
sion of the incremental algorithm for computing De-
launay triangulations in E3 [3]: It starts with inserting
27 copies per input point, computing their Delaunay
triangulation in T3

27. Once the largest 3-ball not con-
taining any vertex in its interior has diameter smaller
than 1

2 , the algorithm switches to computing in T3

and inserts each of the remaining points only once.
While computing in T3

27, 27 copies of points of P
are inserted one by one. So actually the following
extended version of Theorem 3 is needed:

Theorem 4 Theorem 3 still holds if we replace GP
by GP ∪ G27Q for any Q ⊆ Gp with any p ∈ E3.

3 Closed Euclidean manifolds

This section is dedicated to introducing closed Eu-
clidean manifolds, their properties, and how to con-
struct them. Most concepts mentioned in this section
are taken from [7].

A closed manifold is a compact manifold without
boundary. A d-manifold is called Euclidean or flat, if
every point has a neighborhood isometric to a neigh-
borhood in Ed.

We need some more notions: Let G be a group and
H denote a subgroup of G. H is called normal in G if
it is invariant under conjugation, i.e., if for all h ∈ H
and g ∈ G, ghg−1 ∈ H. Note that a normal subgroup
H′ of H is again normal in G. For a group element

2See e.g. [1] for a discussion on covering spaces.
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g ∈ G the set {gh | h ∈ H} is called a coset of H in
G. The index of a subgroup H in G is defined as the
number of cosets of H in G.

A d-dimensional Bieberbach group GB is a discrete
group of isometries of Ed with compact quotient space
Ed/GB . Such groups are also called crystallographic
groups or space groups.

Theorem 5 (Bieberbach [5]) Let GB be a d-
dimensional Bieberbach group. Then

• There is a group GT of d linearly independent
translations that is a normal subgroup of GB of
finite index. We call GT the translational sub-
group of GB .

• For any d there is only a finite number of d-
dimensional Bieberbach groups.

Note that the quotient space Ed/GB is not necessar-
ily a manifold: If GB leaves points fixed, these points
do not have a neighborhood in Ed/GB that is homeo-
morphic to a neighborhood in Ed. The quotient space
Ed/GB can always be described by the more general
concept of an orbifold [2, 8]. For the quotient space to
be a manifold, the group must not have fixed points.
In other words the group must be torsion-free, i.e.,
the identity must be the only element of finite order.

If GT is a subgroup of d independent translations of
GB , then Ed/GT is a d-torus.

Theorem 6 ([7]) Any closed Euclidean d-manifold
corresponds up to diffeomorphism to exactly one quo-
tient space Ed/GB , where GB is a torsion-free d-
dimensional Bieberbach group.

This means that it is sufficient to consider torsion-
free Bieberbach groups to completely classify closed
Euclidean manifolds.

According to Theorem 5, there are only finitely
many d-dimensional Bieberbach groups. In dimension
2 there are 17, in dimension 3 there are 230.3 In two
dimensions there are only two torsion-free Bieberbach
groups and thus two closed Euclidean manifolds: the
torus and the Klein bottle. In three dimensions there
are 10 closed Euclidean manifolds, four of which are
non-orientable.

4 Triangulations in closed Euclidean manifolds

The goal of this section is to generalize the main re-
sults of [4] given in Section 2.

Let GF be a torsion-free d-dimensional Bieberbach
group, P a finite point set in Ed, X := Ed/GF a closed
Euclidean manifold with quotient map π : Ed → X,

3The number of Bieberbach groups by dimension is assigned
the id A006227 in the On-Line Encyclopedia of Integer Se-
quences [6]. The number of torsion-free Bieberbach groups is
assigned the id A059104.

and DT (GFP) the Delaunay triangulation of GFP in
Ed. We first adapt Definition 1 to the Delaunay tri-
angulation of π(P) in X:

Definition 2 If π(DT (GFP)) is a simplicial complex
in X, then we call it the Delaunay triangulation of
π(P) in X.

For the discussions below we need the following two
values:

1. The minimum distance δ(G) by which a group G
moves a point:

δ(G) = min
p∈Ed,g∈G,g 6=1G

dist(p, gp),

where 1G denotes the unit element of G. Note
that if G is torsion-free and discrete, then
δ(G) > 0 holds.

2. The diameter ∆(S) of the largest d-ball B in Ed

that does not contain any point of a set S in its
interior.

We now generalize Theorem 1:

Theorem 7 If the 1-skeleton of π(DT (GFP)) does
not contain cycles of length ≤ 2 then π(DT (GFP)) is
a triangulation in X.

Most parts of the proof of Theorem 1 are completely
combinatoric and do not depend on the space, so
they extend directly to X and we omit them in this
abstract. We only prove the generalized version of
Lemma 4.1 of [4]:

Lemma 8 Let K be a set of simplices in Ed with the
following properties:

(i) The vertices of K are exactly the elements of
GFP.

(ii) If σ ∈ K and τ is a face of σ, then τ ∈ K.

(iii) If σ, τ ∈ K, then σ ∩ τ ∈ K.

(iv) If σ ∈ K, then there is a d-ball circumscribing σ
that does not contain any other point of GFP in
its interior.

Then K is locally finite, i.e., each point p in Ed has a
neighborhood U(p) such that the number of elements
in {U(p) ∩ σ | σ ∈ K} is finite.

Proof. Assume there is a vertex v ∈ K with an in-
finite number of incident simplices and thus an in-
finite number of incident edges in K. Since P con-
tains only a finite number of points, there must be
at least one point q in P such that infinitely many
points of the discrete point set GF q are adjacent to
v. Note that δ(GF ) > 0 and ∆(GF q) < ∞ hold be-
cause GF is a torsion-free Bieberbach group. Project-
ing all the edges from v to points in GF q onto the
unit d-sphere S centered in v yields an infinite point
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set PS . As S is bounded, PS must have an accu-
mulation point. We choose q1 and q2 from GF q such
that the distance between their projections onto S

is smaller than ε for some ε < δ(GF )3

∆(GF q)3 and ε > 0.
W.l.o.g. we assume dist(v, q2) ≥ dist(v, q1). We give
a lower bound on the diameter D of the circumcir-
cle of the triangle vq1q2 (see Fig. 1): D is given by
the product of the three edge lengths divided by twice
the triangle’s area. The three edge lengths are each
at least δ(GF ). Also dist(v, q2) ≤ ∆(GF q) and the
height of the triangle corresponding to the segment
vq2 is at most ∆(GF q)ε. This yields D ≥ δ(GF )3

∆(GF q)2ε >
δ(GF )3

∆(GF q)2
δ(GF )3

∆(GF q)3

= ∆(GF q). So the d-ball Bvq2 with

v and q2 on its boundary must have diameter larger
than ∆(GF q) to not contain q1 in its interior. As
the largest empty d-ball has diameter ∆(GF q), Bvq2

cannot be empty, which is a contradiction to condi-
tion (iv).

Figure 1: The gray area shows the possible positions
of q1

Let us now consider a point p in Ed that is not
a vertex in K. Let σ denote the simplex that con-
tains p in its interior and let vσ denote a vertex of
σ. Let St(vσ) denote the set of simplices that vσ is
incident to. Above we have shown that St(vσ) con-
tains only finitely many elements. The set St(σ) of
simplices that σ is incident to is a subset of St(vσ)
and thus finite. There is a neighborhood U(p) that
has non-empty intersection with exactly the elements
St(σ). �

This concludes the proof of Theorem 7.
Corollary 2 mentions the threshold 1

2 , which de-
pends on the group G. The generalized version of this
Corollary follows by simple geometric reasoning from
Theorem 7.

Corollary 9 If ∆(GFP) < δ(GF )
2 , then π(DT (GFP ′))

is a triangulation in X for any finite P ′ ⊇ P.

For any torsion-free Bieberbach group there are
point sets such that the condition of Corollary 9 is
fulfilled because δ is strictly positive and ∆ can be
made arbitrarily small by the choice of the point set.

Finally, we give a generalized version of Theorem 4.

Theorem 10 There is a normal subgroup GC of
GF of finite index such that the projection of the

Delaunay triangulation of GFP ∪ GCQ in Ed onto
XC = Ed/GC is a triangulation for any finite point
set P in Ed and any Q ⊆ GF p with any p ∈ Ed.

Proof. According to Theorem 5, there is a group GT

of d linearly independent translations that is a normal
subgroup of GF with finite index h′. We choose gener-
ators g1, . . . , gd of GT in the following way: Let g1 be
the shortest translation in GT . Let gi+1 be the short-
est translation in GT that is linearly independent of
the translations g1, . . . , gi. Note that ∆(GT p) does not
depend on a specific choice of p and thus can be con-
sidered constant. For each gi we can find an integer
coefficient ci such that dist(q, gciq) > 2 · ∆(GT p) for
any q ∈ Ed. The group GC generated by gc1

1 , . . . , gcd

d is
a normal4 subgroup of GT of index c1 · . . . · cd with the
property dist(q, gq) > 2∆(GF p) for any g ∈ GT and
any q ∈ Ed. Followingly, GC is a normal subgroup of
GF with index h = h′ · c1 · . . . · cd. According to Corol-
lary 9 the projection of the Delaunay triangulation
of GFP onto XC forms a triangulation. By adding
further points the diameter of the largest empty ball
cannot grow. Thus the claim holds. �

Theorem 10 means that there exists a space XC ,
in which the Delaunay triangulation of the point set
π(P) is defined. The space XC is a covering space
of X with a finite number of sheets [1]. Theorem 10
can also be understood by constructing XC from X
directly, as follows.

Definition 3 A fundamental domain for a discrete
group G of isometries in Ed with quotient map
π : Ed → Ed/G is a closed and convex subset DG of
Ed such that

• DG contains at least one point of the preimage
by π of any point in Ed/G.

• If DG contains more than one point of the same
preimage, then all points of this preimage lie on
the boundary of DG .

For example the unit cube is a fundamental domain
of T3 as defined in Section 2.

Each closed Euclidean d-manifold has a d-torus as
covering space with a finite number of sheets. This
follows from Theorem 5 as discussed above. A fun-
damental domain of the d-torus is a d-dimensional
hyperparallelepiped. By glueing two of these hyper-
parallelepipeds together we get a new covering space
that is again a d-torus. We can construct XC by
glueing as many copies of the fundamental domain as
necessary to fulfill the condition in Corollary 9, i.e.,
∆(GCGFP) = ∆(GFP) < δ(GC)

2 . See Figure 2 for an
illustration in two dimensions.

As an example we consider the flat Klein bottle.
The Klein bottle is E2/GK , where GK is the group

4Every subgroup of an abelian group is normal.
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Figure 2: Sufficient number of copies of the funda-
mental domain

generated by a translation gt and a glide-reflection
gg, that is a reflection together with a translation per-
pendicular to the reflection (see Figure 3). The group
generated by gt and g2

g is a translational subgroup of
GK of index 2. Now we can choose a subgroup of this
translational subgroup with finite index that fulfills
the condition of Theorem 10 as in Figure 2.

Figure 3: A part of the infinite point grid GKp.

Note that in both Corollary 9 and Theorem 10 we
deal with the condition of the form ∆ < δ

2 . In Corol-
lary 9 we adapt the point set P to decrease ∆, in
Theorem 10 we adapt the group GC to increase δ.

Algorithm

The algorithm described at the end of Section 2 gen-
eralizes to X = Ed/GF using the results given in this
section. It starts computing in an h-sheeted covering
space Ed/GC as in Theorem 10, inserting h copies per
input point. Once the condition of Corollary 9 is met
for the current point set, it switches to computing in
X and continues to insert each of the remaining points
only once.

There appear two issues, namely, how to store the
current triangulation and how to insert a point.

The triangulation can be stored as a graph in the
following way: Fully-dimensional simplices are stored
with a list of their vertices and neighbors. Each vertex
contains the coordinates of the point it corresponds
to. Additionally, each d-cell stores the information on
how to map it isometrically into Ed, i.e., one element

of the cell’s preimage under the quotient map π.
The point insertion can be split in a combinatorial

and a geometric part. The combinatorial part does
not need to be adapted. The geometric part mainly
consists of computing the orientation of d + 1 points
or computing whether a point is situated inside or
outside a d-ball given by d + 1 points on its bound-
ary. Both of these so-called predicates are evaluated
in Ed: For each d-cell, on which we need to evalu-
ate a predicate, we take its preimage under π from
the data structure and evaluate the predicate on this
preimage. This works exactly the same way even if X
is non-orientable: The orientation of a preimage un-
der π can be computed using the orientation predicate
in Ed because Ed is oriented.

5 Conclusion

We extended the work of [4] to arbitrary dimensions
and to any closed Euclidean manifold. The approach
does not extend to general orbifolds because it cannot
handle Bieberbach groups with fixed points. However,
from the Bieberbach theorem we know that any such
orbifold has a finitely sheeted covering space that is a
closed Euclidean manifold and on which our approach
works.
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Certified Computation of planar Morse-Smale Complexes

A. Chattopadhyay ∗ S.J. Holtman† G. Vegter‡

Abstract

The Morse-Smale complex is an important tool for
global topological analysis in various problems of com-
putational geometry and topology. Algorithms for
Morse-Smale complexes have been presented in case of
piecewise linear manifolds [3]. However, previous re-
search in this field is incomplete in the case of smooth
functions. In the current paper we use interval arith-
metic to compute topologically correct Morse-Smale
complex of smooth functions of two variables. The
algorithm can also compute geometrically accurate
Morse-Smale complex.

1 Introduction

Problem statement. A Morse function h : R
2 → R

is a real-valued function with non-degenerate criti-
cal points (i.e., critical points with non-singular Hes-
sian matrix). As is well-known, non-degenerate crit-
ical points are either maxima, or minima, or saddle
points. We are interested in the configuration of in-
tegral curves of the gradient vector field ∇h of h. A
stable (unstable) separatrix of a saddle point is the set
of all regular points whose forward (backward) inte-
gral curve flows into the saddle point. (This notion
will be made more precise in Section 2.) A Morse-
Smale function is a Morse function whose stable and
unstable separatrices are disjoint. In particular, the
unstable separatrices flow into a sink (maximum), and
the stable separatrices flow into a source (minimum).
The corresponding gradient vector field will be called
a Morse-Smale system (MS-system). A Morse-Smale
complex (MS-complex for short) consists of all sep-
aratrices corresponding to a MS-system. The MS-
complex describes the global structure of a Morse-
Smale function. We consider the problem of comput-
ing a certified approximation of the MS-complex of a
Morse-Smale function, i.e., a configuration of curves
that is isotopic to the MS-complex. Our algorithm is
based on interval arithmetic.

Our Contribution. We present an algorithm com-
puting such a certified approximation of the MS-
complex of a given smooth Morse-Smale function on
the plane. In particular, the algorithm determines

∗Corresponding author. Department of Mathemat-
ics and Computing Science, University of Groningen,
A.Chattopadhyay@rug.nl

†Department of Mathematics and Computing Science Sci-
ence, University of Groningen, s.j.holtman@rug.nl

‡Department of Mathematics and Computing Science Sci-
ence, University of Groningen, G.Vegter@rug.nl

• isolated certified boxes for saddles, sources and
sinks.

• certified initial and terminal intervals for saddle-
source or saddle-sink connectors (separatrices).

• disjoint strips around each separatrix, which can
be as close to the separatrix as desired.

Related Work. Computing Morse-Smale complexes
has been widely studied for piecewise-linear func-
tions [3]. Computing MS-complexes is strongly re-
lated to vector field visualization [4]. In a similar
context, designing of vector field on surfaces has been
studied for many graphics applications [6]. The sur-
vey paper [2], focussing on geometrical-topological
properties of real functions, gives an overview of re-
cent work on MS-complexes.

2 Preliminaries

Morse function. A function h : D ⊂ R
2 → R is

called a Morse function if all its critical points are
non-degenerate. The Morse lemma [3] states that
near a non-degenerate critical point a it is possible to
choose local co-ordinates x, y in which h is expressed
as h(x, y) = h(a)±x2±y2. The number of minus signs
is called the index ih(a) of h at a. Thus a two variable
Morse function has three types of non-degenerate crit-
ical points: minima (index 0), saddles (index 1) and
maxima (index 2).

Integral line. An integral line x : I ⊂ R → D pass-
ing through a point p0 on D is the unique maximal
curve satisfying: ẋ(t) = ∇h(x(t)), x(0) = p0, for all
t ∈ I. Integral lines corresponding to the gradient vec-
tor field of a smooth function h : D → R have many
interesting properties, such as: (1) any two integral
lines are either disjoint or coincide; (2) an integral
line x : I → D through a point p of h is injective and
if lim
t→±∞

x(t) exists, it is a critical point of h; (3) the

function h is strictly increasing along the integral line
of a regular point of h and integral; (4) regular inte-
gral lines are perpendicular to regular level sets of h.

Stable and unstable manifolds. Consider the inte-
gral line x(t) passing through a point p. If the limit
lim
t→∞

x(t) exists, it is called the ω-limit of p and is

denoted by ω(p). Similarly, lim
t→−∞

x(t) is called the

α-limit of p and is denoted by α(p) – again provided
this limit exists. The stable manifold of a singular
point p is the set W s(p) = {q ∈ D | ω(q) = p}. Sim-
ilarly, the unstable manifold of a singular point p is
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the set Wu(p) = {q ∈ D | α(q) = p} The stable (un-
stable) manifolds of a saddle point (not including the
saddle point itself) are called the stable (unstable)
separatrices of the saddle point. Each saddle has two
stable and two unstable separatrices.

The Morse-Smale complex. A Morse function on D
is called a Morse-Smale (MS) function if its stable and
unstable separatrices are disjoint. The MS-complex
associated with a MS-function h on D is the subdi-
vision of D formed by the connected components of
the intersections W s(p) ∩ Wu(q), where p, q range
over all singular points of h. According to quadrangle
lemma [3], each region of the MS-complex is a quad-
rangle with vertices of index 0, 1, 2, 1, in this order
around the region.

Poincaré-Hopf Index Theory. Suppose we have a
vector field over some simply connected domain D in
the two-dimensional plane. Let Γ be any closed loop
in D which does not pass through any fixed point of
the vector field. Now, as we move around Γ in the
counter-clockwise sense (which is taken as the posi-
tive direction), the vectors on Γ rotate, and when we
get back to the starting-point, they will have rotated
through an angle 2πiΓ, where iΓ is an integer, called
the Poincaré-Hopf index [5] (or, index for short) of Γ.
For the gradient vector field ∇h ≡ (hx, hy) the index
iΓ of a closed curve Γ, is found by:

iΓ =
1

2π

I

Γ

dφ =
1

2π

I

Γ

d(tan−1 hy

hx

). (1)

The index of a critical point, say p, of a vector field,
say X , is denoted by iX(p) and is defined to be the
index iΓ of a closed curve Γ which contains only the
critical point p, and where no other critical points
are on the closed curve. The following result is well-
known in Index Theory.

Theorem 1 (i) The index of a sink and a source

is +1.

(ii) The index of a saddle point is −1.

(iii) The index of a closed curve not containing any

critical point is 0.

(iv) The index of a closed curve is equal to the sum

of the indices of the fixed points within it.

Let p be a critical point of a Morse-function h, say
with index ih(p). Then p is also critical point of the
gradient vector field of h, say with Poincaré-Hopf in-
dex i∇h(p). Then i∇h(p) = (−1)ih(p).

Interval Arithmetic (IA). Interval arithmetic is used
to prevent rounding errors in finite precision computa-
tions. A range function �F for a function F : R

m →

R
n computes for each m-dimensional interval I (i.e.,

anm-box) an n-dimensional interval �F (I), such that
F (I) ⊂ �F (I). A range function is said to be conver-
gent if the diameter of the output interval converges
to 0 when the diameter of the input interval shrinks
to 0. Convergent range functions exist for the ba-
sic operators and functions, so all range functions are
assumed to be convergent.

3 Methods and Results

Computing the MS-complex of a Morse-Smale func-
tion h : D 7→ R reduces to computing separatrices
of the corresponding gradient system. More precisely,
for computing a certified MS-complex of a Morse func-
tion h over D we proceed as follows:

1. Compute certified intervals of the critical points
and to detect their types corresponding to the
MS-function.

2. Compute guaranteed one-dimensional intervals
corresponding to initial points of each of the sep-
aratrices.

3. Compute certified bounds of the separatrices
starting from one of these one-dimensional inter-
vals to the correct source or sink.

3.1 Local Analysis: Isolating Critical Points.

The following subdivision algorithm isolates the
critical points of a MS-function function h over a
bounding box B (⊆ D). Moreover, the type of
each critical point in the corresponding interval is
also determined by index and orientation test. We
consider the following assumption.

Assumption A: Given a function h we can find a
positive number ǫc such that in any interval I (from
the domain of h) of diameter less than ǫc, h can have
at most one critical point inside I.

Algorithm. SearchCritical(h,B)

1. Initialize a quadtree T to the bounding square
B.

2. Subdivide T until for all the leaves I we have:

0 /∈ �hx(I)
| {z }

(i)

∨ 0 /∈ �hy(I)
| {z }

(ii)

∨ diam(I) < ǫc
| {z }

(iii)

.

3. For each leaf I
4. Do if ¬(i), ¬(ii) and (iii) hold then
5. Compute iΓ := index of boundary Γ of I
6. If iΓ = 0
7. h has no critical point inside I
8. If iΓ = 1
9. h has a source/sink inside I

10. If iΓ = −1
11. h has a saddle inside I

Computing the index of a contour. We assume the
curve Γ contains at most one critical point strictly in-
side it. Now, using the formula in (1) the computation
of the index over the rectangular contour Γ boils down
to finding all the “jump”-discontinuities of the func-
tion tan−1 hy

hx

over Γ and adding them up. In other
words, this reduces to finding isolated 1D-intervals,
say Jci

(Figure1), corresponding to zeros ci of hx pa-
rameterized over Γ such that on these intervals the
sign of hy does not change. Now depending on the

change of sign of
hy

hx

over Jci
, while traversing Γ anti-

clockwise sense, the contribution in the integration is
−π (when the change of sign is from negative to pos-
itive) or +π (when the change of sign is from positive
to negative).
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p00 p10

p11p01
Jc1

Jc0
Γ1

Γ2

Γ3

Γ4

hx = 0

hy = 0

Figure 1: Index of the rectangle Γ := Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

Certified Intervals for Sinks and Sources. Note
that in the algorithm SearchCritical(h,B) we use
index test to distinguish a saddle from a source or a
sink. However, index test cannot distinguish a source
from a sink. One method to do so is by orientation
test (see in Figure 3). The orientation of the gradient
vector field on the boundary of the interval contain-
ing the isolated sink is inwards, whereas for a source
it is outwards. Again we note that an isolated inter-
val for a source or a sink, obtained using algorithm
SearchCritical may not be certified. Here by cer-
tified interval we mean any integral curve entering
into the interval eventually meet the sink or source in
forward or backward time (without leaving the box).
However, the previous algorithm does not exclude the
possibility of having intervals as in Figure 2. One

s0

Figure 2: An isolated interval for sink s0. The interval is
not certified.

approach to find a certified interval is by subdividing
the interval I recursively, until we find a subinterval
such that the orientation of the gradient field on its
boundary is either completely inward or completely
outward (Figure 3).

(a) (b)

Figure 3: Orientation of the vector field on the boundary
of an interval for a (a) sink, (b) source.

Local analysis of saddle intervals. Algorithm
SearchCritical(h,B) computes isolated 2D-
intervals corresponding to each saddle point of h.
Now we find four disjoint one-dimensional intervals
on the boundary of the 2D-interval (figure 4) such
that each of the four separatrices passes through
one of these 1D-intervals. The method consists of
following three steps.

1. First, we refine the box containing the saddle,
recursively, until the function restricted over the

boundary of the box has exactly four extrema
(two maxima and two minima), Figure 4-(a).

2. Next we find four disjoint 1D-intervals containing
four extrema, respectively Figure 4-(b).

3. The final step is to refine these four 1D-intervals,
recursively, until they are guaranteed to contain
the corresponding separatrix. This requires to
satisfy an orientation property between two con-
secutive 1D-intervals, Figure 4-(c).

max

max

minmin

(a) (b)

integral curve
p0 q0

(c)

Figure 4: Saddle box: (a) refining until four extrema,(b)

four initial 1D-intervals, (c) refining 1D-intervals by ori-

entation test.

3.2 Global Algorithm: Certified Separatrices

Finally, corresponding to each separatrix we compute
a certified region bounded by two piecewise linear
boundaries. The piecewise linear boundaries start
from the end points of the 1D-intervals near each
saddle. We need the following assumption for the
convergence of the algorithm.

Assumption B: ψ-normal variation. We assume
that the function h satisfies ψ-normal variation con-
dition, which is: for x1, x2 ∈ D\C, ‖x1−x2‖ ≤ δ and
δ > 0,

〈∇h(x1),∇h(x2)〉

‖∇h(x1)‖‖∇h(x2)‖
> cosψ.

Here, C denotes the union of all certified intervals of
the critical points of h in D.

θ

p0

p1

X(p0)

l(p0, X
θ
(p0))

Figure 5: Line-segment p0p1 on which orientation and

monotonicity property hold.

Lemma 2 Let X := ∇h satisfies ψ-normal variation

in D \ C. Again let, Xθ denote the corresponding

vector field rotated anti-clockwise by an angle θ (ψ ≤
θ < π

2
). Then for a directed line segment l(p0, Xθ(p0))

along the direction Xθ(p0) with starting point p0 and

length δ (segment p0p1, in the figure 5), the following

properties hold:

(i) for each point q ∈ l(p0, Xθ(p0)),
∆(X(q), Xθ(p0)) > 0, (here ∆(v1, v2) :=
˛
˛
˛
˛

a1 b1
a2 b2

˛
˛
˛
˛ for vi ≡ (ai, bi))
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(ii) h is monotonically increasing along this line seg-

ment l(p0, Xθ(p0)).
(iii) The minimum change of the height function h

on this line segment is δ cosψ.

Algorithm: ComputeSeparatrixBounds(h,B0)
Input: Vector-field X , starting 1D-interval of the sep-
aratrix p0q0, bounding box B0.
Output: A certified stripe containing a separatrix.

1. Initialize: θ ← θ0(θ0 <
π
2
)

2. Rotate(X, θ): Rotate vector-field X(p) anti-
clockwise by an angle θ.

3. ComputeLeftBoundary(p0, Xθ): Compute
polygonal line-segment lθ starting from the point
p0 such that the separatrix (passing through the
line segment p0q0) remains on the right side of
lθ.

4. Rotate(X,−θ): Rotate vector-field X(p) clock-
wise by an angle θ.

5. ComputeRightBoundary(q0, X−θ): Compute
polygonal line-segment l−θ starting from the
point q0 such that the separatrix (passing
through the line segment p0q0) remains on the
left side of l−θ.

6. if both lθ and l−θ meet the same “sink” (or
“source”) and the region between lθ and l−θ does
not contain any critical point, then the separatrix
converges to that sink; return.

7. else-if both lθ and l−θ meet the boundary of the
box B0 and the region between lθ and l−θ does
not contain any critical point, then the separatrix
converges to the boundary; return.

8. else θ ← θ
2

and goto step 2.

Convergence. To prove that the algorithm con-
verges in finite number of steps, we prove the follow-
ing. First, using lemma (2) we find an upper bound
of the number of segment in the line lθ.

Theorem 3 Let the change of the height function

h along a separatrix, outside the critical region, be

H (computed as: h(final) − h(starting)). Then an

upper bound of the number of segments in lθ is given

by:
⌈

H
δ cosψ

⌉
.

This proves that the sub-procedures: Com-

puteLeftBoundary and ComputeRightBound-

ary converge in a finite number of steps. Moreover,
using the assumption B, we can prove that the global
algorithm converges in a finite number of steps.

4 Implementation Results

In this section we illustrate a few implementation out-
puts with timing results of our algorithm. In figures 6-
8 we compute the certified MS-complex of different
functions for distinct values of the parameters ǫc (de-
scribed in the algorithm SearchCritical) and angle
θ of rotation of the vector field. We use the Boost li-
brary [1] for IA. All experiments have been performed
on a 3GHz Intel Pentium 4 machine under Linux with
1 GB RAM using the g++ compiler, version 3.3.5.

: saddle : maximum : minimum

Figure 6: MS-Complex of the function: cos x sin y +

0.2 (x + y) for (i) ǫc = 0.5, θ = π

10
, CPU-time = 8 sec.,

(ii) ǫc = 0.2, θ = π

30
, CPU-time = 20 sec., inside box

[−3.5, 3.5] × [−3.5, 3.5].

Figure 7: MS-Complex of the function: 10x− 13

2
(x2+y2)+

1

3
(x2+y2)2 for (i) ǫc = 0.5, θ = π

10
, CPU-time = 0.16 sec.,

(ii) ǫc = 0.2, θ = π

30
, CPU-time = 0.5 sec., inside box

[−5, 6] × [−5, 6].

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 8: MS-Complex of the function constructed by

multiplying 7 linear functions: (i) contour plot using

Mathematica, (ii) MS-complex with ǫc = 0.17, θ = π

30
,

CPU-time = 15 min., inside box [−7, 7] × [−7, 7].

Conclusion. The outcome of our research is two-
fold. Firstly, we compute the topologically correct
MS-complex of a Morse-Smale system. The saddle-
sink or saddle-source connectivity can also be repre-
sented as a graph. On the other hand, depending on
a user-specified parameter we can compute the geo-
metrically accurate MS-complex.

References

[1] Boost Interval Arithmetic Library. http://www.boost.org.

[2] S. Biasotti, L. D. Floriani, B. Falcidieno, P.Frosini, D.Giorgi,

C. Landi, L. Papaleo, and M. Spagnuolo. Describing Shapes by

Geometrical-Topological Properties of Real Functions. ACM

Computing Surveys, 40(4):12.1–12:87, 2008.

[3] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchi-

cal Morse-Smale Complexes for Piecewise Linear 2-Manifolds.

Discrete Comput. Geom, 30:87–107, 2003.

[4] J. L. Helman and L. Hesselink. Visualizing Vector Field Topol-

ogy in Fluid Flows. IEEE Computer Graphics and Applica-
tions, 11(3):36–46, 1991.

[5] S. Wiggins. Introduction to applied Nonlinear Dynamical
Systems and Chaos. Springer, USA, 2003.

[6] E. Zhang, K. Mischaikow, and G. Turk. Vector Field Design on

Surfaces. ACM Transactions on Graphics, 25(4):1294–1326,

2006.

108



EuroCG 2010, Dortmund, Germany, March 22–24, 2010

MEMORYLESS ROUTING IN CONVEX SUBDIVISIONS:
RANDOM WALKS ARE OPTIMAL

Dan Chen, Luc Devroye, Vida Dujmović, and Pat Morin

Abstract

A memoryless routing algorithm is one in which the
decision about the next edge on the route to a vertex
t for a packet currently located at vertex v is made
based only on the coordinates of v, t, and the neigh-
bourhood, N(v), of v. The current paper shows that,
for any (randomized) memoryless routing algorithm
A, there exists a convex subdivision on which A takes
Ω(n2) expected time to route a message to t. This
lower bound is matched by a random walk. The cur-
rent paper also shows the existence of triangulations
for which the Random-Compass algorithm proposed
by Bose et al (2002,2004) requires 2Ω(n) time to route
between some pair of vertices.

1 Introduction

In recent years, motivated primarily by the prolifera-
tion of wireless networks and GPS devices, much re-
search has been done on routing algorithms for ge-
ometric networks [4]. In this research a network is
modelled as a geometric graph G = (V,E) whose ver-
tex set V is a set of points in R2. We say that a
routing algorithm A works for G if, for any pair of
vertices s, t ∈ V , the algorithm always find a path
from s to t in a finite number of steps.

The research on geometric routing algorithms
largely focuses on utilizing geometric properties of a
class of geometric graphs to reduce the complexity of,
and information required by, routing algorithms. A
particularly interesting and restricted class of rout-
ing algorithms are so-called memoryless routing al-
gorithms. A memoryless routing algorithm is one
in which the decision about the next edge on the
route to t for a packet currently located at node v
is based only on the coordinates of v, t, and the
neighbourhood, N(v), of v. More precisely, a deter-
ministic memoryless routing algorithm is a function
f : R2×R2×(R2)+ → R2 that satisfies f(v, t,N(v)) ∈
N(v) and f(t, t,N(t)) = t for all inputs. Note that
a memoryless routing algorithm makes each routing
step without using information obtained in previ-
ous routing steps and without any global information
about G.

Unfortunately, deterministic memoryless routing
algorithms have severe limitations. These stem from
the fact that these algorithms can not visit the same

vertex more than once without looping forever. Bose
et al [2, Theorem 2] show that there exists 17 convex
subdivisions1, G1, . . . , G17, each with 17 vertices such
that any deterministic memoryless routing algorithm
does not work for at least one of these subdivisions.
Thus, convex subdivisions form a class of geometric
graphs that are too rich for deterministic memoryless
routing algorithms [1].

The same authors [1, 2] observe that randomization
can be used to overcome this limitation. A random-
ized memoryless routing algorithm is one in which the
decision about the next edge on the route to t for a
packet currently located at node v is based only on
v, t, the neighbourhood, N(v), of v, and a sequence
B of fresh random bits. More precisely, a randomized
memoryless routing algorithm is defined by a func-
tion f : R2 × R2 × (R2)+ × {0, 1}∞ → R2 that sat-
isfies f(v, t,N(v), B) ∈ N(v) and f(t, t,N(v), B) = t
for all inputs. The final argument B is a sequence
of random bits that are chosen fresh for each step
taken by the routing algorithm. Bose et al describe a
randomized memoryless algorithm, named Random-
Compass, that uses one random bit per step works for
any convex subdivision. They do not analyze the effi-
ciency of Random-Compass except to note that, for
some convex subdivisions G, and some pairs s, t ∈ V ,
the expected number of steps taken by Random-
Compass when routing from s to t is Ω(|V |2).

Observe that, by the theory of random walks (c.f.
[6, Theorem 6.6]), the expected time required for a
random walk on G to travel from a particular vertex
s to a particular vertex t is O(n2). Therefore, a ran-
dom walk is at least as efficient, in the worst case, as
the Random-Compass algorithm. Nevertheless, one
might expect that Random-Compass is more likely
to find short routes, since it uses geometry to find
a route that is specifically directed towards the tar-
get vertex t. Thus, we might intuit that Random-
Compass is a heuristic that is usually better than a
random walk and never much worse.

In the current paper, we show that this intuition
about Random-Compass could not be further from
the truth. Indeed, for any n > 0, there exists a convex
subdivision (in fact, a triangulation) G with n vertices
and having two vertices s and t such that the expected

1A convex subdivision is a geometric graph all of whose
faces, except the outer face, are convex polygons, and whose
outer face is the complement of a convex polygon.
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number of steps taken by Random-Compass when
routing from s to t is 2Ω(n). This triangulation has
diameter 3.

Next we study whether any randomized memory-
less routing algorithm for convex subdivisions can out-
perform a random walk. We show that, for any ran-
domized memoryless routing algorithm A and any n,
there exists a convex subdivision G = G(A) = (V,E)
of size n and a pair of vertices s, t ∈ V such that the
expected number of steps taken by A when routing
from s to t is Ω(n2). Therefore, at least in the worst-
case, no algorithm significantly outperforms a random
walk.

2 A Bad Example for Random-Compass

The Random-Compass algorithm works by using a
coin toss to select among the (at most two) neigh-
bours ccwt(v) and cwt(v) of the current node v that
make the minimum and maximum angle, respectively,
with the segment vt (see Figure 1.a). When ap-

t
ccwt(v)

cwt(v)

(a)

t

(b)

Figure 1: The Random-Compass algorithm chooses
the next vertex at random among ccwt(v) and cwt(v).

plied on a convex subdivision G = (V,E), Bose et
al show that, in the directed graph G′ that contains
the edges (v, cwt(v)) and (v, ccwt(v)) for all v ∈ V ,
there exists at least one directed path P (v, t) from ev-
ery vertex v to t (see Figure 1.b). This, and Wald’s
Equation, immediately imply that the expected time
to reach t from any vertex is at most 2n; from any
vertex v, Random-Compass has probability at least
1/2|P (v,t)| ≥ 1/2n−1 of reaching t by following P (v, t),

t

v

cwt(v)

ccwv(t)

Figure 2: A graph in which Random-Compass has
expected running time Ω(2n/4).

and the expected number of steps it takes on P (v, t)
before falling off P (v, t) is at most 2.

The example in Figure 2 shows that the above anal-
ysis of Random-Compass, although very coarse, is
about the best one can do. It shows a geometric graph
G whose vertex set has size n = 4k + 1 and whose
vertices are organized as a central vertex t and four
paths leading from the outer face to t. The space
between these paths is triangulated so that, at any
point, Random-Compass chooses between an edge
that leads one step closer to t or that returns to the
outer face.

If we consider the directed graph G′ defined above,
then we see that, at any point the packet is at some
distance i from t and that, it can, with equal prob-
ability, move to a vertex of distance i − 1 or move
to a vertex (on the outer face) of distance k. If we
denote by Ti the expected number of steps required
by Random-Compass to reach t given that it is cur-
rently at distance i from t, we see that

Ti =
{

0 for i = 0
(1/2)Ti−1 + (1/2)Tk for i ∈ {1, . . . , k}

Solving this recursion gives Tk = 2k(2 − 1/2k) =
Ω(2n/4). This proves:

Theorem 1 For any n > 1, there exists a triangula-
tion G having two vertices s and t such that the ex-
pected number of steps taken by Random-Compass
when routing from s to t is 2Ω(n).

Note that the base in the exponent can be improved
by using a construction with 3 paths instead of 4. In
this case, the lower bound becomes Ω(2n/3). Further-
more, up to a factor of 2, the lower bound on Theo-
rem 1 holds for all choices of the source vertex s since,
for any vertex s 6= t, the expected time to route from
s to t is at least (1/2)Tk.
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3 A Lower Bound for Any Algorithm

In this section we develop an Ω(n2) lower bound for
routing on convex subdivisions using any random-
ized memoryless routing algorithm A. The outline
of the lower bound is as follows: We start with a
lemma about Markov chains whose transition graphs
are paths. We show that, when starting at the mid-
point of the path, there is at most one endpoint of the
path that can be reached in subquadratic expected
time. This lemma is relevant since, if A finds itself in
the interior of a path of degree 2 vertices in G, it will
behave like such a Markov chain until it reaches one
of the endpoints of this path.

Next, we observe how A behaves on certain paths of
degree 2 vertices and show that, because A can only
reach one endpoint of any path in subquadratic time,
that we can always find a subset of these paths that
can be pieced together to form a convex subdivision
in which A takes at least quadratic expected time to
route from some vertex s to some vertex t.

3.1 Markov Chains

Consider a Markov chain on {1, . . . , n}, n > 1, where
transitions only take place between neighbors. If pi,j

is the probability of a transition from i to j, then we
have

p1,2 = pn,n−1 = 1,

pi,i+1 = 1− pi,i−1 = πi, 2 ≤ i ≤ n− 1,

where π2, . . . , πn−1 are fixed probabilities. The vector
of these probabilities is denoted by π. We will set
π1 = 1, πn = 0, to be consistent, as the extreme states
are reflecting. When πi = 1/2 for 2 ≤ i ≤ n − 1, we
obtain a standard random walk on a finite interval
with reflecting barriers.

We denote the Markov chain by X0, X1, . . . , Xt, . . .,
and denote the hitting times by Ti,j :

Ti,j = min{t > 0 : Xt = j|X0 = i}.

For a standard random walk, it is known that

E{Ti,j} = (j − i)2, j 6= i, 1 ≤ j, i ≤ n

[5]. The standard random walk is in fact the best
possible chain in the following sense:

Lemma 2 For any vector of probabilities π, and any
n > 1,

E{T1,n + Tn,1} ≥ 2(n− 1)2.

Next we present a simple corollary of Lemma 2 that
is used in our lower bound.

Corollary 3 Consider a random walk with reflecting
barriers on {−n, . . . , n}, n > 0. In this chain,

max (E{T0,n},E{T0,−n}) ≥
2
3
n2.

t

A

a1

ak

> 150◦

t

B

b1

bk

A

a1

ak

(a) (b)

Figure 3: The chains A and B.

The proofs of Lemma 2 and Corollary 3 are omitted
due to space constraints and can be found in the full
version of the paper [3].

3.2 The Lower Bound

LetA be a randomized memoryless routing algorithm.
Let k be an even integer, let t be the origin, and
let A = a1, . . . ak be a path of k collinear vertices
such that ak is closer to t than any of a1, . . . , ak−1

and the three points a1, ak, t make a left turn with
∠a1akt greater than 150◦ degrees but less than 180◦

(see Figure 3.a). Let B = b1, . . . , bk be the reflection
of A through the line parallel to A that contains t
(see Figure 3.b). Let A(α), respectively, B(α), de-
note the path A, respectively, B, rotated by an angle
of α about the origin, t.

Define the color of a path A(α) = a′1, . . . , a
′
k as

follows: Imagine running A on the graph consisting
of A′ and the isolated vertex t, starting at a′k/2. If
A takes Ω(k2) expected time to reach a′k then color
A(α) blue, otherwise color A(α) red. Note that Corol-
lary 3 implies that, if A(α) is red, then A takes Ω(k2)
expected time to reach a1 starting at ak/2.

Intuitively, a path is red (getting hotter — closer
to t) if A could move quickly from ak/2 to ak. A path
is blue (getting cooler — further from t) if A could
move quickly to a1. Define the color (red or blue) of
a path B(α) in the same way.

Lemma 4 If there exists α such that A(α) and B(α)
are both blue, then there exists a convex subdivision
G = (V,E) with |V | = 2k + 1 with vertices s, t ∈ V
such that A takes Ω(k2) steps when routing from s to
t.

Proof. Let A′ = A(α) = a′1, . . . , a
′
k and B′ = B(α) =

b′1, . . . , b
′
k. The convex subdivision G consists of A′

and B′ as well as the edges a′1b
′
1, a′kt and b′kt (see

Figure 4). Since A(α) and B(α) both blue, applying
A to route from a′k/2 to t will require Ω(k2) expected
steps. �
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b′
k b′

1
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Figure 4: Two blue chains A(α) and B(α).

a′
1a′

k
b′
kb′

1

t

Figure 5: Two red chains A(α) and B(180 + α).

Lemma 5 If there exists α such that A(α) and
B(180 + α) are both red, then there exists a convex
subdivision G = (V,E) with |V | = 2k+1 with vertices
s, t ∈ V such that A takes Ω(k2) steps when routing
from s to t.

Proof. Let A′ = A(α) = a′1, . . . , a
′
k and B′ =

B(180 + α) = b′1, . . . , b
′
k. The convex subdivision G

consists of A′ and B′ as well as the edges a′kb
′
k, a′1t

and b′1t (see Figure 5). Since A(α) and B(180+α) are
red, applying A to route from a′k/2 to t will require
Ω(k2) expected steps. �

Theorem 6 For any integer k > 0 and any memory-
less routing algorithm A, there exists a convex sub-
division G = (V,E) with |V | = Θ(k) having vertices
s, t ∈ V such that A takes Ω(k2) steps when routing
from s to t.

Proof. If either of Lemma 4 or Lemma 5 apply to A
then the proof is complete. Otherwise, observe that
the exclusion of these two lemmata implies that, for
any α, at least one of A(α) and B(α) is blue. To
see this, note that if A(α) is red, then (the exclusion
of) Lemma 5 implies that B(α+ 180) is blue, so (the
exclusion of) Lemma 4 implies that A(α+180) is red,
so (the exclusion of) Lemma 5 implies that B(α) is
blue.

Therefore, there exists 3 blue chains X =
x1, . . . , xk, Y = y1, . . . , yk, and Z = z1, . . . , zk where
X ∈ {A(0), B(0)}, Y ∈ {A(120), B(120)} and Z ∈
{A(240), B(240)}. We can then take G to be the
graph containing X, Y , and Z, as well as the edges
x1y1, y1z1, z1x1, xkyk, ykzk, zkxk, xkt, ykt, zkt (see
Figure 6). Because X, Y , and Z are all blue, the ex-
pected number of steps required to route from xk/2 to
t using A is Ω(k2).

All that remains is to verify that G is indeed a con-
vex subdivision. This is readily established using the
fact that the angles ∠x1xkt, ∠y1ykt, and ∠z1zkt, are
all between 150 and 180 degrees. �
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Figure 6: Three blue chains
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Planar Hop Spanners for Unit Disk Graphs ∗

Nicolas Catusse† Victor Chepoi† Yann Vaxès†

Abstract

In this paper, we present an algorithm that, given
a set of n terminals in the plane, constructs a pla-
nar hop spanner with constant stretch for the Unit
Disk Graph defined by this set of terminals. This
algorithm improves on previous constructions in the
sense that (i) our construction ensures the planarity
for the whole graph while previous algorithms ensure
only the planarity of a backbone subgraph; (ii) the
hop stretch factor provided by our algorithm is signif-
icantly smaller.

1 Introduction

Given a connected graph G = (V,E) with n vertices
embedded in the Euclidian plane, let dG(u, v) be the
length of a shortest path connecting u and v in G.
A subgraph H of G is a spanner of G if there is a
positive real constant t such that for any two ver-
tices, dH(u, v) ≤ tdG(u, v). The constant t is called
the length stretch factor if the length of an edge is the
Euclidian distance between its endpoints and the hop
stretch factor if each edge has length 1.

The problem of constructing sparse spanners of ge-
ometrics graphs has received considerable attention
from researchers in computational geometry and ad-
hoc wireless networks; we refer the reader to the book
by Narasimhan and Smid [7]. The simplest model
of a wireless network graph is the Unit Disk Graph
(UDG): an edge between two terminals u, v exists in
this graph if the Euclidian distance between u and v is
at most one. Notice also that some routing algorithms
such as Greedy Perimeter Stateless Routing require a
planar subgraph to route the messages through the
network.

In this paper, we design an algorithm that, given a
set of n points on the plane, constructs a planar span-
ner with constant hop stretch factor for the unit disk
graph defined by these points. Contrary to the prob-
lem of constructing planar Euclidean length spanners,
for which several algorithms provide small stretch fac-
tors (see [6], for instance), the problem of constructing
planar hop spanners with constant stretch factor re-
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d’Aix-Marseille, Faculté des Sciences de Luminy, F-13288
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mained open. Some partial solutions ensuring the pla-
narity of a certain backbone subgraph were proposed
in [1, 5]. Our algorithm improves on the results of
[1, 5] in the sense that (i) our construction ensures the
planarity for the whole graph; (ii) the hop stretch fac-
tor provided by our algorithm is significantly smaller.

The rest of the paper is organized as follows. In
Section 2, we briefly review the literature related to
geometric spanners and Unit Disk Graphs. Section 3
presents a very simple construction that provides a
sparse spanner for UDG with low hop stretch factor.
Unfortunately, this construction does not ensure the
planarity of the spanner. Section 4 describes an algo-
rithm that updates the spanner defined in Section 3
in order to obtain a planar spanner while preserving
a small hop stretch factor.

2 Previous Works

Spanner properties of some geometric graphs have
been surveyed by Eppstein in [3]. Bose, Devroye,
Evans and Kirkpatrick [2] proved that the Gabriel
Graph is an Ω(

√
n) hop spanner and a Θ(

√
n) Eu-

clidean spanner for UDG, and that the Relative
Neighborhood Graph is a Θ(n) and a Θ(n) Euclidean
spanner for UDG. Gao, Guibas, Hershberger, Zhang
and Zhu [5] proposed an algorithm to construct a hop
spanner for UDG. This algorithm creates several clus-
ters connected by a Restricted Delaunay graph which
is planar. This construction cannot be distributed
and its hop stretch factor is not given. Alzoubi, Li,
Wang, Wan and Frieder [1] proposed for the same
problem a distributed algorithm that uses the Local
Delaunay Triangulation defined by Li, Cǎlinescu and
Wan in [6]. However, the hop stretch factor is huge
(around 15000) and the intra-cluster edges may cross
the edges of the triangulation (and therefore does not
provide a full planar hope spanner). Chen, Jiang,
Kanj, Xia and Zhang [4] presented the construction
of Euclidean spanners for Quasi-UDG which can be
used for routing. Their construction method is similar
to our approach in the sense that it also uses a reg-
ular squaregrid to partition the set of terminals into
clusters.

3 Sparse almost planar spanners

Let X be a set of n points (terminals) in the plane.
In this section, we describe a very simple algorithm
that constructs a sparse 5-spanner H ′ = (X, E′) of
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the Unit Disk Graph G = (X, E) defined by X. It
uses a regular grid Γ on the plane with squares of side√

2
2 . A square of Γ is said to be nonempty if it contains

at least one terminal from X. For any point x ∈ X,
let π(x) denote the square of Γ containing x.

The graph H ′ = (X, E′) has two types of edges : a
subset E′

0 ⊆ E′ of edges connecting points lying in the
same square and a subset E′

1 of edges running between
points lying in neighboring squares, let E′ = E′

0 ∪E′
1.

To define E′
0, in each nonempty square π we pick a

terminal (the center of π) and add to E′
0 an edge be-

tween this terminal and every other terminal located
in π. Clearly, all of them are edges of G because the
side of squares is

√
2

2 . In E′
1 we put exactly one edge of

G running between two nonempty squares if such an
edge exists. In the sequel, with some abuse of nota-
tion, we will denote by ππ′ the shortest edge of UDG
running between two squares π and π′.

Algorithm 1 Construction of sparse spanner H ′

1: For each square π, pick a terminal cπ (the center
of π) and add to E′

0 an edge between cπ and every
other terminal located in π.

2: For each pair of squares π and π′ connected by an
edge of G, add the shortest edge between π and
π′ to E′

1.

Recall that a subgraph H ′ = (V, F ′) of a graph
H = (V, F ) is called a t-spanner for H if dH′(u, v) ≤
tdH(u, v) for any two vertices u, v ∈ V. Notice that it
is sufficient to ensure this condition for every pair of
vertices u, v adjacent in H.

Proposition 3.1 The graph H ′ = (X, E′) is a hop
5-spanner for G containing at most 10n edges.

Proof. For the first assertion, it is sufficient to prove
that dH′(u, v) ≤ 5dG(u, v) for any two adjacent ver-
tices u and v in G. If u, v belong to the same square π,
then they are neighbors of the center of π, hence they
are connected in H ′ by a path of length 2. Now, sup-
pose that u and v belong to different squares. Since
uv is an edge of G, the graph H ′ must contain an
edge u′v′ of G with u′ ∈ π(u) and v′ ∈ π(v). There-
fore the terminals u and v are connected in H ′ by a
path of length ≤ 5 consisting of two paths of length 2
passing via the centers of the clusters π(u) and π(v)
and connecting u and v to u′ and v′, respectively, and
the edge u′v′ joining these clusters. To prove the sec-
ond assertion, let n0 denote the number of non-empty
squares. Then obviously |E′

0| ≤ n − n0. Since from
each nonempty square π we can have edges of E′

1 to
at most 20 other such squares, and since each such
edge is counted twice, we conclude that |E′

1| ≤ 10n0.
Therefore |E′| ≤ (n− n0) + 10n0 ≤ 10n. �

4 Planar spanners

In this section, we describe how to build a planar hop
spanner H for a UDG graph G. We first compute a
planar set of inter-cluster edges E3 whose end-vertices
belong to distinct squares of Γ. Then we compute a
second set of intra-cluster edges E0 connecting the
vertices that belong to the same square.

4.1 Computing E3

The edge set E3 is a planar subset of the edge set
E′

1 defined in the previous section. We must remove
some edges to obtain a planar graph while preserving
a bounded hop stretch factor of the resulting spanner.

First we define the l1-distance between two squares
π and π′ in Γ as the graph distance between π and
π′ in the dual grid (squares become vertices and two
vertices are adjacent if their squares have a common
side). The l1-length of an edge of G is the l1-distance
between the squares that contain their end-vertices.
The principle of our algorithm is to minimize the l1-
length of remaining edges: if the end-vertices of an
edge uv are joined by a path having the same total l1-
length as uv, then uv is removed. An edge with large
l1-length potentially crosses many squares and, as a
consequence, many edges of UDG. Hence, taking such
an edge in our planar spanner would exclude many
other (potentially, good) edges from the spanner. For
each removed edge, there is a path having a constant
number of edges between its end-vertices. Therefore,
after the removal of these edges, the stretch factor is
still bounded by a constant. The minimization of the
l1-length is not sufficient to obtain a planar graph but
we show that this operation considerably decreases
the number of crossing configurations. The next step
of the algorithm consists in repairing the remaining
crossings. During this step some edges are removed to
ensure the planarity and some other edges are added
back to preserve the distance between the end-vertices
of removed edges. Using the proof outlined below, we
establish that the edge set obtained at the end of this
process is planar.

Figure 1: Spanner H
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Algorithm 2 Construction of the spanner H

1: Let H ′ = (X, E′
1) be the inter-cluster graph

returned by the algorithm Construction of
Sparse Spanner on input X.

2: Let G1 = (X, E1) be the graph obtained from
H ′ by removing every edge ab ∈ E′

1 whose end-
vertices are joined by a replacement path, i.e., a
path P 6= ab between π(a) and π(b) such that
l1(P ) = l1(ab).

3: For each pair of crossing edges xy, x′y′ of E1, iden-
tify the crossing configuration (according to Fig.
2) and remove the edge x′y′. Let G2 = (X, E2)
be the graph obtained from G1 by removing these
edges.

4: For each edge x′y′ removed during Step 3, except
if xy, x′y′ form a Configuration 0, if there is no re-
placement path in G2 for π(y)π(y′), then add the
edge π(y)π(y′). Let G3 = (X, E3) be the resulting
graph.

5: Compute the set of intra-cluster edges E0 as de-
scribed in sub-section 4.2

6: Output the graph H = (X, E0 ∪ E3).

Theorem 1 The inter-cluster graph G3 = (X, E3) is
planar.

To prove this theorem, we proceed in several steps
(the proofs of Propositions 4.1-4.5 require several case
analysis and are omitted from this abstract). First,
we classify the edges of G according to the relative
positions of the squares containing their end-vertices.
Then, using this classification, we consider all pos-
sible crossing configurations between two edges of
E1. Proposition 4.2 analyzes these configurations and
shows that in most cases one of the two crossing edges
has a replacement path.

Proposition 4.1 If the crossing configuration be-
tween two edges of xy, x′y′ ∈ E′

1 does not belong to
the list of Fig. 2, then one of these edges, say xy, has
a replacement path passing via π(x′) or π(y′).

Since the edges of E1 do not admit replacement
paths, we conclude that only a few crossing configu-
rations may occur between two edges of E1.

Proposition 4.2 For two edges of E1, there ex-
ist only six possible crossing configurations listed in
Fig. 2.

Now we consider the edges added at Step 4. To
prove that the graph returned by our algorithm is
planar, we will show that these new edges do not in-
tersect each other and do not intersect the edges that
survive Step 3. Let e′ ∈ E3 − E2 be an edge added
during Step 4, let e ∈ E3 ∩ E2 be an edge crossing
e′ that survived Step 3. Let also xy, x′y′ ∈ E1 be

x
′

y
′

x y

x

x
′

y

y
′

y

x
′

y
′
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x y

x
′
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x
′
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Figure 2: The six remaining configurations after
Step 2. The solid lines are edges in E′

1 and the dashed
lines are edges that may be in E′

1 or not.

the crossing edges because of which the edge x′y′ has
been removed and the edge e′ = π(y)π(y′) has been
added (by examining all crossing configurations listed
in Fig. 2 one can check that π(y).π(y′) has been re-
moved during step 2). By a case analysis of all con-
figurations listed in Fig. 2, we verify that in all cases
except Configuration 0 (that can be easily treated sep-
arately) there exists a replacement path for e′ in E1

passing via π(x′). Since the edge e′ is added at Step 4
only if it does not admit a replacement path in E2,
the following result excludes the existence of a replace-
ment path for e′ distinct from the path going through
π(x′).

Proposition 4.3 If the edge π(y)π(y′) of Fig. 2 has
a replacement path in E1 distinct from the path that
goes through π(x′), then there is a replacement path
between π(y) and π(y′) in E2.

To deal with the crossing configurations formed by
the edges e and e′, we distinguish two cases. Either
such a configuration belongs to the list from Fig. 2
and a case analysis leads to a contradiction, or, by
Proposition 4.1, one of these two edges admits a re-
placement path that passes through a square contain-
ing an end-vertex of the other edge. This edge must be
e′ because e was not removed during Step 2. However,
as noticed above, Proposition 4.3 implies that this
path must be the one passing through π(x′) because
otherwise this replacement path would survive Step 3
and e′ would not be added. Since the replacement
path arising in Proposition 4.1 passes via a square
containing an end-vertex of e′, the edge e must be in-
cident to π(x′). Therefore, in the proof of Proposition
4.4 we analyze all possible crossings between e′ and
an edge incident to π(x′).

Proposition 4.4 An edge from E3−E2 cannot cross
an edge from E3 ∩ E2.
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Finally, we prove that edges added during Step 4 do
not cross each other. First, notice that if two edges of
E3−E2 cross, then one of them crosses an edge from
E2. By Proposition 4.4, this edge of E2 was removed
during Step 3. Hence, we get a crossing between an
edge of E3 − E2 and an edge of E2 − E3. The list of
these configurations can be extracted from the proof
of Proposition 4.4. They are analyzed case by case
to get the following proposition (and to conclude the
outline of the proof of Theorem 1):

Proposition 4.5 The edges of E3−E2 cannot cross.

4.2 Computing E0

We will consider several choices for the set of edges
E0 that interconnect the vertices lying in the same
square. Let α(E0) be the maximum distance in the
graph G0 = (X, E0) between two vertices belonging
to the same square. In the next subsection, the hop
stretch factor of our spanner is expressed as a function
of α(E0). A possible choices for E0 is to set a clique or
a star on each non-empty square, yielding α(E0) = 1
and α(E0) = 2, respectively. In this case, the diam-
eter of the clusters is small but we do not get a pla-
nar spanner. The following proposition shows that an
appropriate choice of E0 ensures both planarity and
constant diameter of clusters.

Proposition 4.6 There exists a set of intra-cluster
edges E0 such that H = (X, E3 ∪ E0) is planar and
α(E0) ≤ 66.

This set E0 can be obtained as follows. First, we
partition X into clusters consisting of all vertices that
belong to the same non-empty square of the grid Γ.
Then, we consider each non-empty square π crossed
by an edge e ∈ E3 (one can show that there is at
most one such edge) so that the two regions R1 and
R2 of π separated by e are non-empty. We subdi-
vide the subset of vertices that belong to π into two
subsets corresponding to the regions R1 and R2. We
consider each pair of adjacent partitions (i.e. the par-
titions whose regions intersect) and we add a shortest
edge between them if one exists. Then, we compute
a minimum spanning tree on the vertices of Y that
are connected by an edge to a vertex outside π (i.e.
the vertices of Y ∩ V (E3) plus the end-vertices of the
edges that connect the adjacent partitions). Now it
remains to connect the subsets arising from a square
crossed by an edge of E3. One can prove that this
can always be done with a path passing through at
most two neighboring squares. As already noticed in
Section 3, there are at most 20 edges of E3 having an
end-vertex in a given square. From this fact, we de-
duce that there is a path of length at most 66 between
every pair of vertices that belong to the same square
of Γ.

4.3 Hop stretch factor

Now, we analyze the hop stretch factor of H and prove
that it is a 10α(E0)+9 hop spanner for G. As noticed
above, it suffices to prove the spanner property for two
adjacent vertices in G. After Step 1, we get a spanner
H ′ whose hop stretch factor is at most 2α(E0)+1.
Since the maximal l1-length of an edge from G is 3,
if an edge from E1 is removed during Step 2, then
it is replaced by a path containing at most 3 edges
from E2. Taking into account the edges from E0, we
obtain a stretch factor ≤ 4α(E0)+3. In Step 3, again
some edges removed and are replaced by paths. The
following proposition asserts that the length of these
paths is bounded. Finally, in Step 4 edges are only
added.

Proposition 4.7 If an edge from E2 is removed dur-
ing Step 3, then it is replaced by a path containing at
most 3l1(a) ≤ 9 edges from E3.

The Proposition 4.7 shows that after Step 4 an
inter-cluster edge of G is replaced by at most 9 inter-
cluster edges of E3. Taking into account the edges of
E0, we get a stretch factor equal to 10α(E0) + 9.

Summarizing, here is the main result of this note:

Theorem 2 Given a set of terminals in the plane, the
graph H = (X, E0 ∪ E3) computed by our algorithm
is a planar spanner of G with hop stretch factor at
most 10α(E0) + 9.
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Embedding into the rectilinear plane in optimal O(n2) time∗

Nicolas Catusse† Victor Chepoi† Yann Vaxès†

Abstract

In this paper, we present an optimal O(n2) time algo-
rithm for deciding if a metric space (X, d) on n points
can be isometrically embedded into the plane endowed
with the l1-metric. It improves the O(n2 log2 n) time
algorithm of J. Edmonds (2008). Together with some
ingredients introduced by Edmonds, our algorithm
uses the concept of tight span and the injectivity of
the l1-plane. A different O(n2) time algorithm was
recently proposed by D. Eppstein (2009).

1 Introduction

Deciding if a finite metric space (X, d) admits an iso-
metric embedding or an embedding with a small dis-
tortion into a given geometric space (usually Rk en-
dowed with some norm-metric) is a classical question
in distance geometry which has some applications in
theoretical computer science, visualization, and data
analysis. The first question can be answered in poly-
nomial time if Rk is endowed with the Euclidean met-
ric due to classical results of Menger and Schönberg
[5]. On the other hand, by a result of Frechet [5], any
metric space can be isometrically embedded into some
Rk with the l∞-metric. However, it is NP-hard to de-
cide if a metric space isometrically embeds into some
Rk endowed with the l1 (alias rectilinear or Manhat-
tan) metric [5]. More recently, Edmonds [8] estab-
lished that it is even NP-hard to decide if a metric
space embeds into R3 with l∞-metric (a similar ques-
tion for R3 with l1-metric is still open). In case of R2,
l1- and l∞-metrics are equivalent. The embedding
problem for the rectilinear plane was investigated in
the papers [2, 11], which ultimately show that a met-
ric space (X, d) embeds into the l1-plane if and only if
any subspace with at most six points does [2] (a simi-
lar result for embedding into the l1-grid was obtained
in [3]). As a consequence, it is possible to decide in
polynomial time if a finite metric space embeds into
the l1-plane. Edmonds [8] presented an O(n2 log2 n)
time algorithm for this problem and very recently we
learned that Eppstein [9] described an optimal O(n2)
time algorithm. In this note, independently of [9],
we describe a simple and optimal algorithm for this
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problem, which is different from that of [9].
In the sequel, we denote by d1 or by || · ||1 the l1-

metric and by d∞ the l∞-metric. A metric space
(X, d) is isometrically embeddable into a host met-
ric space (Y, d′) if there exists a map ϕ : X → Y
such that d′(ϕ(x), ϕ(y)) = d(x, y) for all x, y ∈ X.
In this case we say that X is a subspace of Y. The
(closed) ball and the sphere of center x and radius
r are the sets B(x, r) = {p ∈ X : d(x, p) ≤ r}
and S(x, r) = {p ∈ X : d(x, p) = r}, respectively.
The interval between two points x, y of X is the set
I(x, y) = {z ∈ X : d(x, y) = d(x, z) + d(z, y)}. Any
ball of (Rk, d∞) is an axis-parallel cube. A subset S
of X is gated if for every point x ∈ X there exists a
(unique) point x′ ∈ S, the gate of x in S, such that
x′ ∈ I(x, y) for all y ∈ S [7]. The intersection of
gated sets is also gated. For a point p of R2, denote
by Q1(p), . . . , Q4(p) the four quadrants of R2 defined
by the vertical and horizontal lines passing via the
point p and labeled counterclockwise. Any interval
I1(x, y) of the rectilinear plane (R2, d1) is an axis-
parallel rectangle which can be reduced to a horizontal
or vertical segment. Any ball of (R2, d1) is a lozenge
obtained from an axis-parallel square by a rotation
by 45◦ degrees. In the rectilinear plane, any halfplane
defined by a vertical or a horizontal line is gated. As a
consequence, axis-parallel rectangles, quadrants, and
strips of (R2, d1) are gated as intersections of such
halfplanes.

2 Tight spans

A metric space (X, d) is called hyperconvex (or injec-
tive) [1, 10] if any family of closed balls B(xi, ri) with
centers xi and radii ri, i ∈ I, satisfying d(xi, xj) ≤
ri+rj for all i, j ∈ I has a nonempty intersection, that
is, (X, d) is a geodesic space such that the closed balls
have the Helly property. As shown by Isbell [10] and
Dress [6], for every metric space (X, d) there exists
the smallest injective space T (X) extending (X, d),
referred to as the injective hull [10], or tight span [6]
of (X, d). In general, tight spans are hard to visu-
alize. Nevertheless, if |X| ≤ 5, Dress [6] completely
described T (X) via the interpoint-distances of X. For
example, if |X| = 3, then T (X) consists of three line
segments joined at a (Steiner) point, with the points
of X at the ends of the arms. If |X| = 4, then the
generic form of T (X) is a rectangle R(X) endowed
with the l1-metric, together with a line segment at-
tached by one end to each corner of this rectangle.
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Finally, there are three canonical types of tight spans
of 5-point metric spaces precisely described in [6]. The
generic forms of T (X) for |X| ≤ 5 are illustrated in
Fig. 1-2 of [4]. From the construction of tight spans of
3- and 4-point metric spaces immediately follows that
any metric space (X, d) with at most 4 points and
its tight span can be isometrically embedded into the
l1-plane. Note also that from the combinatorial char-
acterization of finite metric subspaces of the l1-plane
presented in [2] follows that a tree-metric (X, d) is iso-
metrically embeddable into the l1-plane if and only if
the tree-network T (X) has at most four leaves. Fi-
nally since (R2, d1) is injective, by minimality prop-
erty of tight spans, T (X) is an isometric subspace of
the l1-plane for any finite subspace X of R2.

3 Algorithm and its correctness

Let (X, d) be a metric space with n points, called ter-
minals. Set X = {x1, . . . , xn}. Our algorithm first
finds in O(n2) time a quadruplet P ◦ of X whose tight
span contains a nondegenerated rectangle R(P ◦). If
such a quadruplet does not exists, then (X, d) is a
tree-metric and T (X) is a tree-network. If this tree-
network contains more than four leaves, then (X, d)
cannot be isometrically embedded into the l1-plane,
otherwise such an embedding can be easily derived.
Given the required quadruplet P ◦, we consider any
isometric embedding of P ◦ and of its tight span into
the l1-plane as illustrated in Fig. 4 of [4] and partition
the remaining points of X into groups depending on
their location in the regions of the plane defined by
R(P ◦) and the segments of T (P ◦). The exact location
of points of X in these regions is uniquely determined
except for the four quadrants defined by R(P ◦). At
the second stage, we replace the quadruplet P ◦ by
another quadruplet P by picking one furthest from
R(P ◦) point of X in each of these quadrants. We
show that R(P ) is also nondegenerated, moreover, for
any isometric embedding ϕ0 of P and T (P ) into the
l1-plane, the quadrants defined by two opposite cor-
ners do not contains other terminals of X. Again
the location of the points of X in all regions of the
plane except the two opposite quadrants is uniquely
determined. To compute the location of the remain-
ing terminals in these two quadrants we adapt the
second part of the algorithm of Edmonds [8]: we con-
struct on these terminals a graph as in [8], partition it
into connected components, separately determine the
location of the points of each component, and then
combine them into a single chain of components to
obtain a global isometric embedding ϕ of (X, d) ex-
tending ϕ0 or to decide that it does not exist.

3.1 Computing the quadruplet P ◦

For each i = 1, . . . , n, set Xi := {x1, . . . , xi}. We start
by computing the tight span of the first four points of
X. If this tight span is not degenerated then we return

the quadruplet X4 as P ◦. Now suppose that the tight
span of the first i − 1 points of X is a tree-network
Ai−1 with at most four leaves. This means that Ai−1

contains one or two ramification points (which are not
necessarily points of X) having degree at most 4, all
remaining terminals of Xi−1 are either leaves or ver-
tices of degree two of Ai−1. We say that two terminals
of Xi−1 are consecutive in Ai−1 if the segment con-
necting them in Ai−1 does not contain other points of
Xi−1. Note that Ai−1 contains at most n+4 of consec-
utive pairs. For each pair xj , xk of consecutive termi-
nals of Xi−1 we compute the Gromov product αxi :=
(xj , xk)xi

= 1/2(d(xi, xj) + d(xi, xk) − d(xj , xk)) of
xi with {xj , xk}. Let {a, b} be the pair of consecu-
tive points of Xi−1 minimizing the Gromov product
αxi

= (a, b)xi
. Let c be the point of the segment [a, b]

of Ai−1 located at distance αa := (b, xi)a from a and
at distance αb := (a, xi)b from b.

Denote by Ai the tree-network obtained from Ai−1

by adding the segment [xi, c] of length αxi
. By running

Breadth-First-Search on Ai rooted at xi, we check if
dAi(xi, xj) = d(xi, xj) for any terminal xj of Xi. If
this holds for all xj ∈ Xi, then the tight span of Xi is
the tree-network Ai. If Ai contains more than 4 leaves,
then we return the answer ”not” and the algorithm
halts. Otherwise, if i = n, then we return the answer
“yes” and an isometric embedding of X and its tight
span An in the l1-plane, else, if i < n, we consider the
next point xi+1. Finally, if xj is the first point of Xi

such that dAi(xi, xj) 6= d(xi, xj), then the tight span
of the quadruplet {a, b, xi, xj} is non-degenerated (see
[4] for a proof) and we return it as P ◦.

3.2 Classification of the points of X with respect
to the rectangle of T (P ◦)

Let P ◦ = {p◦1, p◦2, p◦3, p◦4} be the quadruplet whose
tight span T (P ◦) is non-degenerated. Let R◦ be
one of the two possible isometric embeddings of the
rectangle R(P ◦) of T (P ◦) and consider a complete
or a partial isometric embedding of T (P ◦) such that
R(P ◦) is embedded as R◦. Denote by Q◦

1, Q
◦
2, Q

◦
3, Q

◦
4

the four (closed) quadrants defined by the four con-
secutive corners q◦1 , q◦2 , q◦3 , q◦4 of R◦ labeled such that
the point p◦i must be located in Q◦i , i = 1, . . . , 4. Let
also S◦1 , S◦2 , S◦3 , and S◦4 be the remaining half-infinite
strips. Since we know how to construct in constant
time the tight span of a 5-point metric space, we can
compute the distances from all terminals p of X to the
corners of R(P ◦) or R◦ in total O(n) time. Since R◦

is gated, from the distances of p to the corners of R◦

we can compute the gate of p in R◦. Consequently, for
each point p ∈ X \ P ◦ we can decide in which of the
nine regions of the plane belongs its location ϕ(p) un-
der any isometric embedding ϕ of (X, d) subject to the
assumption that R(P ◦) is embedded as R◦. If ϕ(p)
belongs to one of the four half-strips or to R◦, then we
can also find the exact location itself by using the gate
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of p in R◦. So, it remains to decide the locations of
points assigned to Q◦1, Q

◦
2, Q

◦
3, and Q◦4. For any point

p ∈ X which must be located in Q◦
i , the set of pos-

sible locations of p is either empty (and no isometric
embedding exists) or a segment sp of Q◦

i consisting of
all points z ∈ Q◦

i such that ‖z − q◦i ‖1 = d(p, q◦i ).
Notice that for any quadruplet P ′ = {p′1, p′2, p′3, p′4}

of terminals such that p′i is assigned to Q◦i , i ∈
{1, 2, 3, 4}, the tight span T (P ′) is also nondegener-
ated (see [4] for a proof).

3.3 The quadruplet P and its properties

Let P = {p1, p2, p3, p4} be the quadruplet of X, where
pi is a point of X which must be located in Q◦i and
is maximally distant from the corner q◦i of R◦. As
we established above, the tight span of P is non-
degenerated. As we also noticed, there exists a con-
stant number of ways in which we can isometrically
embed T (P ) into the l1-plane. Further we proceed
in the following way: we pick an arbitrary isometric
embedding ϕ0 of T (P ) and try to extend it to an iso-
metric embedding ϕ of the whole metric space (X, d)
in the l1-plane. If this is possible for some embedding
of T (P ), then the algorithm returns the answer “yes”
and an isometric embedding of X, otherwise the al-
gorithm returns the answer “not”. Let R denote the
image of R(P ) under ϕ0.

We call a terminal pi of P fixed by ϕ0 if either ϕ0(pi)
is a corner of R or the segment of T (P ) incident to pi

is embedded by ϕ0 as a horizontal or a vertical seg-
ment; else we call pi free. The embedding of a free
terminal pi is not exactly determined but is restricted
to a segment spi consisting of the points of the quad-
rant defined by qi having the same l1-distance to qi.
We call the terminals pi, pi+1(mod4) incident and the
terminals pi, pi+2(mod4) opposite. From the isometric
embedding of T (P ) we conclude that at most one of
two incident terminals can be free. Moreover, if a ter-
minal pi of P is fixed but is not a corner of R, then
at least one of the two terminals incident to pi is also
fixed. Depending on the number of non-degenerate
tips, we obtain a list of possible configurations that
are listed in Fig. 4 of [4].

Denote by Π the smallest axis-parallel rectangle
containing R and the fixed terminals of P ; Fig. 5
of [4] illustrates Π for two cases from Fig. 4 of [4].
Let q1, q2, q3, q4 be the corners of Π labeled such that
qi is the corner of R corresponding to the point pi

and to the corner q◦i of R◦. Denote by Q1, . . . , Q4 the
quadrants of R2 defined by the corners of Π and by
S1, . . . , S4 the remaining half-infinite strips. Again,
as in the case of the quadruplet P ◦, by building the
tight spans of P ∪ {p} for all terminals p ∈ X \ P,
we can compute in total linear time the distances
from all such points p to the corners of R (and to
the corners of Π). From these four distances and
the distances of p to the terminals of the quadru-

plet P we can determine in which of the nine regions
Q1, Q2, Q3, Q4, S1, S2, S3, S4, Π of the plane must be
located p. Moreover, if p is assigned to Π or to one
of the four half-strips S1, S2, S3, S4, then, in the re-
gion in which p assigned, the intersection of the four
spheres centered at the terminals of P and having the
distances from respective points to p as radii is either
empty or a single point.

In [4], we prove the following property of the
quadruplet P : among the four quadrants Q1, Q2, Q3,
and Q4 defined by P, two opposite quadrants, say Q1

and Q3, do not contain terminals of X \ P .

3.4 Locating in the quadrants Q1 and Q3

We show now how to find the exact location of the set
X1 of terminals assigned to Q1 (the set X3 of termi-
nals located in Q3 is treated analogously). Indepen-
dently of how the extension ϕ of ϕ0 is chosen, for each
terminal u ∈ X1, the l1-distance ‖ϕ(u) − q1‖1 from
the location of u to the corner q1 of Π is one and the
same, which we denote by ∆u. Since q1 lies between
ϕ(u) and ϕ(pi) for any pi ∈ P, the value of ∆u can be
computed by setting ∆u := d(u, p1)−‖ϕ0(p1)− q1‖1.
Then the set of all possible locations ϕ(u) of u ∈ X1

is the level segment su which is the intersection of Q1

with the sphere S(q1, ∆u) of radius ∆u centered at q1.

To compute the locations of the terminals of X1 in
the quadrant Q1, we adapt to the l1-plane the defini-
tion of a graph (which we denote by G1 = (X1, E1))
defined by Edmonds [8] in the l∞-plane. Two ter-
minals u, v ∈ X1 are adjacent in G1 if and only if
d(u, v) > |∆u − ∆v|. Denote by C1, . . . , Ck the con-
nected components of the graph G1. The following
properties are established in Lemmata 3-5 of [8]:

(1) Each component Ci is rigid, i.e., once the location
of any point u ∈ Ci is fixed, the locations of the re-
maining points of Ci are also fixed (up to symmetry).

(2) The components C1, . . . , Ck of the graph G1 can
be numbered so that the points of each Ci appear
consecutively in the list of points u ∈ X1 sorted in
increasing order of their distances ∆u to q1;

(3) For a component Ci of G1, let Bi be the smallest
axis-parallel rectangle containing {ϕi(u) : u ∈ Ci} for
an isometric embedding ϕi of (Ci, d) in the l1-plane.
Let bi be the upper right corner of Bi. Then the em-
bedding of C1, . . . , Ck preserves the distances between
all pairs of points lying in different components if and
only if for every pair of consecutive components Ci

and Ci+1, the box Bi+1 lies entirely in Q1(bi).

The location in the quadrant Q1 of some termi-
nals of X1 can be fixed by terminals already located
in the two half-strips incident to Q1. We say that a
terminal u ∈ X1 is fixed by a terminal p already lo-
cated in S1 ∪ S4 if the intersection of the segment
su with the sphere S(ϕ(p), d(p, u)) is a single point.
If u ∈ X1 is fixed by a terminal located in S1, then
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u is also fixed by the upmost terminal p∗ located in
this half-strip. Analogously, if u ∈ X1 is fixed by a
terminal of S4, then u is also fixed by the rightmost
terminal p∗ located in S4. By considering the inter-
sections of the segments su, u ∈ X1, with the spheres
S(ϕ(p∗), d(p∗, u)) and S(ϕ(p∗), d(p∗, u)) we can de-
cide in linear time which terminals of X1 are fixed by
p∗ and p∗ and find their location in Q1 (for an illus-
tration, see Fig. 7 of [4]). According to property (1),
if a terminal of a connected component of G1 is fixed,
then the location of the whole component is also fixed
(up to symmetry). Let Cj be the connected compo-
nent of G1 containing the furthest from q1 terminal
u ∈ X1 fixed by p∗ or p∗, say by p∗. In [4], we prove
that all terminals of C1, . . . , Cj−1 are also fixed by p∗.

It remains to locate in Q1 the terminals of the com-
ponents Cj+1, Cj+2, . . . , Ck. We compute separately
an isometric embedding of each component Ci for
i = j + 1, . . . , k. For this, we fix arbitrarily the loca-
tion of the first two points u, v of Ci in the segments
su and sv so that to preserve the distance d(u, v) (the
terminals of Ci are ordered by their distances to q1).
By property (1) of [8], the location of the remaining
points of Ci is uniquely determined and each point w
of Ci will be located in its level segment sw. Let ϕi

be the resulting embedding of Ci. Denote by Bi the
smallest axis-parallel rectangle (alias box) containing
the image ϕi(Ci) of Ci. Let ai and bi denote the lower
left and the upper right corners of Bi. Note that ai

belongs to the l1-interval between q1 and the image
ϕi(u) of any terminal u of Ci, while the l1-interval
between q1 and bi contains the images of all terminals
of Ci. Therefore if we set ∆ai := ∆u − ‖ai − ϕi(u)‖1
and ∆bi := ∆u + ‖ϕ(u)− bi‖1, where u is any termi-
nal of Ci, then in all isometric embeddings of (Ci, d)
in which all terminals u ∈ Ci are located on su, the
points ai and bi must be located on the level segments
sai and sbi , defined as the intersections of the quad-
rant Q1 with the spheres S(q1,∆ai) and S(q1,∆bi).

By properties (2) and (3) of [8], to define a single
isometric embedding of the components Cj+1, . . . , Ck

we need to assemble the boxes Bj+1, . . . , Bk such that
for two consecutive components Ci and Ci+1, the box
Bi+1 lies entirely in the quadrant Q1(bi). In [4], we
prove that this is possible if and only if for each pair
of consecutive boxes Bi, Bi+1, i = j, j + 1, . . . , k − 1,
the inequality ∆bi ≤ ∆ai+1 holds. This local con-
dition depends only on the values of ∆ai , ∆bi and
is independent of the actual location of the boxes
Bi, i = 1, . . . , k. As a result, the algorithm that em-
beds the boxes Bj+1, . . . , Bk is very simple. For each
i = j, . . . , k − 1, we compute the box Bi+1 and the
values of ∆ai+1 and ∆bi+1 . If ∆ai+1 < ∆bi for some
i, then return the answer “there is no isometric em-
bedding of (X, d) extending ϕ0 of T (P )”. Otherwise,
having already located the box Bi, by what has been
shown above, the intersection of Q1(bi) with the level

segment sai+1 is non-empty. Therefore we can trans-
late Bj+1 such that its lower left corner ai+1 becomes
a point of this intersection.

In this way, we obtain an embedding of Cj+1, . . . ,
Ck and Bj+1, . . . , Bk satisfying the conditions (1)-
(3), thus an isometric embedding of the metric space
(
⋃k

i=j+1 Ci, d) in Q1. Analogously, by constructing
the graph G3 = (X3, E3) and its components, either
we obtain a negative answer or we return an isomet-
ric embedding of the metric space defined by the non-
fixed components of G3 in Q3. Denote by ϕ the exten-
sion of ϕ0 obtained by the method described above. In
O(n2) we test if ϕ is an isometric embedding of (X, d)
into the l1-plane. If the answer is negative, then we
return “there is no isometric embedding of (X, d) ex-
tending ϕ0”, otherwise we return ϕ as an isometric
embedding. The algorithm returns the global answer
“not” if for all possible embeddings ϕ0 of T (P ) it re-
turns the negative answer. From what we established
follows that in this case (X, d) is not isometrically
embeddable into the l1-plane.

Summarizing, we obtain our main result (see [4] for
complete proof and complexity analysis):

Theorem 1 For a metric space (X, d) on n points, it
is possible to decide in optimal O(n2) time if (X, d)
is isometrically embeddable into the l1-plane and to
find such an embedding if it exists.
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Hide-and-Seek: A Linear Time Algorithm for Polygon Walk Problems

Atlas F. Cook IV∗ Chenglin Fan† Jun Luo†

Abstract

Jack and Jill have decided to play hide-and-seek along the
boundary of a simple polygon. To start the game, Jack and
Jill each choose an arbitrary path on this boundary. After
fixing these paths, our goal is to determine whether Jack
can control his speed such that he walks along his path
from beginning to end without being seen by Jill. We solve
this problem with a linear-sized skeleton visibility diagram
that implicitly represents visibility between pairs of points
on the boundary of the simple polygon. Note that this data
structure has applications for any polygon walk problem
where one entity wishes to remain hidden throughout a
traversal of some path.

1 Introduction

Let P be a simple polygon with n vertices, and let ∂P
be the boundary of P . Jack and Jill want to play hide-
and-seek along ∂P . To start the game, Jack and Jill each
choose fixed paths on ∂P . Both children have excellent
eyesight and can see infinitely far inside P but cannot see
past the opaque boundary of ∂P . Jack wants to control his
speed on ∂P so that he travels on a safe path that keeps
him hidden from Jill at all times. We show how to compute
such a safe path in linear time using a skeleton visibility
diagram that implicitly represents visibility between pairs
of points on ∂P .

We refer to any problem where one or more entities
walk along ∂P while maintaining certain properties as a
polygon walk problem. Related work by Icking and Klein
[4] uses two guards to patrol the boundary of a simple
polygon from a single entrance point until they reach a
single exit point. The two guards walk in opposite direc-
tions on this boundary and always maintain mutual visi-
bility for security purposes. Given a fixed entrance point,
their O(n log n) time approach determines whether an in-
truder can always be detected by the two guards. Here, n
is the number of vertices of the simple polygon. Subse-
quently, Heffernan [3] improved this algorithm to optimal
O(n) time. Additional work by Zhang and Kameda [6]
has developed an O(n) time algorithm to detect all pos-
sible entrance points on the boundary that permit the two
guards to detect an intruder.

Polygon walk problems with varying numbers of guards

∗Department of Mathematics and Computing Science, TU Eind-
hoven, Netherlands, a.f.cook@tue.nl
†Shenzhen Institutes of Advanced Technology, Chinese Academy of

Sciences, China, {cl.fan,jun.luo}@sub.siat.ac.cn

have also been studied. LaValle et al. [5] show how to
search a polygonal region with a single guard in O(n2)
time. Efrat et al. [1] sweep a polygonal chain of guards
along the boundary of a simple polygon in O(n3) time.
Each consecutive pair of guards in the chain are always
mutually visible, and the goal is to detect any intruder us-
ing the minimum number of guards.

Note that previous research typically requires two or
more guards to walk along the boundary of a simple poly-
gon while maintaining mutual visibility inside a simple
polygon. Our problem is different because we have two
entities walk along the boundary while maintaining mu-
tual invisibility.

2 Preliminaries

Given a simple polygon P , we say that two points p and q
are mutually visible if the line segment pq ∈ P ∪ ∂P ; oth-
erwise, p and q are mutually invisible. We define a config-
uration 〈p, q〉 ∈ ∂P×∂P by a pair of points on the bound-
ary of P [5]. We call such a configuration safe when p and
q are mutually invisible and unsafe otherwise. We pick
an arbitrary point on the boundary ∂P as the origin, and
we measure all distances along ∂P in a clockwise fashion
from this origin. Let |∂P | denote the total length of ∂P .
Let x1, x2, y1, y2 be points on ∂P such that Jack travels
from x1 to x2 and Jill travels from y1 to y2 (see Figure 1a).
Define a two-dimensional configuration space such that
the x-axis represents the position of Jack on ∂P and the y-
axis represents the position of Jill on ∂P (see Figure 1b).
Observe that if Jack and Jill are located at the same point
on ∂P , then they must be mutually visible. Consequently,
every point on the lines y = x and y = x − |∂P | in this
configuration space is always unsafe. This permits us to
prune our search space to the infinite area between and in-
cluding the lines y = x and y = x − |∂P |. This infinite
area is referred to as the visibility space. We shade all safe
configurations in the visibility space a gray color and call
this refined space a visibility diagram. See Figure 1b.

We now describe all safe configurations in the visibility
diagram as a discrete set of shapes. A reflex vertex is a
vertex r ∈ P whose interior angle inside P is more than
π. For example, vertices 2, 5, 8, and 11 in Figure 1a are
reflex vertices. Each reflex vertex of P defines one gray
shape in the visibility diagram. We call each gray shape a
cell.

Notice that the boundary of each cell in Figure 1b con-
tains one horizontal line segment and one vertical line
segment such that these line segments intersect on either
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Figure 1: (a) Simple polygon P , (b) Visibility diagram of P , (c) Skeleton visibility diagram of P

y = x or y = x − |∂P |. We define the skeleton of each
cell as the union of these two line segments. Due to visi-
bility constraints in a simple polygon, the corner point of
every skeleton corresponds to a reflex vertex of P . We
define the skeleton visibility diagram as the union of all
skeletons in the visibility diagram (see Figure 1c).

3 The Boundary of a Cell

The following notation will be useful for describing a cell
in the visibility diagram. The boundary of P is a clockwise
sequence of vertices. The vertices immediately preceding
and succeeding a vertex r on ∂P are denoted by Pred(r)
and Succ(r), respectively. For any two points a, b ∈ ∂P ,
the open and closed portions of ∂P from a to b in clock-
wise order are denoted by ∂P (a, b) and ∂P [a, b].

Figure 2 shows the cell for a reflex vertex r ∈ P . Let
B(r) ∈ ∂P be the backward extension point where the ex-
tension of the edge from Succ(r) to r leaves P for the first
time. Similarly, let F (r) be the forward extension point
where the extension of the edge from Pred(r) to r leaves
P for the first time. The cell for r is composed of two

(a) (b)

θ

θ1

θ2

a

b

x

y

θ

θ0

r

Pred(r)
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LH

LV

(r, r) (F (r), r)

(r, B(r))

(F (r), P red(r))

(Succ(r), B(r))

Figure 2: (a) A reflex vertex r ∈ P defines (b) a sin-
gle cell in the visibility diagram. The functions x and
y define the clockwise portion of the cell boundary from
(F (r), P red(r)) to (Succ(r), B(r)).

horizontal line segments, two vertical line segments, and
a monotone set of curves. We describe the set of curves
by two piecewise monotone functions x = a sin θ

sin (θ+θ1)
and

y = b sin θ
sin (θ+θ2)

. As illustrated in Figure 2, a is the length of
the edge from r to Succ(r), and b is the length of the edge
from r toB(r). Define θ0 as the angle formed by Pred(r),
r, and B(r). Let θ1 be the angle formed by r, Succ(r),
and Succ(Succ(r)). Define θ2 as the angle formed by r,
B(r), and Pred(r). Finally, let θ be a parameter in [0, θ0].

In order to determine the slope of these curves, we com-
pute the derivative dy

dx = b csc (θ+θ2)(cot θ−cot (θ+θ2))
a csc (θ+θ1)(cot θ−cot (θ+θ1)) ≥ 0.

Here, 0 ≤ θ ≤ π, 0 ≤ (θ+θ1) ≤ π, and 0 ≤ (θ+θ2) ≤ π.
Since this derivative is always positive, the curve is mono-
tone. This means that the horizontal line segmentLH from
any point (x, y) in a cell to the vertical skeleton of the cell
is completely contained inside the cell. Similarly, the ver-
tical line segment LV from any point (x, y) in a cell to the
horizontal skeleton of the cell is contained inside the cell.

4 Properties of the Skeleton Visibility Diagram

Figure 3 illustrates the four types of intersections between
a pair of cells.

Lemma 1 Two cells intersect if and only if their skeletons
intersect.

Proof. If two skeletons intersect, then their cells must also
intersect because each skeleton is a subset of its associated
cell. We now prove that if two cells intersect, then their
skeletons must also intersect. We prove this for the two
types of intersections depicted in Figures 3a and 3c. The
proof for the other two types is similar.

Consider the type of intersection in Figure 3a. Figure 4a
illustrates two possible arrangements such that a pair of
cells intersect but their skeletons do not intersect. How-
ever, we know that the top left corners of the two cells
must lie on the line y = x as shown in Figure 4b. There-
fore, the two arrangements in Figure 4a cannot occur.

Now consider the type of intersection in Figure 3c. Fig-
ure 4c illustrates two possible arrangements such that a
pair of cells intersect but their skeletons do not intersect.
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(a) (b) (c) (d)

Figure 3: There are four types of intersections between a pair of cells. The corresponding skeletons are also shown.

(a) (b)

y = x

(c)

Figure 4: (a,b) Two arbitrary cells could intersect without having intersecting skeletons; however, if the top-left corners of
both cells lie on y = x, then the cells only intersect when their skeletons intersect. (c) If one cell touches y = x and one
cell touches y = x− |∂P |, then the only way for the two cells to intersect without having intersecting skeletons would be
for a vertex that bounds a horizontal or vertical line segment to lie in the interior of a cell. This cannot occur.

Neither of these scenarios can occur because it is not pos-
sible for a vertex that bounds a horizontal or vertical line
segment of a cell to be contained inside a second cell. �

We call each connected set of gray points in the visibil-
ity diagram a unit. Thus, each unit is the union of one or
more intersecting cells. Recall from Figure 1 that the start
and end points of Jack are x1, x2 ∈ ∂P , and the start and
end points of Jill are y1, y2 ∈ ∂P . Let s = (x1, y1) and
t = (x2, y2) be points in the visibility diagram. We define
a safe path πsafe(s, t) as a path that connects the points s
and t in the visibility diagram such that the entire path is
in the gray area (see Figure 1b). Note that Jack and Jill can
traverse their entire paths without seeing each other if and
only if a safe path πsafe(s, t) exists.

5 Computing a Safe Path for Jack and Jill

Recall that a unit is a connected set of safe points. Conse-
quently, a safe path πsafe(s, t) exists if and only if s and
t lie in the same unit. To decide whether s and t lie in the
same unit, we determine a cell that contains s and a cell
that contains t. We then decide whether these two cells are
in the same unit.

5.1 Determining Cells for s and t

Recall that a pair of points x, y ∈ ∂P define a single
point (x, y) in the visibility diagram. Our task is to deter-
mine one cell in the visibility diagram that contains (x, y).
To simplify this process, we define the visibility polygon
V is(P, x) as the set of all points in P that are directly vis-
ible from x (see Figure 5).

Lemma 2 Given any fixed point (x, y) in the visibility
diagram, a cell that contains (x, y) can be determined in
O(n) time.

v′2y1

v1

v′1
v′3

v6

v′6

x

v2
v′4

v′5

v3

v4

v5

V is(P, x)

Figure 5: A visibility polygon V is(P, x) with reflex ver-
tices v1, ..., v6. Each v′i is the first point where the ray from
x through vi leaves P .

Proof. Compute the visibility polygon V is(P, x) inO(n)
time [2] (see Figure 5). Traverse the boundary of P and
determine the maximally connected interval of ∂P that is
not directly visible from x and also contains y. If no such
interval exists, then no cell contains (x, y). Otherwise, one
endpoint of this interval must be a reflex vertex r, and the
cell associated with r must contain (x, y). �

Lemma 2 implies that we can calculate a cell that con-
tains s = (x1, y1) and a cell that contains t = (x2, y2) in
O(n) time.

5.2 Determining if Two Cells Are in One Unit

To determine whether two cells are in the same unit, we
associate each cell’s skeleton with the unit that contains
it. Figure 6 illustrates the process of constructing units
of skeletons. For the moment, we ignore the vertical line
segments of all skeletons that touch y = x − |∂P | (see
Figure 6). We scan all skeletons in the visibility diagram
in decreasing order according to the y coordinates of their
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y = x
y = x− |∂P |

Figure 6: Units of skeletons are partially computed by only
considering the horizontal line segments of skeletons that
touch y = x− |∂P |.

corner vertices. During this scan, we maintain two sets.
Set U is the desired list of units that are being constructed.
Each unit in U is a list of skeletons that are ordered by the
y coordinates of their corner vertices. Set W is a “wave-
front” of units that only includes skeletons that could pos-
sibly intersect the not-yet-processed skeletons in the visi-
bility diagram. The scan proceeds as follows.

If the current skeleton S has its corner vertex on the line
y = x, then we scan the skeletons in the current wave-
front W from bottom to top. If there is no skeleton in the
wavefront W that intersects S, then we create a new unit
for the current skeleton S in both W and U . Otherwise,
S intersects a sequence of consecutive units in W . We
merge all (linked-list) units in W that intersect S and add
S to the front of this merged unit. We also update U in an
identical manner. Each skeleton in W whose vertical line
segment does not intersect the horizontal line segment of
S can be deleted from the wavefront W because its ver-
tical line segment will never intersect the horizontal line
segment of any skeleton below S. The scan of the wave-
frontW stops when the vertical line segment of the current
skeleton in W lies entirely to the right of S.

If the current skeleton S has its corner vertex on the
line y = x − |∂P |, then we scan the units in the current
wavefrontW from top to bottom. The rest of the algorithm
is analogous to the previous paragraph.

Lemma 3 Assuming that we ignore the vertical line seg-
ments of all skeletons that touch y = x − |∂P |, the units
of all skeletons in the visibility diagram can be calculated
in O(n) time.

Proof. Each skeleton is inserted into the sets U and W
exactly once and is deleted from the wavefront W at most
once. Although the wavefront W is scanned O(n) times,
each skeleton in W will be examined at most twice during
normal operation (once when it is at the head of its unit
and once when it is at the tail of its unit). Additionally, the
algorithm will examine a total of O(n) skeletons in order
to stop the scans of the wavefront. �

We also perform a symmetric operation where units of
skeletons are calculating without considering the vertical
line segments of the skeletons that touch the line y = x.

The true units of skeletons are then obtained by merging
the sets U from these two operations.

Theorem 4 Suppose Jack and Jill walk along fixed paths
on the boundary of a simple polygon. We can decide
whether the two children can possibly traverse their paths
without ever seeing each other in linear time. An existing
traversal can then be returned in output-sensitive time.

Proof. Compute the visibility diagram for the simple
polygon, and compute the units for the skeletons. Asso-
ciate the start points of these paths with a unit in the vis-
ibility diagram. Associate the end points of these paths
with a second unit in the visibility diagram. If these two
units are the same, then a rectilinear traversal can be re-
turned through the skeletons in this unit. �

6 Conclusion

Suppose Jack and Jill walk along arbitrary paths on the
boundary of a simple polygon. We can determine whether
these two children can possibly traverse their paths with-
out ever seeing each other in linear time. We use linear-
sized structures to implicitly represent visibility between
pairs of points on the boundary of a simple polygon. These
structures have applications for any polygon walk problem
where one entity wishes to remain hidden at all times dur-
ing a traversal of some path.
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Dynamic Additively Weighted Voronoi Diagram

Arman Didandeh, Mehdi Khosravian, Bahram Sadeghi Bigham ∗

Abstract

We consider solving a newly mentioned hybrid class of
Facility Location problems concerning about locating
a set of attentive and reactive facilities on the problem
plane with respect to a set of dynamic demands. The
policy of assigning this set of facilities should satisfy
the objective that our system minimizes on a total loss
function after the system goes into a steady state. We
propose an approach called RA-DAWV which is based
on Additively Weighted Voronoi diagram in a contin-
uous space and models the problem in discrete-time,
while we try to assign the attentive-reactive facilities
in each time cycle. We express our solution on a real
world problem of fire in a location of points with dif-
ferent importance levels and we show the results of
this expression as a case study. At the end of the pa-
per, we show that the time complexity of the proposed
algorithm, considering n, c and p to be the number
of demand points, the number of available facilities
and the number of time cycles, respectively, would be
O(c(n2 +p)logn). This includes the AWVD depiction
and also the Point Location. We also provide a novel
NP solution for the decision making process of plane
Voronoi sectioning.

1 Introduction

Facility location is the problem of positioning some
facilities on a problem plane in order to optimize
one or several objectives or in general a demand
satisfaction. In this section, we describe a bit the
approaches on Facility Location problem and we also
introduce Voronoi diagrams and reactive agents, as
we use them in the next sections to solve the main
problem.

1.1 Facility Location Problem

Facility Location problems are known to be NP-
hard problems among computer scientists [1]. While
no generic solution is available for this problem,
Facility Location problems have been categorized
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into several known and specific classes and solu-
tions are made specifically to cover the needs de-
fined for these categories. The main and most im-
portant categories are: Set Covering Facility Loca-
tion Problem (SCFLP), Maximum Covering Facility
Location Problem (MCFLP), p-Center and p-Median.
[1](modified). There are also several other categories
like dynamic location problems, stochastic location
problems and also multi-objective location problems
[1]. Of all the methods represented for all these Facil-
ity Location problem categories, two general views are
of most interest to the authors of this paper, which
are the Voronoi diagram [5, 6, 7] view and the re-
active agents view. The basic tool of all in the for-
mer are Voronoi diagrams and are described in detail
in the coming subsections 1.2 and 1.3. Of the latter
is [1] that looks at the facilities as attentive objects,
known as reactive agents. This assumption have ad-
vantages like being well suited for the dynamic prob-
lems and good for distributed problems with several
evolving/moving entities, cooperating to perform col-
lective and local goals. The key idea here was agents
are attracted to demands.

1.2 Voronoi Diagrams

One of the most well studied structures in computa-
tional geometry (CG) is the Voronoi diagram for a set
of sites [6]. There have been various generalizations
of the standard Euclidean Voronoi diagram, including
generalizations to metrics, convex distance functions,
the power distance, which yields the Power diagram,
Polar diagram [5] and others. The sites considered in-
clude points, convex polygons, line segments, circles
and more general smooth convex objects.
While Voronoi diagrams are useful and powerful tools
to prepare rational solutions in several problems,
attempts have been made to converse them thor-
oughly. Discussions about Voronoi diagrams usually
split them into static and dynamic diagrams. Static
Voronoi diagrams mostly gather the information of
the problem plane, i.e. the location of the sites, and
divide the plane into cells. On the other hand, dy-
namic Voronoi diagrams also model alterations in the
problem plane, usually concerning changes in the size
or weight of the sites, or addition/deletion of them.
One of the most valuable attempts made to discuss
the Dynamic Voronoi diagrams is [7].
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1.3 AWVD

One of the generalizations is the Additively Weighted
Voronoi diagram or, in short, AWVD. If the weights
are positive, AWVD can be viewed geometrically as
the Voronoi diagram for a set of circles, the centers
of which are the points and the radii of which are the
corresponding weights [2]. [9] presents a sweepline
algorithm for a set of circular sites that compute
their Voronoi diagrams in a 2D Euclidean space. [9]
considers the radius for each site to be non-negative
and the radii should not be identical. Also in [2],
Karavelas et al. have proposed an algorithm for the
construction of the Dynamic Additively Weighted
Voronoi diagram of a set of weighted points on the
plane. The novelty in their approach is that they use
the dual of the additively weighted Voronoi diagram
to represent it. The time complexity of AWVD will
be addressed in Section 5.

1.4 Reactive Agents

A good definition for a ”reactive agent” is: ”a simple
agent which reacts to stimuli and provides a simple
service to a user”. As it comes in [4], a simple reactive
agent (also known as a reflex agent) is a production
system where inputs from the environment are
compared with rules to determine which actions to
carry out. We take the advantages of this kind of
agents to model the facilities of our system to have a
simple architecture and an implemented intelligence.

The rest of this paper is structured as follows:
Section 2 gives an insight of the problem and its
statements here. Then Section 3 talks about the
RA-DAWV approach. We continue our ideas with
a case study on forest fire in Section 4. Section 5
concludes this paper by discussing our approach and
some future work.

2 Problem Statement

In this section we take a look at what exactly is the
problem we are trying to solve. Given a collection
of facilities represented by a set P and sitting on the
problem plane, we rule them to move towards the lo-
cation of the demands of the system as they call them.
Active demands in the problem plane generate a cer-
tain radial value of loss on the space. The problem
we define here is discrete-time continuous-space. We
call every time slice a cycle here and at the beginning
of each cycle j , we assign a set Qi,j ⊆ P to the de-
mand Si in order to minimize the loss function of the
whole system. Better to say, the total loss function
is memory-measured cycle by cycle. This value is of
our concern when we study the demands and try to
assign attentive facilities to them. The problem is an

extended version of the p-Median class with respect to
some differences. We focus on the best policy to assign
facilities to demands, in order to have less loss in our
system. We assume that the problem plane is a real
world 2D space. We imagine a convex hull containing
our demands in it and also a bounding box holding
this convex hull inside. This assumption makes us be
able to use RA-DAWV approach to come to a policy
of assignments.

3 RA-DAWV Approach

After getting the insight on the problem, here we men-
tion our ideas on the solution. To have a good real-
time policy based on online data from the environ-
ment, we have chosen a process of solution based on
Dynamic AWVDs. Hence we try to have an AWVD
inside the problem bounding box, and update this dia-
gram according to the status of the system, regarding
to the facility assignments and Voronoi sites’ topol-
ogy. We consider our attentive facilities to be reactive
agents. This assumption is simply modeled with the
help of a gravity function for any demand, as will be
described later. Any reactive agent is a member of
the pre-said P set and is represented by pi. In any
cycle, pi is assigned to one and only one demand.
We also assume each demand to be a weighted
Voronoi site, a circle with a certain center Ci(xi, yi)
on continuous-space and a certain radius ri that shows
the activation range of that demand. Every site also
has a loss memory, shown by another radius Ri that
shows an upper approximation for how much each de-
mand has caused damage. It models the possibility of
intensity re-growth for any demand with active facility
assignment. For any demand Si, its Ri property is set
due to the maximum value of its ri property since its
birth time till present time. So the formal represen-
tation of any demand in our system is as an ordered
3-tuple demonstrated by: Si =< Ci(xi, yi), ri, Ri >.
Without loss of generality, we can approximately
model the decision process in discrete-time.
Here we bring this idea into field that whenever a
demand is born in the system -which is represented
as a circle on the plane with a known geometrical
topology-, it generates a gravity function. The value
of this gravity depends on the intensity of the demand,
the number of active attentive reactive agents that are
assigned to this certain demand and also its position
on the problem plane. To be more exact on the latter,
we define a value for any point on the problem plane
and consider the locus of the points that have sim-
ilar values to be subset sections of the above plane.
These sections have the same value for us when decid-
ing about the assignment as we have mentioned above
in Section 2. Hence we have broken the problem into
cycles and the beginning of each cycle can be thought
as the beginning of a new problem -with a total loss
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value-, we desire to spread a subset of facilities on the
problem plane like iron powder. So the demands that
have more gravity values act like magnet and grab
more facilities. These grabbed facilities will satisfy
the demands and serve them during the cycle time.
We also assume agents to have Instant Transfor-
mation Ability property in order to move instantly
to their mission point in the between-cycles time gap.
Now and with all these matters of problem, we go in
detail of our solution. Our presented approach aims to
solve the problem by sectioning the plane into Voronoi
cells with Voronoi sites being the active demands in
the under-study cycle. This sectioning is done using
a decision function, known as the fdesicion. To see
how this function helps out the sectioning, we first
need to have a naive estimation of the intensity value
of any active demand on the subsequent cycle. For
this purpose, we define a velocity of growth for
any site Si as: αj

i = (rji − rj−1
i )/(tj − tj−1). Now

the estimated intensity value for the subsequent ac-
tive demands would be as: rj+1

i = rji + αj
i (t

j+1 − tj).
This estimated naive intensity is a radius for site Si

in tj+1, though making the ”approximated restricted
area” of Si as: Hj+1

i = Π(rj+1
i )2. It is obvious that αj

i

can model all 3 classes of demands: the under-service
demands by having a negative value, the newly born
demands by being zero, and the less important/very
intense demands by taking a positive value.
In the next step, we take advantage of the approxi-
mated restricted area of all demands to calculate a set
of values known as f i,j+1

pred . This set is defined for any
point A with a weight wA as:

f i,j+1
pred =

∮
Hi

j+1

wA dx dy =

∫ ∫ rj+1
i

rji

wA rdr dθ

After having these sets for points of our plane, we
turn them into the gravity values known as: gi,j . This
helps us assign any point A to the definite site that
its intensity of demand will reach sooner to A. Several
versions of gravity may come in handy, regarding to
the application domains we wish to implement them
in. Here we mention two of them:

g : R ∗ (Q ⊆ P ) −→ R

g
(1)
i,j =

ef
j+1
pred

|Qi,j |
g
(2)
i,j = f j+1

|P |
|Qi,j |

pred

The fourth step of our solution is called the radii
estimation process. In the radii-estimation step of
the RA-DAWV, we utilize the gravity values for each
Voronoi site to estimate new values for the next cycle
site radii. These radii are known as the subsequent
cycle information, as they are the most influential
piece of data needed to make the next cycle’s deci-
sions. This is done using the formula: r(new)j+1

i =

2π(g
5/2
i,j ).

Using the estimated radii, we simply determine a new
area of Hj+1

i (new) = Π(r(new)j+1
i )2. This area is

more precise on the intensity of the subsequent de-
mands in the coming cycle. Now and according to [9],
we have a set of circle Voronoi sites, which can help
section the plane into Voronoi cells in a polynomial
time.
Another approach, using the estimated radii could be
a novel, while NP approach. Here we determine a
function δi,jA which helps us decide about the section-

ing the plane: δi,jA = egi,j/2Π(d(A,Ci) − r(new)j+1
i )

The value d(A,Ck) is simply the Euclidean distance
of the point A and the point Ck which is known as
the center of site Sk.
Now we have the information needed for decision mak-
ing:

fdecision : R2 ∗ (B ⊆ N) −→ N

f j+1
decision =

{
k d(A,Ck) ≤ rk
argmax(δi,jA ) otherwise

At the end of this section, and now that we have dis-
cussed the RA-DAWV approach, we would like to ad-
dress another concept of our system, known as the
”total loss function”. The total loss function of the
system is a function that calculates the whole loss that
the un-serviced demands have put to our system. It
is computed when the system is at steady state and
is defined as:

floss =
∑
i

∫ ∫
A∈Hi

wA dx dy =
∑
i

∮
ø

∫ Ri

0
wA rdr dθ

,where: Hi = πR2
i and Ri = maxj r

j
i

4 Forest Fire: A Case Study

In this section, we try to survey the assignment
of fireman agents whilst a forest is on fire in some
locations. The forest is the location of a military
troop and some sections of the forest are more
important than the others for us. Consider Figure
1 to be the statement of the beginning of a cycle.
The red points show the centers of the fires, and the
orange radii around the fire centers show how drastic
they are. There is also a gray circle that models how
much each fire has caused damage to the military
zone since the beginning of the forest fire. The dark
gray sections of the forest are very important to the
troop. Also there is a dotted sectioning that models
the Voronoi diagram of the cycle over the fires. We
consider a team of p = 8 firemen that can act as
we define them their zone of activities. Surely there
is not always a need to assign all the firemen, and
sometimes we can have less than enough firemen and
so, we should decide on which fire to be extinguished
depending on the importance of the points near the
growing fires. Calling RA-DAWV results in a need of
q = 5 firemen to the fire centers, according to Figure
2. As they act on the fires, they growth of the fires

127



26th European Workshop on Computational Geometry, 2010

Figure 1: Forest fire, beginning of a cycle

Figure 2: Forest fire, end of the same cycle

become less, but some other fire centers are created
by the fire generator engine. So at the end of this
cycle, we run the RA-DAWV algorithm once more to
come to a newly-made decision. As you can see, the
execution of the RA-DAWV algorithm is both easy
and helpful. These actions are done repetitively until
the last cycle. In the next section we discuss a bit
about the RA-DAWV algorithm and its complexity.
We also point to some lacuna and weak points of this
algorithm that are good to see in the future work of
authors.

5 Conclusion and Future Works

In this paper we addressed a certain class of Facil-
ity Location problems, hybridized with Voronoi dia-
grams in which ordinary points of the problem space
(and not only service points) have weights of impor-
tance. Also sites are considered to be circular and
we use AWVD to come to a solution. Our problem
is considered in discrete-time and with repetitive cy-
cles, so we believe that we are solving the Dynamic
AWVD problem. An example of application is that
we have n points of the problem space to go on fire
and the fire is expanding in a circular manner. Also
the neighbor points of the fire-centers are of different
importance to us, so some fires should be controlled
and extinguished as soon as possible not to let the
more important neighbor points take any damage. If
p and c are the number of fireman agents and the
number of cycles of a complete run, then drawing an

Additively Weighted Voronoi diagram for the set of
n circular sites is of O(n2log n) time complexity. We
also feel a need for each agent to be rendered under a
Point Location algorithm to recognize its correspond-
ing site. This algorithm will take O(plog n) time.
Whilst we have at most c cycles, we can claim that
the time complexity for a whole parade process of the
RA-DAWV algorithm is O(c(n2 + p)log n).
In this paper we have simplified the problem by con-
sidering the sites to be circular. Also several parame-
ters could be added to the problem statement to make
it more applicable in the real world, like the wind ef-
fect on fire. The problem is still open for closed curves.
Also it may be possible that the problem could be
solved in less time or be proved that our algorithm’s
time complexity is tight.
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Approximating the Fréchet Distance
for Realistic Curves in Near Linear Time

Anne Driemel∗ Sariel Har-Peled † Carola Wenk‡

Abstract

We introduce a new realistic family of curves, which
we call c-packed curves. This family is closed un-
der simplification, a property that makes it especially
useful. We can (1 + ε)-approximate the Fréchet dis-
tance of two polygonal c-packed curves in IRd in time
O(n/ε+ cn log n). Our algorithm also works in near
linear time for low-density curves in the plane.

1 Introduction

The Fréchet distance and its variants have been
widely used to compare geometric curves, in applica-
tions such as dynamic time-warping, signature verifi-
cation [8], and others. Unlike the Hausdorff distance,
which is solely based on nearest neighbor distances
between points on the curves, the Fréchet distance
requires continuous and order-preserving assignments
of points and hence is better suited for comparing the
intrinsic structure of the curves.

It has been an open problem to find a subquadratic
algorithm for computing the Fréchet distance for two
curves in the plane. In fact, recently Alt [1] conjec-
tured that the decision version of the problem may
be 3SUM-hard. The only subquadratic algorithms
known are for quite restricted classes of curves such
as for closed convex curves and for κ-bounded curves
[3]. For two polygonal curves of total complexity n
in the plane, their Fréchet distance can be computed
in O(n2 log n) time [2]. For closed convex curves the
Fréchet distance equals the Hausdorff distance and
for κ-bounded curves the Fréchet distance is at most
(1 + κ) times the Hausdorff distance, and hence the
O(n log n) algorithm for the Hausdorff distance (see
[1]) can be applied.

Aronov et al. [4] provided a near linear time (1+ε)-
approximation algorithm for the discrete Fréchet dis-
tance, which only considers distances between vertices
of the curves. Their algorithm works for backbone
curves, which are required to have (roughly) unit edge
length and a minimal distance between any pair of

∗Utrecht University; The Netherlands; anne@cs.uu.nl. This
work has been supported by the NWO under RIMGA.
†University of Illinois; http://www.uiuc.edu/~sariel/.

This work was supported by a NSF AF award CCF-0915984.
‡University of Texas at San Antonio; carola@cs.utsa.edu.

Supported by the NSF CAREER grant CCF-0643597.

vertices, and which are used to model protein back-
bones in molecular biology.

The Input Model. Realistic input models, such as
fatness and low density, were introduced for the anal-
ysis of problems where the worst case complexity is
dominated by degenerate and highly unlikely config-
urations. We introduce a new class of curves, called
c-packed curves, for which we can approximate the
Fréchet distance quickly if the constant c is small.

A curve π is c-packed if the total length of π inside
any ball is bounded by c times the radius of the ball.
A κ-bounded curve might have infinite length and as
such may not be c-packed. But unlike κ-bounded
curves, the Fréchet distance between two c-packed
curves might be arbitrarily larger than their Hausdorff
distance. Indeed, c-packed curves are a considerably
more general and a more natural family of curves. For
example, a c-packed curve might self cross and revisit
the same location several times, and c-packed curves
are closed under constant concatenation. Intuitively,
c-packed curves behave reasonably in any resolution,
unlike backbone curves. See the figure for a few ex-
amples of c-packed curves.

The boundary of convex polygons, algebraic curves
of bounded maximum degree, the boundary of (α, β)-
covered shapes [7], and the boundary of γ-fat shapes
[5] are all c-packed. Some fractal curves, like the
Koch’s snowflake, have infinite length, but a finite
diameter. This can also happen to γ-fat curves if
one allows unbounded description complexity. How-
ever, one can show that (α, β)-covered polygons are
c-packed even in this case, see [6].

2 Preliminaries

Notations and Definitions. Let π : [0, 1] → Rd be
a curve. In the following, we will identify π with its
range π[0, 1] ⊆ Rd. We use ‖.‖ to denote both the
Euclidean norm of a point as well as the length of
a curve. For a polygonal curve π, let V (π) denote
the set of vertices of π. We denote with b(p, r) the
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ball of radius r centered at p. Let
(
P
2

)
be the set of

all pairwise distances of a point set P. Given a set
of numbers U ⊆ IR, an atomic interval of U is a
maximal interval that does not contain any point of
U in its interior.

Fréchet Distance. A reparameterization is a one-
to-one and continuous function f : [0, 1] → [0, 1]. It
is orientation-preserving if it maps f(0) = 0 and
f(1) = 1. Given two orientation-preserving repa-
rameterizations f and g for two curves π and σ,
respectively, define their width as widthf,g(π, σ) =
maxs,t∈[0,1] ‖π(f(s))− σ(g(t))‖ . The Fréchet dis-
tance between π and σ is defined as

dF (π, σ) = min
f,g:[0,1]→[0,1]

widthf,g(π, σ) .

Informally, the Fréchet distance can be interpreted
as a shortest possible leash one needs to walk a
dog, where the dog walks monotonically along π ac-
cording to f , while the handler walks monotonically
along σ according to g. The Fréchet distance com-
plies with the triangle inequality; that is, for any
three curves π, σ and τ we have that dF (π, τ) ≤
dF (π, σ) + dF (σ, τ). Let π, σ be curves and δ > 0
a parameter, the free space of π and σ is defined as

D≤δ(π, σ) =
{

(s, t) ∈ [0, 1]2
∣∣∣ ‖π(s)− σ(s)‖ ≤ δ

}
.

Since we are interested only in polygonal curves, the
square [0, 1]2 can be broken into a (not necessarily
uniform) grid called the free space diagram , where
a vertical line corresponds to a vertex of π and a hor-
izontal line to a vertex of σ. Every two segments of
π and σ define a free space cell in this grid. The
Fréchet distance between π and σ is at most δ if and
only if there is an (x, y)-monotone path in the free
space diagram between (0, 0) and (1, 1) that is fully
contained in D≤δ(π, σ).

3 On c-packed Curves and their Free Space

Let π′ = simpl(π, µ) denote a µ-simplification of
π, such that V (π′) ⊆ V (π), and all edges of π′ have
length at least µ; and let the simplification algorithm
preserve a Fréchet distance of at most µ between any
edge u of π′ and the part that got simplified into
u. One can compute such a simplification in time
O(|V (π)|) using a straight forward greedy algorithm.

Lemma 1 Let π be a curve in IRd, and let π′ =
simpl(π, µ) be the simplified curve for a µ > 0. Then
‖π ∩ b(p, r + µ)‖ ≥ ‖π′ ∩ b(p, r)‖ for any ball b(p, r).

Definition 2 A curve π in IRd is c-packed if for any
point p in IRd and any radius r > 0, we have that the
total length of π inside the ball b(p, r) is at most cr.

Lemma 3 Let π be a c-packed curve in IRd, µ > 0 be
a parameter, and let π′ = simpl(π, µ) be the simplified
curve. Then, π′ is a 6c-packed curve.

Proof. Assume, for the sake of contradiction, that
‖π′ ∩ b(p, r)‖ > 6cr for some b(p, r) in IRd.

If r ≥ µ, then set r′ = 2r and Lemma 1 implies that
‖π ∩ b(p, r′)‖ ≥ ‖π ∩ b(p, r + µ)‖ ≥ ‖π′ ∩ b(p, r)‖ >
6cr = 3cr′, which contradicts the fact that π is c-
packed.

If r < µ, however, then let U denote the seg-
ments of π′ intersecting b(p, r) and let k = |U |.
Observe that k > 6cr/2r = 3c, as any segment
can contribute at most 2r to the length of π′ in-
side b(p, r). As such, we have that ‖π′ ∩ b(p, 2µ)‖ ≥
‖π′ ∩ b(p, r + µ)‖ ≥ ‖U ∩ b(p, r + µ)‖ ≥ kµ, since ev-
ery segment of the simplified curve π′ has a mini-
mal length of µ. By Lemma 1, this implies that
‖π ∩ b(p, 3µ)‖ ≥ ‖π′ ∩ b(p, 2µ)‖ ≥ kµ > 3cµ, which
is a contradiction. �

Free Space Computation. For two curves π and
σ, their relevant free space , denoted by R =
R≤δ(π, σ), is the set of all the points of D≤δ(π, σ)
that are reachable from (0, 0) by an (x, y)-monotone
path. The complexity of the relevant free space, for
distance δ, denoted by N≤δ(π, σ), is the total number
of grid cells with non-empty intersection with R. One
can compute this set of cells and extract an existing
monotone path in O(N≤δ(π, σ)) time, by performing
a BFS of the grid cells that visits only the relevant
cells. Note that, to fully describe R, it is sufficient to
specify reachability intervals for each relevant cell C,
which describe R∩ ∂C, since R∩C is the clipping of
an affine transformation of a disk to C, see Figure 1a.

Lemma 4 Let π and σ be two c-packed polygo-
nal curves in IRd of total complexity n, and let
µ ≤ δ be parameters. Let π′ = simpl(π, µ) and
σ′ = simpl(σ, µ). The complexity of D≤δ(π′, σ′) is
O((c+ δ/µ)n).

Proof. A free space cell of D≤δ(π′, σ′) corresponds to
two segments u ∈ π′ and v ∈ σ′. The free space in this
cell is non-empty if and only if there are two points
p ∈ u and q ∈ v such that ‖p− q‖ ≤ δ. We charge
this pair of points to the shorter of the two segments.
Consider a segment u ∈ π′, and consider the ball b of
radius r = (3/2) ‖u‖+δ centered at the midpoint of u,
see Figure 1b. Every segment v ∈ σ′ that gets charged
to u, is of length at least ‖u‖, and the length of v ∩ b
is at least ‖u‖. Since σ′ is 6c-packed, by Lemma 3, we
have that the number of such charges is at most

c′ =
‖σ′ ∩ b‖
‖u‖ ≤ 6cr

‖u‖ ≤
6c((3/2)‖u‖+ δ)

‖u‖ = 9c+
6δ
µ
,

since ‖u‖ ≥ µ. There are at most c′n free space cells
that contain a point of D≤δ, implying the claim. �
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Figure 1: (a) Example free space cell with example reachability intervals. (b) Illustration of the packing argument
for Lemma 4. (c) Vertex-edge event. (d) Monotonicity event and illustration to Lemma 5.

Free Space Events. Consider the structural changes
that happen to the free space as one changes δ. We
are interested in the radii (i.e., the value of δ) of
these events, since they are candidate values for the
Fréchet distance. One can identify three types of
events [2]: vertex-edge events, monotonicity events,
and the events that two vertices are in distance δ. A
vertex-edge event happens when a vertex is in dis-
tance δ of an edge (Figure 1c). The value of a mono-
tonicity event is the radius δ of the spheres around
two vertices, such that an edge passes through the
intersection of those spheres, as shown in Figure 1d.

Lemma 5 Let x be the radius of a monotonicity
event involving vertices p, q and a segment u. Then
there exists a number y such that y/2 ≤ x ≤ 3y, and

y is either in W =
(
V(π)∪V(σ)

2

)
or y is the radius of a

vertex-edge event.

Proof. Let s be the point of intersection of the two
spheres of radius x around p and q, which lies on u,
see Figure 1d. Let p′ (resp. q′) be the closest point on
u to p (resp. q). Clearly ‖p′ − q′‖ ≤ ‖p− q‖, and the
point s lies on the segment p′q′. This implies that x =
‖p− s‖ ≤ ‖p− p′‖+‖p′ − s‖ ≤ ‖p− p′‖+‖p′ − q′‖ ≤
‖p− p′‖+ ‖p− q‖, by the triangle inequality. A sim-
ilar argument implies that x ≥ ‖p− p′‖ − ‖p− q‖ .

If ‖p− p′‖ ≥ 2 ‖p− q‖ then the above implies
that x ∈ [1/2, 3/2] ‖p− p′‖, which is the radius of
a vertex-edge event. If ‖p− p′‖ ≤ 2 ‖p− q‖ then
x ≤ 3 ‖p− q‖, and of course ‖p− q‖ ∈ W. And
since the two balls of radius x centered at p and
q, respectively, cover the segment pq, we have that
‖p− q‖ /2 ≤ x, which implies the claim. �

4 The Approximation Algorithm

The Fréchet distance should be sufficiently close to
a free space event in one of the “approximate” dia-
grams, i.e., the free space diagram of the curves sim-
plified with a parameter µ. Thus, we can identify two
kinds of events to search over: (i) the event that the
simplification of an input curve changes, and (ii) a
free space event in the appropriate diagram.

Let W denote the set of all pairwise distances of
V (π) ∪ V (σ). Observe that the simplifications of π

(resp. σ) are the same for any two simplification pa-
rameters contained in the same atomic interval of W.
Thus, we can approximate the simplification events
using approximate distance selection, as suggested by
Aronov et al. [4]. Let aprxDistances(P) denote the
algorithm that computes a set Z of O(n) numbers,
such that for any y ∈ (P2), there exists an x ∈ Z
that 2-approximates y. Let searchEvents(π, σ, Z, ε)
denote the algorithm that performs a binary search
over the values of Z, to compute the atomic interval
of Z that contains the Fréchet distance between π and
σ. Let searchInterval(π, σ, [α, β], ε) denote the algo-
rithm that does the same on the set Z ′ that partitions
[α, β] into O(β/(εα)) subintervals of length εα. Note
that searchInterval finds a (1 + ε)-approximation of
dF (π, σ) if it lies inside [α, β].

These two algorithms will need a procedure
decider(δ, ε) to perform the decisions during the
search. Lemma 6 provides a ”fuzzy“ decider that can
be called multiple times with parameter ε′ < ε to im-
plement the exact decider. To prove the lemma one
can choose µ = εδ/4 as the simplification parameter
and decide whether the Fréchet distance of the sim-
plified curves is at most δ′ = δ + 2µ, see [6].

Lemma 6 Let π and σ be c-packed polygonal curves
in IRd with total complexity n, and let ε > 0 and δ > 0
be parameters. Then, there is an algorithm that, in
O((c+ 1/ε)n) time, outputs either of the following:

(i) If dF (π, σ) ≤ δ, then it outputs reparameteriza-
tions of width ≤ (1 + ε)δ.

(ii) If dF (π, σ) > (1 + ε)δ, then “dF (π, σ) > δ”.

(iii) If dF (π, σ) ∈ (δ, (1 + ε)δ], either of the above.

Now, assume we know simplifications τ and η,
such that their Fréchet distance represents the de-
sired approximation of dF (π, σ), and that we have
narrowed the search range to an interval [h−, h+]
that does not contain any distance between points in
V (τ)∪V (η). Then, let aprxFréchetNoSimp denote
the algorithm that computes a (1 + ε)-approximation
of dF (τ, η) in the following fashion. By Lemma 5,
any remaining relevant event is 3-approximated by
a vertex-edge event with radius ≤ h+. We can com-
pute R≤h+(τ, η) and extract these events from it, per-
form binary search on them, and search the margins
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of the acquired interval using a simpler version of de-
cider that does not perform simplification. This takes
O((n+N) log(N/ε)) time, for N = N≤h+(τ, η).

The resulting main algorithm is laid out below.

aprxFréchet(π, σ, ε )

(A) Z ← aprxDistances(V (π) ∪ V (σ))

(B) [α, β]← searchEvents(π, σ, Z, ε)

(C) searchInterval(π, σ, [α, 4α′], ε), for α′ = 30
ε α

(D) searchInterval(π, σ, [β′/4, β], ε), for β′ = β/3

(E) Let π′ = simpl(π, µ) σ′ = simpl(σ, µ), for µ = 3α

(F) δ ← aprxFréchetNoSimp(π′, σ′, [α′, β′], ε/4)

(G) Return the reparameterizations and the result-
ing width as the approximation.

Lemma 7 The algorithm aprxFréchet computes a
(1 + ε)-approximation to dF (π, σ).

Proof. If dF (π, σ) ∈ [0, 4α′]∪ [β′/4,∞) then, by step
(B), we find the solution either in step (C) or (D). In
particular, this must be the case if 4α′ > β′/4.

Otherwise, since µ = 3α ≤ β′/4, it follows by
the triangle inequality that dF (π′, σ′) ≤ dF (π′, π) +
dF (π, σ) + dF (σ, σ′) ≤ 2µ + β′/4 < β′. A similar
argument shows dF (π′, σ′) > α′. And since no dis-
tance between two vertices is contained in [α′, β′], we
can apply aprxFréchetNoSimp and retrieve a value
δ ∈ [dF (π′, σ′) , (1 + ε/4)dF (π′, σ′)]. By the triangle
inequality the returned Fréchet distance is

∆ ≤ dF (π, π′) + δ + dF (σ, σ′)
≤ dF (π, π′) + (1 + ε/4)dF (π′, σ′) + dF (σ′, σ)
≤ 5µ+ (1 + ε/4)dF (π, σ) ≤ (1 + ε)dF (π, σ) ,

since 5µ = 15α = (ε/2)α′ ≤ (ε/2)dF (π, σ). Note
that ∆ ≥ dF (π, σ) since it is the width of a specific
reparameterization between the two curves. �

Theorem 8 Given two polygonal c-packed curves π
and σ with a total of n vertices in IRd, and a parameter
1 > ε > 0, one can (1 + ε)-approximate the Fréchet
distance between π and σ in O((cn/ε) log n) time.

Proof. We only prove the running time, as correct-
ness is provided above. Computing and sorting Z
takes O(n log n) time. Steps (B) and (C) and (D) per-
form O(log n+log(1/ε2)) = O(log n) calls to decider,
since the two respective intervals have O(1/ε2) (resp.
O(1/ε)) subintervals. Each call to decider takes
O((c+ 1/ε)n) time by Lemma 4, so overall this takes
O((c/ε)n log n) time. (We assume that ε = Ω(1/n),
otherwise we can use the standard approach [2]).

Step (F) takes time O((n + N) log(N/ε)), with
N = N≤β′(π′, σ′). Now, consider µ′ = β′ and observe
that simpl(π, µ′) = π′ and simpl(σ, µ′) = σ′, since µ

and µ′ are in the same atomic interval of the set of
simplification events. By Lemma 4, we have that

N = N≤β′(π′, σ′) = O((c+ β′/µ′)n) = O(cn).

Thus, step (F) takes O(cn log(cn/ε)) = O(cn log n)
time, since c ≤ n and ε = Ω(1/n). And, clearly, step
(E) and (G) also take time in O(n). �

Remark 9 The running time can be slightly im-
proved to O

(
n
ε + cn log n

)
, see [6].

Remark 10 The algorithm also works in near linear
time for low-density curves in the plane; and in higher
dimensions in subquadratic time, see [6].
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Guarding 1.5D Terrains with Demands

Khaled Elbassioni∗ Domagoj Matijević† Domagoj Ševerdija‡

Abstract

We consider the 1.5D terrain guarding problem in
which every point on the terrain that is to be covered
has an integer demand associated with it. The goal is
to find a minimum cardinality set of guards such that
each point is guarded by a number of guards satisfy-
ing its demand. We present an algorithm that yields
a 6.7-approximation in the case where the minimum
demand dmin < 5, and a 3-approximation otherwise.
To the best of our knowledge, this is the first constant
factor approximation algorithm for this problem.

As in our previous result [6] we use a fractional
solution to the linear programming relaxation of the
corresponding covering problem to decide, for each
point, the amount of demand that has to be satisfied
from the left and right sides of the point.

1 Introduction

In the 1.5D terrain guarding problem we are given a
polygonal region in the plane determined by an x-
monotone polygonal chain, and the objective is to
find the minimum number of guards to place on the
chain such that every point in the polygonal region
is guarded. This kind of guarding problems and its
generalizations to 3-dimensions are motivated by op-
timal placement of antennas for communication net-
works (see [3, 1] and the references therein for more
details).

The problem considered in this paper is general-
ization of the 1.5D terrain guarding problem. In the
1.5D terrain guarding problem with demands we are
given an x-monotone polygonal chain T in the plane,
a set G ⊂ T of guards and a set N ⊂ T of points with
the associated demand function dp : N → Z+. The
goal is to find a minimum cardinality set of guards
such that each point p ∈ N is guarded by at least dp
different guards form this set.

One motivation for studying this version of the
problem is that it allows for more robust guarding.
Namely, none of the points should stay unguarded
even if some of the guards collapse.

∗Max-Planck Institute für Informatics, Saarbrücken, Ger-
many, elbassio AT mpi-inf.mpg.de
†Department of Mathematics, J.J. Strossmayer University,

Osijek, Croatia, domagoj AT mathos.hr
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Previous Work Chen et al. [3] claimed that the
1.5D-terrain guarding problem is NP-hard but they
did not give a complete proof of the claim (see [5]).
They also gave a linear time algorithm for the left-
guarding problem, that is, the problem of placing
the minimum number of guards on the chain such
that each point of the chain is guarded from its left.
Based on purely geometric arguments, Ben-Moshe
et al. [1] gave the first constant-factor approxima-
tion algorithm for the 1.5D-terrain guarding problem,
though they did not state the value of the approxima-
tion factor explicitly (it was claimed to be at least 6
in [8]). Clarkson and Varadarajan [4] gave constant
factor approximation algorithms for a more general
class of problems using ε-nets and showed that their
technique can be used to get a constant approximation
for the 1.5D-terrain guarding problem. King gave an-
other geometric algorithm1 with approximation factor
5.

Elbassioni et al. [6] presented a 4-approximation al-
gorithm for the problem. Unlike most of the previous
techniques, their method was based on rounding the
linear programming relaxation of the corresponding
covering problem. Besides the simplicity of the analy-
sis, which mainly relies on decomposing the constraint
matrix of the LP into totally balanced matrices, their
algorithm generalizes to the weighted and partial ver-
sions of the problem.

Most recently, King and Krohn [11] resolved the
question about the hardness of the problem and
showed that problem is indeed NP-hard. Gibson
et al. [7] obtained a PTAS for the standard 1.5D
terrain guarding problem using a local search tech-
nique. Their analysis relied on a result by Mustafa
and Ray [13].

Clarkson et al. [2] considered a number of geometric
set covering problems with demands and gave, among
other results, an LP-based algorithm that yields an
approximation factor of O(log z∗) for set systems with
bounded VC-dimension, where z∗ is the value of the
optimal solution of the standard covering LP relax-
ation. By a recent result of King [10], the set system
arising in 1.5D-guarding has VC-dimension 4, imply-
ing an O(log z∗)-approximation for the 1.5D-guarding
problem with demands.

1King claimed that the the problem can be approximated
within a factor of 4 in [9]; however, his analysis turned out to
have an error that increases the approximation factor to 5.
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Our Contribution We present an algorithm that
yields a 6.7-approximation in the case where the min-
imum demand dmin < 5, and a 3-approximation oth-
erwise. The main idea of our approach is to compute
the fractional solution of the corresponding LP and,
based on this solution, to decide, for each point, the
portion of demands which has to be met from the left
side and that which has to be met from the right side.
As a result, we end up with left and right guarding
problems with demands, such that satisfying the por-
tions of demands on the left and the right, we meet
the original demand for each point.

The system matrix for the left and the right prob-
lems was shown in [6] to have a special structure;
namely, the matrix is totally balanced. For that rea-
son, it can be shown that the corresponding left and
right guarding problems have integral optimal solu-
tions as described in the book chapter by Kolen and
Tamir [12], even in the case with demands. How-
ever, in order to get more insight into the problem we
provide an alternative proof by constructing a very
simple and easy to understand procedure that finds
the optimal solution for the left and the right guard-
ing problem. We show how to combine the left and
right solutions to arrive at the claimed approximation
guarantee.

2 Preliminaries

A terrain T is an x-monotone polygonal chain. Let V
denote set of vertices of T , and |V | is complexity of
the terrain T . For two points p, q ∈ T we say that p
sees q and denote p ∼ q if the line segment connecting
p and q does not go strictly below T . We say that p is
seen from S ⊂ T if there exists some g ∈ S such that
p ∼ g. Let N ⊂ T , |N | = n, be some set of points
with the demand function dp : N → Z+ defined. Let
G ⊂ T , |G| = m, be some set of guards.

In the 1.5D terrain guarding problem with demands
the task is to find minimum set of guards A ⊆ G
such that every point p in N is guarded by at least dp
guards from A.

We write p < q if point p is on the strict left of q. All
approximation algorithms mentioned in the Previous
Work part are based on the following order claim:

Lemma 1 Let a < b < c < d be four points on T . If
a ∼ c and b ∼ d, then a ∼ d.

For any point p ∈ N we define S(p) to be the set
of guards from G that see p, SL(p) to be the set of
guards from G that see point p strictly from the left
and SR(p) the set of guards from G that see p strictly
from the right.

3 Terrain guarding with demands

Consider the following integer LP formulation for the
problem:

minimize
∑
g∈G

xg (LP1)

subject to∑
g∈S(p)

xg ≥ dp ∀p ∈ N (1)

xg ∈ {0, 1} ∀g ∈ G
Variable xg indicates whether g ∈ G is chosen as

a guard and constraint (1) demands that every point
p ∈ N is guarded with at least dp guards from G.

Let x∗ denote the optimal solution to the LP relax-
ation.

Rounding large values. We fix some parame-
ter α ∈ (0, 1/2) that will be defined later. We let
G0 = {g ∈ G : x∗g ≥ α}, which we take into our
final solution. Then we get a reduced problem by
redefining d′p = dp − |S(p) ∩ G0| for all p ∈ N ,
N ′ = {p ∈ N : d′p ≥ 1}, and dmin = min{d′p : p ∈ N ′}.
Define further G′ = G \ G0, S′(p) = S(p) ∩ G′ and
similarly S′L(p) and S′R(p). Let

NL =
{
p ∈ N ′ |

∑
g∈S′

L(p)

x∗g ≥
1

2
(
∑

g∈S′(p)

x∗g − x∗p)
}

NR =
{
p ∈ N ′ |

∑
g∈S′

R(p)

x∗g ≥
1

2
(
∑

g∈S′(p)

x∗g − x∗p)
}
,

where we assume that x∗p = 0 if p 6∈ G′.
For each p ∈ N ′, we define

dp,L = d
∑
g∈S′

L(p) x
∗
ge,∀p ∈ NL

dp,L = b
∑
g∈S′

L(p) x
∗
g + x∗pc,∀p ∈ NR

dp,R = d
∑
g∈S′

R(p) x
∗
ge,∀p ∈ NR

dp,R = b
∑
g∈S′

R(p) x
∗
g + x∗pc,∀p ∈ NL

as the demand of point p that has to be satisfied from
the guards that are to the left and right of p, respec-
tively. Note that every point p ∈ N ′ must be either
in NL or NR.

Consider the LP formulation for the left-guarding
problem:

minimize
∑
g∈G′

xg (LP2)

subject to∑
g∈S′

L(p)

xg ≥ dp,L ∀p ∈ N ′

0 ≤ xg ≤ 1 ∀g ∈ G′
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and the corresponding dual:

minimize
∑
p∈N ′

dp,Lyp −
∑
g∈G′

zg (LP3)

subject to∑
p : g∈S′

L(p)

yp − zg ≤ 1 ∀g ∈ G′

yp ≥ 0 ∀p ∈ N ′

zg ≥ 0 ∀g ∈ G′

The right-guarding LP can be formulated symmet-
rically. Let z∗, z∗L, z

∗
R be the optima for the original,

left and the right guarding problem, respectively.
The following important claim was shown by Kolen

and Tamir [12] from the property that constraint ma-
trix for the left-guarding problem is totally balanced
(see Elbassioni et al. [6]). In contrast to their ap-
proach, we give a simple procedure that, in O(nm)
time, returns an optimal set of guards for the left-
guarding problem.

Lemma 2 Let GL and GR be the optimum sets of
guards for the left and right guarding problem, re-
spectively. Then |GL| = z∗L and |GR| = z∗R.

Our combinatorial proof of Lemma 2. For simplic-
ity of notation, we will just assume for this subsection
that G0 = ∅, and hence G′ = G. We first give a com-
binatorial algorithm for the problem of guarding a set
of points N from the left.

Algorithm 1 left-guarding(T,N,G)

1. A(p)← ∅, ∀p ∈ N
2. for p ∈ N processed from left to right do
3. while the number of guards in A = ∪p∈NA(p)

that see p is less than dp,L do
4. A(p) = A(p) ∪ {L(p)}
5. return A

In the algorithm, with A(p) we denote the set of
guards activated to satisfy the demand of the point
p, and with L(p) we denote the leftmost guard in the
set SL(p)\A.

For the purpose of the analysis, we distribute the
dual updates as follows:

Algorithm 2 Dual-updates({A(p)}, T )

1. yp = 0, ∀p ∈ N , zg = 0, ∀g ∈ G

2. xg =

{
1, g ∈ A = ∪p∈NA(p)
0, otherwise

3. for p ∈ N processed from right to left do
4. if A(p) has a non-marked guard then
5. mark all guards in SL(p)
6. yp = 1
7. zg =

∑
p|g∈SL(p) yp − 1, ∀g ∈ A

We assume that all the guards are initially un-
marked. We will first argue that the primal and the
dual solutions constructed above are both feasible.
Primal feasibility. Follows from line (3) of the
Algorithm 1.
Dual feasibility. It is enough to show that∑
p|g∈SL(p) yp ≥ 1, ∀g ∈ A, and

∑
p|g∈SL(p) yp ≤ 1,

∀g ∈ G\A. For the first claim, suppose that g ∈ A(p)
and yp = 0. Then there should exist some p′ > p such
that p′ marked g and hence yp′ = 1 and g ∈ SL(p′).
For the second claim, consider some guard ḡ 6∈ A and
suppose that there are two points p < p′ such that
ḡ ∈ SL(p) ∩ SL(p′) and yp = yp′ = 1. Since yp = 1
there exists a guard g < ḡ such that g ∈ A(p) and
g was unmarked when Algorithm 2 was processing p.
By the order claim it follows that g must also see p′

and, therefore, cannot be unmarked.
We have found an integer feasible solution of the

primal and an integer feasible solution of the dual
problem. All that is left to prove that these solu-
tions are optimal is to show that the complementary-
slackness conditions hold.
Primal complementary-slackness. We need to
show that

yp = 1 ⇒
∑

g∈SL(p)

xg = dp,L

zg > 0 ⇒ xg = 1.

If zg > 0 then g is in A and hence xg = 1. Sup-
pose that yp = 1. Then we want to claim that∑
g∈SL(p) xg = dp. Since yp = 1, there exists a

guard g ∈ A(p) that was unmarked when p was
being processed in the Algorithm 2. Suppose that∑
g∈SL(p) xg > dp. Then there is a g′ > g such that

g′ ∼ p and g′ ∈ A(p′) for some p′ > p. Suppose that
guard g′ is marked. But then the point that marked
g′ must also mark g by the order claim. On the other
hand, if g′ is not marked, then the point p′ that is to
the right of p (and, therefore, processed before point
p), would have marked it since g′ ∈ A(p′) and is not
marked, together with g.
Dual complementary-slackness We need to show
that xg = 1 ⇒

∑
p|g∈SL(p) yp − zg = 1. This follows

from step 7 of Algorithm 2. �

We conclude with the final theorem.

Theorem 3 There is a 6.7-approximation for the
1.5D guarding problem with demands.

Proof. Note first that G0 ∪ GL ∪ GR is a feasible
solution, since each point p is seen by at least dp
guards from this set. Indeed, if p 6∈ N ′ then p is
already covered by G0. If p ∈ N ′, then

∑
g∈S′

L(p) x
∗
g+∑

g∈S′
R(p) x

∗
g+x∗p ≥ dp−

∑
g∈S(p)∩G0

x∗g ≥ dp−|S(p)∩
G0| = d′p, from which follows dp,L+dp,R+|S(p)∩G0| ≥
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dp, implying feasibility for point p, by the feasibility
of GL and GR for the left and right subproblems, re-
spectively.

Now we bound the approximation ratio. Note first
by the definition of G0 that |G0| ≤ 1

α

∑
g∈G0

x∗g. We
will show next that the restriction of (1 + β)x∗ on
G′ is feasible for LP2, for some positive constant β.
This will imply that z∗L ≤ (1 + β)

∑
g∈G′ x∗g. By a

similar argument, we can also show that z∗R ≤ (1 +
β)
∑
g∈G′ x∗g.

Namely, note that ∀p ∈ NL it holds that∑
g∈S′

L(p) x
∗
g ≥ 1

2 (dmin − α), and thus∑
g∈S′

L(p)

(1 + β)x∗g =
∑

g∈S′
L(p)

x∗g + β ·
∑

g∈S′
L(p)

x∗g

≥
∑

g∈S′
L(p)

x∗g + β · 1

2
(dmin − α)

≥
∑

g∈S′
L(p)

x∗g + 1,

where the last inequality follows for β ≥ 2/(dmin−α).
Moreover, ∀p ∈ NR by the fact that

dp,L = b
∑

g∈S′
L(p)

x∗g + x∗pc ≤
∑

g∈S′
L(p)

x∗g + α,

it is enough to show the following∑
g∈S′

L(p)

(1 + β)x∗g ≥
∑

g∈S′
L(p)

x∗g + α (2)

Using
∑
g∈S′

L(p) x
∗
g ≥ 1−α (since otherwise, dp,L = 0),

inequality (2) is satisfied if β · (1− α) ≥ α.
Finally note that for all g ∈ G′ the inequality (1 +

β)x∗g ≤ 1 will be satisfied if β ≤ 1
α − 1.

Hence, the cost of the returned solution is

|G0|+ |GL|+ |GR| = |G0|+ z∗L + z∗R

≤ 1

α

∑
g∈G0

x∗g + 2 · (1 + β)
∑
g∈G′

x∗g

≤ max{ 1

α
, 2 · (1 + β)}z∗

≤ max{ 1

α
, 2 · (1 + β)}OPT

where OPT denotes the optimal integer solution to
the original problem.

The above constraints on β imply that the approx-
imation factor is bounded by

γ = min
α∈(0,α′)

max{ 1

α
,

4

dmin − α
+ 2,

2α

1− α
+ 2} (3)

where α′ = min{ 12 ,
3+dmin−

√
(3+dmin)2−4dmin

2 }. Note
that for dmin ≥ 3, α′ = 1

2 .
One can easily verify that for dmin = 1, the maxi-

mum value in (3) will be for α = 0.149 that balances
the terms 1

α and 4
1−α+2. This leads to γ = 6.7, which

concludes the proof of the theorem. �

Remark. With a more careful analysis of (3), one
can express the approximation factor in terms of dmin,
for dmin < 5. Moreover, for dmin ≥ 5 and α = 1/3,
the approximation factor will reduce to γ = 3.
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Regular triangulations and resultant polytopes

Ioannis Z. Emiris∗ Vissarion Fisikopoulos∗† Christos Konaxis∗

Abstract

We describe properties of the Resultant polytope of a
given set of polynomial equations towards an output-
sensitive algorithm for enumerating its vertices. In
principle, one has to consider all regular fine mixed
subdivisions of the Minkowski sum of the Newton
polytopes of the given equations. By the Cayley trick,
this is equivalent to computing all regular triangula-
tions of another point set in higher dimension. How-
ever, the number of all regular triangulations is gener-
ally much larger than that of the vertices of the Resul-
tant polytope, as illustrated by our experiments [3].
Thus, we study output-sensitive methods by defining
classes of subdivisions, called configurations, which
yield the same resultant vertex. Moreover, we offer
algorithmic versions of certain results by Sturmfels
[11], regarding the edges of the Resultant polytope.
Lastly, we settle some easy cases, and discuss harder
examples.

1 Introduction

We are interested in algorithms that compute the
Newton polytope of the Resultant, called Resultant
polytope, of a given set of polynomial equations. Re-
sultants are fundamental objects in polynomial equa-
tion solving [12], and in implicitizing parametric (hy-
per)surfaces [2]. In fact, a projection of the resul-
tant polytope yields the Newton polytope of the (un-
known) implicit equation, thus reducing implicitiza-
tion to a problem in linear algebra. One approach is
to compute the regular fine mixed subdivisions of the
Minkowski sum of the Newton polytopes of the given
equations. Another is based on tropical geometry, e.g.
[12, ch.9].

These regular fine mixed subdivisions correspond
by Cayley trick to the regular triangulations of a point
set A. For each point set A, its Secondary polytope’s
vertices correspond to the regular triangulations of A
and there are output-sensitive that enumerate them
[6, 10]. However, the number of vertices of a Sec-
ondary polytope can be exponential in |A| and there
is a many to one correspondence of Secondary ver-
tices to the vertices of the Resultant polytope, illus-
trated by our experiments [3]. On the other hand,

∗Department of Informatics & Telecommunications, Na-
tional and Kapodistrian University of Athens, Greece.
†Contact author (vfisikop@di.uoa.gr)

for the Resultant polytope, we only know a weak
exponential upper bound on the number of vertices
[11, prop.6.1]. The above results force us to focus on
output-sensitive algorithms that enumerate classes of
subdivisions which yield the same resultant vertex,
without enumerating the entire Secondary polytope.
We present our work in progress to this end. We offer
algorithmic versions of certain results in [11] regard-
ing the edges of the Resultant polytope. Lastly, we
settle some easy cases, and discuss harder examples.

2 Triangulations, Mixed Subdivisions, and Poly-
nomial Systems

Let A be a point set in Rd. A polyhedral subdivision
of A is a collection of subsets of A, the cells of the
subdivision, such that the union of the cells’ convex
hulls equals the convex hull of A and every pair of
convex hulls of cells intersect at a common face. A
polyhedral subdivision is regular if it can be obtained
as the projection of the lower hull of the lifted point
set A, for some lifting to Rd+1. A triangulation T is
a polyhedral subdivision of A, whose cells are all sim-
plices. Circuits are the minimum affinely dependent
subsets of a point set that have exactly two triangula-
tions. A bistellar flip transforms one triangulation to
another. Let T be a triangulation of A and Z+ ⊆ T
the triangulation of a circuit Z ⊆ A. We say T is
supported on Z if, by changing the current triangu-
lation Z+ of Z to the other, denoted Z−, we obtain
another triangulation T ′. This is a bistellar flip of T
supported on Z. If |A| = n, its Secondary polytope
Σ(A) has dimension n− d− 1, its vertices correspond
to the regular triangulations of A, and its edges to
bistellar flips [5, 8].

Let A0, . . . , Ak be point sets in Rd and A = A0 +
· · ·+Ak their Minkowski sum. A subset of A is called
Minkowski cell if it can be written as F0 + · · ·+Fk for
Fi ⊆ Ai. A Minkowski cell is fine if all Fi are affinely
independent and

∑k
i=1 dim(CH(Fi)) = d. When k =

d, a Minkowski cell is i-mixed if it is a Minkowski
sum of k edges and a vertex, i.e., |Fj | = 2 for j 6= i,
|Fi| = 1. When k = d−1, a Minkowski cell is mixed if
it is a Minkowski sum of edges. A regular polyhedral
subdivision of A is a regular fine mixed subdivision
if all its cells are Minkowski and fine. From now on
we consider all mixed subdivisions to be regular and
fine, and focus on k = d, unless otherwise noted. This
is the most important case because it covers system
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solving and implicitization; implicitization of surfaces
in R3 corresponds to k = d = 2.

Let f = f0, . . . , fk be a polynomial system on k
variables. The support Ai ∈ Nk of fi is the set of
its exponent vectors corresponding to nonzero coeffi-
cients. For any subset J ⊂ {0, . . . , k}, let r(J) denote
the rank of the affine lattice generated by

∑
j∈J Aj .

We assume that, for I = {0, . . . , k}, r(I) = |I| − 1,
and r(J) ≥ |J | for any proper subset J ⊂ I. The
Newton polytope N(fi) of a polynomial fi is the con-
vex hull of its support. The (sparse) Resultant R of
f is a polynomial on the coefficients of f such that
R = 0 iff f has a solution in (C∗)k. It generalizes the
determinant of an overconstrained linear system and
the Sylvester resultant of two univariate polynomi-
als. We call N(R) the Resultant polytope and extreme
term of R a monomial which corresponds to a vertex
of N(R).

Proposition 1 [11, thm.2.1] Following the above no-
tation and assumptions, given a system f and a mixed
subdivision of the Minkowski sum of its supports, we
get an extreme term of the resultant R equal to

±
k∏
i=0

∏
σ

c
vol(σ)
iFi

,

where σ = F0 + · · ·+ Fk is an i-mixed cell and vol(·)
denotes Euclidean volume.

By the Cayley trick [5], there is a point set
C(A0, . . . , Ak) ⊂ Rd+k s.t. all mixed subdivisions of
A = A0 + A1 + · · · + Ak are in 1-1 correspondence
with the regular triangulations of C(A0, A1 . . . , Ak).
Hence, one can obtain the N(R) vertices by enumerat-
ing all vertices of the corresponding Secondary poly-
tope Σ(A0, A1 . . . , Ak). Moreover, N(R) is a Mink-
owski summand of Σ(A0, A1 . . . , Ak) [11]. Methods to
enumerate regular triangulations have been proposed
in [6, 10], and are experimented with in [3]. But we
can do better.

When k = d − 1, mixed cell configurations are
the equivalence classes of mixed subdivisions with the
same mixed cells. These are defined, along with a def-
inition of flips between these classes, in [9].

When k = d, we focus on the i-mixed cells in order
to compute the vertices of N(R). In [7], there is an
extension of mixed cells configurations to classes con-
taining the same i-mixed cells for all i ∈ {0, . . . , k},
called i-mixed cell configurations. It turns out that
this notion is similar to the I-mixed cell configura-
tions of [1]. We now characterize the flips between
i-mixed cell configurations, and generalize the flip de-
fined in [9] between mixed cell configurations.

We shall say that a circuit Z of a triangulation T
supported on Z, involves an i-mixed cell F0 + · · ·+Fk,
if the cell C(F0, . . . , Fk) of T does not belong to the
triangulation obtained by flipping on Z.

cub non-cub non-cub

Fig. 1: An example of a cubical and two non cubical flips.

Theorem 2 ([7]) Let Z = (Z0, . . . , Zk) be a circuit
and T a triangulation supported on Z. Suppose that
Z involves an i-mixed cell F0 + · · ·+ Fk. Then, there
exists r ∈ {0, . . . , k}, and c ∈ Ar s.t. for all i 6= r,
Zi = Fi or Zi = ∅, and Zr = Fr ∪{c} or Zr = {vr, c},
where vr is a vertex of edge Fr.

A flip on a circuit as described in this theorem de-
stroys at least one i-mixed cell leading to a new i-
mixed cell configuration. Moreover, we can check ef-
ficiently if a circuit satisfies the conditions of th. 2
by examining only the cardinalities of the sets Zi.
An algorithm using these flips enumerates only the
i-mixed cell configurations, without enumerating all
mixed subdivisions, which are more numerous.

The Ξ polytope is defined in [1] for k ≤ d−1. In par-
ticular, when k = d− 1, Ξ has vertices corresponding
to mixed cell configurations, and edges corresponding
to flips between them. Based on this, we define Ξ
in the case k = d to have vertices corresponding to
i-mixed cell configurations. Clearly, Ξ lies, in terms
of number of vertices, between the Secondary poly-
tope and N(R). In the sequel, Ξ or Ξ(A0, A1, . . . , Ak)
refers to this polytope.

3 R-equivalent Classes

By prop. 1, several mixed subdivisions may produce
the same extreme term of the Resultant. We call these
subdivisions R-equivalent. Similarly, two subdivisions
may lead to the same extreme term, even if they be-
long to the same i-mixed cell configuration. These R-
equivalent classes correspond to the vertices of N(R).
There are some flips that connect two subdivisions in
different R-equivalent classes, hence they correspond
to the edges of N(R).

Sturmfels [11, thm.5.2] calls these flips cubical.
Consider the union of cells affected by one such flip.
If the union, lifted generically to Rd+1, forms an affine
cube, i.e. equals the Minkowski sum of k + 1 edges,
then the flip is cubical and consists in replacing the
“bottom” subdivision by the “top” subdivision, or
vice versa (fig. 1, fig. 2). However, this definition of
cubical flips is not algorithmically efficient, so we pro-
vide a more algorithmic characterization.

Let us start with the generic case, where every two
faces of the same dimension in two different CH(Ai)
are not parallel.

Lemma 3 Let S be a mixed subdivision of A0+ · · ·+
Ak. Then S has a cubical flip iff there exists a set
{C0, . . . , Ck} of i-mixed cells Ci = F0+. . . +ai+· · ·+
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Fig. 2: A degenerate cubical flip; two (horizontal bold)
edges from different Ai’s are parallel.

Fk, for i = {0, 1, . . . , k}, where ai ∈ Fi ⊆ Ai, |Fi| = 2,

such that, if C =
⋃k
i=0 Ci, then C = F0 + · · · + Fk.

We say S is supported on C. The cubical flip on S
consists of substituting, in every Ci, point ai with
Fi − {ai}.

If the generic position assumption does not hold,
lem. 3 does not hold, so we generalize this character-
ization using triangulations. Recall that the set C of
i-mixed cells corresponds by Cayley trick to a set Z of
simplices and a flip between two mixed subdivisions is
a flip between the two corresponding triangulations.
Genericallly, C has k + 1 cells and Z has k + 1 sim-
plices. The union of these simplices contains 2k + 2
points in a space of dimension k + d. If d = k, this
union of simplices is a circuit. In degenerate cases,
there may exist lower dimensional circuits and C may
have < k + 1 cells. As an illustration compare the
generic example (fig. 1), where C has 3 cells, with the
degenerate example (fig. 2), where C has only 2 cells.

Theorem 4 Let S be a mixed subdivision of A0 +
· · ·+Ak, and T the corresponding triangulation w.r.t.
Cayley’s trick. Then S has a cubical flip if there exists
a set C =

⋃k
i=0 Ci ⊆ S of i-mixed cells, as in lem. 3

and, additionally, the corresponding set Z of simplices
in T supports a bistellar flip. The cubical flip on S is
the bistellar flip of T supported on Z.

The mapping of cubical flips edges of N(R) is many
to one. When a cubical flip is supported on set C, we
say that the edge is of type C. Many cubical flips
may be supported on the same set C. The types of
all Resultant edges can be easily enumerated: they
are all possible resultant polytopes of subsets of Ai’s
with cardinality two. This enumeration also yields the
corresponding edge direction, i.e. the difference vector
between the two endpoints of N(R). More generally,
all faces of N(R) are Minkowski sums of Resultant
polytopes corresponding to subsystems of A0, . . . , Ak.
Conversely, every resultant polytope defined on sub-
sets of the Ai’s appears as Minkowski summand on
some face of N(R) [11].

Example 5 Let A0= {(0, 0), (1, 2), (4, 1)}, A1=
{(0, 1), (1, 0)}, A2= {(0, 0), (0, 1), (2, 0)}, which sat-
isfy the general position assumption. The Secondary
polytope of C(A1, A2, A3) is depicted in fig. 3 (left).
One can see the R-equivalent classes (dotted) as well
as the cubical flips (bold) which connect these classes.
All the other flips (non bold) are non-cubical flips.

The Resultant polytope can be seen as the poly-
tope with R-equivalent classes as vertices and cubical
flips as edges. To each Resultant vertex corresponds
one or more mixed subdivisions, and to each edge
one or more cubical flips. Here, Σ(C(A0, A1, A2) =
Ξ(A0, A1, A2) with 36 vertices; N(R) has 6 vertices,
and 11 edges corresponding to 9 different cubical flips
(fig. 3 right) which are all generic.

4 Secondary, Ξ, and Resultant Polytopes

Let Σ be the Secondary polytope of C(A0, A1, . . . ,
Ak), Ξ the polytope Ξ(A0, A1, . . . , Ak), and N(R) the
Resultant polytope. We offer a case study on these
polytopes, and focus on d = k.

When d = k = 1, every Minkowski cell is an edge,
i.e., a sum of an edge and a vertex, thus an i-mixed
cell. Then Σ = Ξ, and they are generally larger than
N(R). The number of vertices of N(R) is

(
m0+m1−2
m0−1

)
[4].

For arbitrary d, k, if all |Ai| ≤ 3, then Σ = Ξ.
To see this, recall that for any fine Minkowski cell
F =

∑k
i=1 Fi, it holds that

∑k
i=1 dim(Fi) = d. So, F

is not i-mixed iff for some Fi, we have dim(Fi) > 1.
Since |Ai| ≤ 3, by the pigeonhole principle, every non
i-mixed cell is a sum of k − 2 edges, two vertices and
a triangle. So the union of every pair of non i-mixed
cells can be written uniquely.

The smallest case that this does not hold is when
there exists i s.t. |Ai| = 4, and |Aj | ≤ 3, ∀j 6= i.

Example 6 An instance of the smallest case, for
d = k = 2, is A0= {(0, 0), (0, 1), (2, 0), (2, 1)}, A1=
{(0, 0), (1, 1), (2, 0)}, A2= {(0, 0), (0, 1)}, where Σ,Ξ,
and N(R) have, resp., 122, 98, and 8 vertices.

For arbitrary d, k, if for all i, |Ai| = 2, then
Σ = Ξ = N(R). This is the case where all flips are
cubical, every Minkowski cell is a sum of edges, called
zonotope, and the mixed subdivisions are zonotopal
tilings. The above discussion proves the following.

Lemma 7 If d = k = 1, or for all i, |Ai| ≤ 3, then
Σ = Ξ and they are at least as large as N(R). If for
all i, |Ai| = 2, then Σ = Ξ = N(R).

In addition to the case analysis above, we offer rele-
vant experimental results in [3]. In particular, we con-
sider some (highly) nontrivial examples corresponding
to the implicitization of a parametric sphere [2].

Example 8 The Ai’s are {(0, 0), (0, 2), (2, 0), (2, 2)},
{(0, 0), (1, 0), (0, 2), (2, 0), (1, 2), (2, 2)}, {(0, 0),
(0, 1), (0, 2)}, and Σ,Ξ and N(R), resp. have 76280,
32076 and 95 vertices.

The Ai’s are {(0, 0), (1, 0), (0, 2), (2, 0), (1, 2),
(1, 2)}, {(0, 0), (0, 2), (1, 1), (2, 0), (2, 2)}, {(0, 0),
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Fig. 3: [left] The Secondary polytope of example 5 with the R-equivalent classes (dotted) and the cubical flips (bold).
[right-up] The Resultant polytope of example 5. Each edge is a cubical flip; note that the same cubical flip may appear
in two different edges (9 flips in 11 edges). [right-botom] The input point sets and the cubical flips.

(2, 0)} and Σ,Ξ and N(R) have resp. 104148, 43018
and 21 vertices.

Our ultimate goal is an algorithm to enumerate all
vertices of N(R) without enumerating the entire Σ or
Ξ. To this end we need a unique representation of the
resultant vertices and some kind of flip based on the
cubical flip. At present, cubical flips do not suffice
because there are cases where it is not clear how to
obtain one vertex from another just with cubical flips
(see fig.3).
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Approximate Nearest Neighbor Queries among Parallel Segments

Ioannis Z. Emiris∗ Theocharis Malamatos† Elias Tsigaridas‡

Abstract

We develop a data structure for answering efficiently
approximate nearest neighbor queries over a set of
parallel segments in three dimensions. We connect
this problem to approximate nearest neighbor search-
ing under weight constraints and approximate nearest
neighbor searching on historical data in any dimension
and we give efficient solutions for these as well.

1 Introduction

Nearest neighbor searching is a fundamental geomet-
ric problem with applications in many areas. For high
dimensions there are no known efficient exact solu-
tions and thus approximate solutions to the problem
have been studied. Let d(p, q) denote the euclidean
distance between points p, q. Given a set P of points
in Rd and a parameter ε > 0, we say that a point p of
P is an ε-approximate nearest neighbor (ε-NN) to a
point q if d(p, q) ≤ (1+ε)d(q′, q) where q′ is a nearest
point to q in P . Arya et al. [3] have shown how to
find efficiently an ε-NN to any given query point in
constant dimensions and Indyk and Motwani [6] pre-
sented efficient methods for high dimensions. See [5]
for more references.
An interesting generalization of the problem arises

if we replace the point set P with a set of objects O.
For this version there are only few results known.
When O is a set of disjoint polyhedra in three dimen-
sions Koltun and Sharir [7] presented a data struc-
ture of near quadratic size that can answer an ε-NN
query in O(log(n/ε)) time. In three dimensions again,
Wang [9] showed how to answer ε-NN queries when
O is a set of triangles, segments, and points in a con-
vex position in O(log2 n/ε2) query time and using
O(n/ε2) space. In high dimensions, Magen [8] pro-
vided an algorithm for a set of k-flats with query time
polynomial in d, log n and 1/ε but non-polynomial
space.
In this paper we consider the case where O is a set

of parallel segments. We give two solutions for the

∗Dept. of Informatics and Telecoms, National and Kapodis-
trian University of Athens, Greece.

†Dept. of Computer Science and Technology, University of
Peloponnese, Greece.

‡Dept. of Computer Science, Aarhus University, Denmark
and Dept. of Computer Science and Technology, University of
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problem. The second solution enhances the first us-
ing results in Sec. 3. That section is motivated by
the cheap gas station problem. Given n gas stations
(sites) and a car at a position q (query point) we want
to find a gas station that is closest or approximately
closest to q (since exact distance is not so important)
which sells gas for at most w euros. In Sec. 4 we com-
bine the results of the previous sections and present
a data structure for answering time-dependent ε-NN
queries in any fixed dimension.

2 Methods for parallel segments

Let S be a set of n disjoint parallel segments in R3.
We assume w.l.o.g. that all segments in S are parallel
to the x-axis. Let P be the set of the 2n endpoints
of the segments in S. Let q be a query point in R3,
s be a segment of S nearest to q, and p be the point
of s nearest to q. Observe that p is either one of the
endpoints of s or that the segment qp is perpendicular
to s. Let Hq be the plane passing through q that is
parallel to the yz plane. Note that if p is interior to s
then p is one of the points in Hq ∩ S. (See Fig. 1.)

q

p

Hq

r

Figure 1: Parallel segments lying in two parallel
planes in R3 and a query point q. The closest end-
point to q is r but the closest point to q is p.

It follows that to find an ε-NN to q in S it suffices
to (a) find an ε-NN to q in P , (b) find an ε-NN to
q in the set Hq ∩ S and then report whichever of the
two is nearest to q. For solving (a) we use an (t, ε)-
approximate Voronoi diagram (AVD) on set P with
t = O(1/ε) together with the associated data struc-
ture [2]. This structure has O(n) space and it returns
an ε-NN to any q in O(log n+ 1/ε) time. For solving
(b) we present two methods which are both based on
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a variation of the well-known interval tree [4]. The
second method is more complicated but leads to a
significant improvement over the first.

2.1 First method

The construction of our interval tree T on S pro-
ceeds as follows. Let xm be the median among all
x-coordinates of P . Let Hm be the plane passing
through point (xm, 0, 0) and which is parallel to the
yz plane. We store xm at the root of T . We partition
the set of segments S into three sets Sℓ, Sm, and Sr

where each set consists of the segments that lie on
the left of Hm, that intersect Hm, and that lie on the
right of Hm, respectively. We continue the construc-
tion of the tree T recursively on Sℓ and Sr. (If Sℓ or
Sr is the empty set clearly we get a leaf.) The two
roots of the trees built on Sℓ and on Sr become the
left and right child of the root of T , respectively. See
Fig. 2 for an example. For the set Sm we build an

s1

s2
s3

s4
s5

s6
s7

s8

s1 . . . s8

s1, s5 s3, s7, s8s2, s4, s6

Sℓ Sm Sr

Hm

Figure 2: A projection of a set of segments in xz plane.
The left endpoint of s8 is the median xm. Hm divides
the segments to three sets Sℓ, Sm and Sr. Below the
tree corresponding to this partition of segments.

auxiliary data structure Tm which we associate with
the root of T . (Structures similar to Tm are built for
all internal nodes of T .) Tm is built as follows. Hm

cuts naturally each segment in Sm into two pieces.
Let Cℓ be the left pieces of the segments and Cr the
right pieces. We build one tree on Cℓ and one on Cr.
We describe the construction of the tree only for Cr

since it is symmetric for Cℓ.
Let x′

m be the median among all x-coordinates of
the right endpoints of the segments in Cr. (Note
that the x-coordinates of the left endpoints are all
equal.) Let H ′

m be the plane passing through the
point (x′

m, 0, 0) and which is parallel to the yz plane.
We store x′

m at the root. The segments of Cr that
were not cut by H ′

m form the set S′
ℓ. The right pieces

of the segments cut by H ′
m form the S′

r. The left

pieces (which span between planes Hm and H ′
m) form

the set S′
m. For S′

ℓ, S
′
r we continue the construction

recursively (unless empty), much like we built our in-
terval tree T above. See Fig. 3 for an example of
such a construction. We use the set of segments S′

m

to construct a 2D Voronoi diagram for the point set
H ′

m ∩ S′
m. Then this is combined with a standard

point location algorithm [4] to gives us a data struc-
ture T2 for answering optimally 2D nearest neighbor
queries over H ′

m ∩ S′
m. T2 is associated with the root

of the tree for Cr. Structures similar to T2 are also
built for all internal nodes of Tm.

Hm H
′

m

s1

s2

s3

s4

s5

s6

Figure 3: The left endpoint of s5 is the median x′
m.

The parts of segments s1, s2 and s3 that are on the
left of H ′

m form the set S′
r. The parts between Hm

and H ′
m, together with s5 form S′

m. S′
ℓ is formed by

s2 and s6.

We compute a bound on the size of Tm, that is, for
the augmented trees on Cℓ and on Cr. Let n

′ = |Sm|.
Because we split always at the median, the height of
Tm is O(log n′). This implies that one segment of Sm

may be cut at most O(log n′) times and thus the total
size of Tm is O(n′ log n′). Using standard results, it
is easy to see that the total size of all structures T2

associated with the nodes of Tm is also O(n′ log n′).

We compute a bound on the size of the main data
structure T . Since the set of segments Sm used at
each node of T for the auxiliary data structure Tm are
disjoint and using the space bound on Tm it follows
easily that the total size of T is O(n log n). Due to
the balanced splits T has height O(log n).

We describe now how to solve (b) that is, given a
query q = (qx, qy, qz), how to find an ε-NN to q in
the set Hq ∩ S. (In fact this first method finds an
exact nearest neighbor to q). We start at the root of
T and at each node v we follow the child according to
the result of the comparison between qx and xm, the
value stored at v. At each node v we also visit the
auxiliary data structure Tm. We similarly follow the
path from the root of Tm to the leaf containing q and
at each node we use T2 to find the nearest neighbor to
(qy, qz) among H ′

m ∩S′
m. We report as an answer the

nearest point to q over all the points returned from
all queries to T2.

Correctness follows from the fact that we only ex-
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clude from consideration segments or fragments of
segments that do not intersect plane Hq and thus are
not needed for (b).
Since the depth of tree T is O(log n) and for each

node of T we visit an auxiliary data structure Tm with
depth also at most O(log n) and at each node of Tm

the data structure T2 may have been built for at most
n sites, it follows that query time is O(log3 n). The
total query time is the sum of the times used to solve
(a) and (b) and thus we get the following result:

Theorem 1 Given n parallel segments in 3D we
can construct a data structure of O(n log n) space
for finding an ε-NN to any given query point q in
O(log3 n+ 1/ε) time.

We will discuss the construction times of the data
structures in the full version, however they are all in
O(npoly(log n, 1

ε )).

2.2 Improving space and query time

We present next a second method that reduces both
the space and query time by a log n factor. The part
of the first method that we change is the auxiliary
data structure Tm for the sets Cℓ and Cr. We again
describe just the data structure Tr for segments in Cr

and an analogous data structure can be built for Cℓ.
According to (b), our goal for Cr is to find an ε-NN

to q inHq∩Cr. We solve this by reducing our problem
to a weight-constrained approximate nearest neigh-
bor searching problem in two dimensions. Specifically
each right endpoint (px, py, pz) of a segment in Cr is
mapped to the point (py, pz) with weight px. We de-
note with P ′ the 2D weighted point set obtained (see
Fig. 4). Let P ′

w be the subset of P ′ containing only
the points with weight at least w. Given a query
q = (qx, qy, qz), our goal is to find an ε-NN to point
q2 = (qy, qz) in P ′

qx . Note that this suffices to achieve
our first goal.

(bx, by, bz)

(cx, cy, cz)

(ax, ay, az)

cyay by

cz

az

bz

(cx)

(ax)

(bx)

Figure 4: Projection to 2D. The x-coordinate of each
point is used as a weight (enclosed in parentheses).

We apply Theorem 4 of the next section (weight-
constrained ε-NN queries) on point set P ′ for d = 2,
γ = 2 and q = q2 and easily get this lemma:

Lemma 2 Given q and Cr we can build a data struc-
ture Tr of O(|Cr| log(1/ε)) size to find an ε-NN to q
in Hq ∩ Cr in O(log |Cr|+ 1/ε2) time.

Using the above lemma we obtain the following result:
(We omit the analysis which is similar to that of the
first method.)

Theorem 3 Given n parallel segments in 3D we
can construct a data structure of O(n log(1/ε)) space
for finding an ε-NN to any given query point q in
O(log2 n+ log n/ε2) time.

3 Weight-constrained ε-NN queries

Given a set of weighted d-dimensional points, we
define the weight-constrained ε-approximate nearest
neighbor problem: given a query q and a weight w,
find an ε-NN to q among the points in P that have
weight at least w. Here w is a number specified at
query time. Note that we allow an approximation er-
ror in one parameter (distance) but we require exact-
ness on another (weight). We can also define the sym-
metric problem where we search for an ε-NN among
the points of P with weight at most w.
For the rest of this section we consider only the max

version of the problem. We state below our result.
This result also provides a space-time tradeoff which
is controlled by the parameter γ.

Theorem 4 Let P be a set of n weighted points in
Rd, and let 0 < ε < 1/2 and 2 ≤ γ ≤ 1/ε be two
real parameters. We can construct a data structure
of O(nγd log(1/ε)) space that allows us to answer a
weight-constrained ε-NN query in time O(log(γn) +
1/(εγ)d).

For reasons of space we give here only some of the
basic ideas and methods that we have used to prove
the theorem. We start with some definitions. Let
b(q, r) be a ball of radius r centered at point q. Let
b+(q, r) be a ball of radius (1+ ε)r centered at q. Let
b(q, r) be the set of points not contained in b(q, r).
Given P , q and r, an ε-approximate spherical range

maximum query or simply ε-range maximum query
returns a point in P along with its weight that lies
in b+(q, r) and has weight at least as large as the
maximum weight among all points in b(q, r). There
are a number of data structures for answering effi-
ciently ε-range maximum queries. Here we will use
the data structure in [1]. For 2 ≤ γ ≤ 1/ε it
uses O(nγd log(1/ε)) and has query time O(log(γn)+
1/(εγ)d−1). The dependence on ε in query time can
be further improved by using known results on ap-
proximate idempotent range searching. This implies
a similar improvement on the query time of the theo-
rem however we will not discuss these here.
The key idea is to observe that a weight-constrained

ε-NN query can be answered with the help of a care-
fully chosen series of ε-range maximum queries. As-
sume that there is a method, e.g. [1], that can answer
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an ε-range maximum query in t(n, ε) time. Given a
query point q and a weight w, we search for a weight-
constrained ε-NN to q. Suppose that we perform an ε-
range maximum query with the range b(q, r) for some
r of our choice and that it returns a point at distance
r′ from q with weight w′. Note that r′ ≤ (1 + ε)r.
If w′ ≥ w this implies we can limit our search for
a weight-constrained ε-NN to q among the points in
b(q, r′). Otherwise if w′ < w we are certain that the
answer can only be found among the points in b(q, r)
(since we know from the answer to the ε-NN maxi-
mum range query that all points in b(q, r) have weight
at most w′). When all points in P have weights less
than w there is no weight-constrained ε-NN. To avoid
this case we may assume that there is an auxiliary
point far enough from P with infinite weight.
We get that after repeating several ε-range maxi-

mum queries with the same center q but for different
values of the radius r we will have limited our search
in an annulus A = b(q, r1) ∩ b(q, r2) for some values
r1, r2 with r1 < r2 and we will have found a point p
in A satisfying the weight constraint. Observe that
if r2 ≤ (1 + ε)r1 clearly p is a valid answer to the
query pair q and w. We show next that with a careful
selection of the range radii we can easily obtain an
efficient solution for our problem when P has small
spread. Let the spread ∆ of a point set P be the ra-
tio between its diameter and the distance of a closest
pair of P . Clearly we can perform a binary search
for the right radius using at most O(log∆) ε-range
maximum queries and thus find a weight-constrained
ε-NN in O(t(n, ε) log∆) time.
The drawback of the approach described above is

that it depends on the spread and it pays at least
a O(log n) factor for each ε-range maximum query
even though all of these queries share the same cen-
ter and may also have similar radii. Interestingly
though using together the methods of this approach
and the methods presented in [1] for answering ε-
approximate range queries and particularly for an-
swering ε-approximate kth nearest neighbor queries
we can remove this drawback and arrive at the theo-
rem. Roughly the main adaptation is that wherever
an approximate range counting query is needed for
approximate kth nearest neighbor searching we use
instead the corresponding approximate range maxi-
mum query and we guide the search according to the
point and the weight returned and not the count. A
detailed proof will appear in the full version.

4 Querying about the past

We define a timestamped operation on a data struc-
ture as an operation which carries a label of the time
it occurred. An element is alive at some moment t if
t is between the time of insertion and deletion of the
element. We consider the following problem: given

a sequence of n timestamped insertions and deletions
of d-dimensional points build a data structure which
given a query point q and a parameter t finds effi-
ciently an ε-NN of q among the points alive at time t.
We call this a t-moment ε-NN query.
We tackle the problem using methods from Sec. 2

and 3. Let p be a point that was inserted at time
ts and deleted at time tf (infinite values are allowed).
We use time as an extra dimension and map the point
p to the segment with endpoints (ts, p) and (tf , p) in
d + 1 dimensions. Note that the points alive at any
given moment t correspond to the segments intersect-
ing the hyperplane with equation x = t. Hence we can
build a similar interval tree as in Sec. 2. To answer
queries part (b) is only needed. We extend Lemma 2
in d dimensions and after a simple analysis we get:

Theorem 5 Let n timestamped insertions and dele-
tions of points in Rd, and let 0 < ε < 1/2 be a
real parameter. We can construct a data structure
of O(n log(1/ε)) space that allows us to answer any
t-moment ε-NN query in time O(log2 n + log n/εd).
Here t is given at query time.
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Steinitz Theorems for Orthogonal Polyhedra

David Eppstein∗ Elena Mumford†

Figure 1: Three types of simple orthogonal polyhedron:
Left, a corner polyhedron. Center, an xyz polyhedron that
is not a corner polyhedron. Right, a simple orthogonal
polyhedron that is not an xyz polyhedron.

1 Introduction

Steinitz’s theorem [8, 14, 17] characterizes the skeletons
of three-dimensional convex polyhedra in purely graph-
theoretic terms: they are exactly the 3-vertex-connected
planar graphs. In one direction, this is straightforward to
prove: every convex polyhedron has a skeleton that is 3-
connected and planar. The main content of Steinitz’s the-
orem lies in the other direction, the statement that every
3-connected planar graph can be represented as a polyhe-
dron. Steinitz’s theorem, together with Balinski’s theo-
rem that every d-dimensional polytope has a d-connected
skeleton [1], form the foundation stones of polyhedral
combinatorics; Grünbaum writes [8] that Steinitz’s theo-
rem is “the most important and deepest known result on
3-polytopes.”

However, analogous results characterizing the skeletons
of other classes of polyhedra or higher dimensional poly-
topes have been elusive. As Ziegler [17] writes, “No simi-
lar theorem is known, and it seems that no similarly effec-
tive theorem is possible, in higher dimensions.” Even in
three dimensions, it remains unknown whether the com-
plete graph K12 may be embedded as a genus-six triangu-
lated polyhedral surface, generalizing the toroidal embed-
ding of K7 as the Császár polyhedron [3].

In this paper, we characterize another class of three-
dimensional non-convex polyhedra, which we call simple
orthogonal polyhedra (Fig. 1): polyhedra with the topol-
ogy of a sphere, with simply-connected faces, and with
exactly three mutually-perpendicular axis-parallel edges
meeting at every vertex. We also consider two special
cases of simple orthogonal polyhedra, which we call cor-
ner polyhedra and xyz polyhedra. A corner polyhedron
(Fig. 1, left) is a simple orthogonal polyhedron in which

∗Computer Science Department, University of California, Irvine,
eppstein@uci.edu

†TU Eindhoven, e.mumford@tue.nl

all but three faces are oriented towards the vector (1,1,1);
it can be drawn in the plane by isometric projection with
only one of its vertices hidden (the one incident to the three
back faces). An xyz polyhedron (Fig. 1, center) is a sim-
ple orthogonal polyhedron in which each axis-parallel line
contains at most two vertices. We show:

- The graphs of corner polyhedra are exactly the cu-
bic bipartite polyhedral graphs such that every separat-
ing triangle of the planar dual graph has the same parity.
Here cubic means 3-regular, polyhedral means planar 3-
connected, and we define the parity of a separating trian-
gle later. The graphs with no separating triangles form the
building blocks for all our other characterizations: every
cubic bipartite polyhedral graph with a 4-connected pla-
nar dual is the graph of a corner polyhedron.

- The graphs of xyz polyhedra are exactly the cubic bipar-
tite polyhedral graphs.

- The graphs of simple orthogonal polyhedra are exactly
the cubic bipartite planar graphs such that the removal
of any two vertices leaves at most two connected compo-
nents.

Based on our graph-theoretic characterizations of these
classes of polyhedron, we find efficient algorithms for
finding a polyhedral realization of the graph of any corner
polyhedron, xyz polyhedron, or simple orthogonal poly-
hedron. Beyond the obvious applications of our results
in graph drawing and architectural design, we believe that
these results may have applications in image understand-
ing, where an analysis of the structure of polyhedral and
rectilinear objects has been an important subtopic [11, 12,
16].

Due to space considerations we omit the proofs of our
results; they can be found in the full version of the pa-
per [7].

2 Corner polyhedra and rooted cycle covers

We define a corner polyhedron to be a simple orthog-
onal polyhedron with the additional property that three
faces (the back faces) are oriented towards the vector
(−1,−1,−1), and all remaining faces (the front faces) are
oriented towards the vector (1,1,1). The three back faces
necessarily share a vertex, the hidden vertex. Parallel pro-
jection of a corner polyhedron onto a plane perpendicular
to the vector (1,1,1) gives rise to a drawing, the so-called
isometric projection, in which the axis-parallel edges of
the three-dimensional polyhedron are mapped to three sets
of parallel lines that form angles of π/3 with respect to
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Figure 2: Left: Isometric projection of a corner polyhe-
dron for a truncated rhombic dodecahedron. Right: con-
necting each sharp corner of a visible face to the dual ver-
tex of the face produces a rooted cycle cover.

each other; see Fig. 2 (left) for an example. If the edges of
the corner polyhedron have integer lengths, the resulting
isometric projection is a drawing of all of the vertices of
the polyhedron, except the hidden vertex, on the hexagonal
lattice. It is possible to include the hidden vertex as well
by connecting it to its three neighbors by lattice paths, one
of which is straight and the other two have one bend each;
the resulting drawing of the whole graph has two bends.

In an isometric drawing of a corner polyhedron, none of
the faces can have an interior angle of 5π/3, for any simple
orthogonal polyhedron with such a projected angle would
have more than three back faces. Additionally, each face
(being the projection of a planar orthogonal polygon) has
edges of only two of the three possible slopes. Therefore,
each face of the drawing has the shape of a double stair-
case: there are two vertices at which the interior angle is
π/3, and the two sequences of interior angles on the paths
between these vertices alternate between interior angles of
2π/3 and 4π/3. (Conversely, it follows by Thurston’s re-
sults on height functions [15] that a drawing in the hexago-
nal lattice for which all faces have this shape comes from a
three-dimensional orthogonal surface.) Because a simple
orthogonal polyhedron forms a planar graph in which all
faces have an even number of edges, it must be bipartite;
one of its two color classes consists of the vertices having
sharp face angle, and the other color class contains all the
other vertices.

The two-to-one correspondence between interior faces
and vertices with sharp angles gives rise to an important
structure on the graph of the polyhedron, which we find
simpler to describe in terms of its dual graph. The dual
graph of a corner polyhedron (as with a bipartite cubic
polyhedral graph more generally) is an Eulerian triangu-
lation, a maximal planar graph in which every vertex has
even degree. It has a unique planar embedding, for which
all the faces are triangles; the triangles may be two-colored
so that the two triangles that share each edge have dif-
ferent colors. Within each interior face of the projected
corner polyhedron, we connect the dual vertex to its two
sharp corners. The result of forming these connections is a
structure that we call a rooted cycle cover: a set of vertex-

disjoint cycles in the dual Eulerian triangulation, that cover
every dual vertex except for the three vertices of the root
triangle dual to the hidden vertex, and that include exactly
one edge from every triangle with the same color as the
root triangle—see Fig. 2 for an illustration. Conversely, as
we show, every rooted cycle cover of an Eulerian triangu-
lation gives rise to a corner polyhedron representation of
its dual graph. This equivalence between a combinatorial
structure (a rooted cycle cover) and a geometric structure
(a corner polyhedron) is a key component of our charac-
terization of the graphs of corner polyhedra.

Specifically, we prove the following results:

Theorem 1 A graph G can be represented as a corner
polyhedron, with a specified vertex v as the single hidden
vertex, if and only if the dual graph of G has a cycle cover
rooted at the triangle dual to v.

Theorem 2 If G is a cubic bipartite polyhedral graph with
a 4-connected dual, then it can be represented as a corner
polyhedron.

If ∆ is an Eulerian triangulation (the dual to a cubic bi-
partite planar graph), with a chosen root triangle δ, then
we may uniquely two-color the triangles of ∆ so that any
two adjacent triangles are adjacent. For any separating tri-
angle γ of ∆, this coloring will assign equal colors to the
three triangles that are on the side of γ that does not con-
tain δ and that are incident to one of the edges of γ. We
say that γ has even parity if these three triangles have the
same color as δ, and odd parity otherwise.

Theorem 3 If G is a cubic bipartite graph with a non-4-
connected dual, and v is any vertex of G , then G has a
corner representation for which v is the hidden vertex if
and only if all separating triangles have odd parity with
respect to the root triangle dual to v.

3 xyz polyhedra

In our previous paper [6] we defined an xyz graph to be
a cubic graph embedded in three dimensional space, with
axis parallel edges, such that the line through each edge
passes through no other vertices of the graph. We can ex-
tend this definition to an xyz polyhedron, a simple orthog-
onal polyhedron whose skeleton forms an xyz graph. Al-
ternatively, we can consider a weaker definition: a singly-
intersecting simple orthogonal polyhedron is a simple or-
thogonal polyhedron with the property that, for any two
faces with a nonempty intersection, their intersection is a
single line segment. Geometrically, the intersection of two
faces lies along the line of intersection of their planes, so a
singly-intersecting polyhedron must be an xyz polyhedron,
but not necessarily vice versa. However, the graphs of the
two classes of polyhedra are the same: by perturbing the
face planes of a singly-intersecting polyhedron, one may
obtain an xyz polyhedron that represents the same graph.
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As we showed in [6], a planar xyz graph must be 3-
connected and bipartite, and the same results hold for xyz
polyhedra. Our main result is a converse to this:

Theorem 4 The following three classes of graphs are
equivalent: (1) Cubic 3-connected bipartite planar graphs;
(2) Graphs of xyz polyhedra, and (3) Graphs of singly-
intersecting simple orthogonal polyhedra.

4 Simple orthogonal polyhedra

As can be seen in Fig. 1 (right), the graph of an arbi-
trary simple orthogonal polyhedra may not always be 3-
connected, although it is always 2-connected. Pairs of
faces of the polyhedron may meet in multiple edges, and
the removal of any two of these edges (or the removal
of endpoints from any two of these edges) leaves a dis-
connected graph. Therefore, there exist graphs simple
orthogonal polyhedra that are not graphs of xyz polyhe-
dron, and we need to use a more general class of graphs to
characterize the simple orthogonal polyhedra. Replacing
the 3-connectivity condition in the characterization of xyz
polyhedra by 2-connectivity would be too general, how-
ever. Not every 2-connected bipartite 3-regular graph is
the graph of a simple orthogonal polyhedron; for instance,
the graph depicted in Fig. 2 is not the graph of a simple
orthogonal polyhedron, as the results in this section will
show.

Instead, our characterization uses the SPQR tree, a stan-
dard tool for representing the planar embeddings of a
graph in terms of its triconnected components [4, 5, 9, 10,
13].

Theorem 5 The following three classes of graphs are
equivalent: (1) Cubic 2-connected graphs in which ev-
ery triconnected component is either a bipartite polyhedral
graph or an even cycle; (2) Bipartite cubic planar graphs in
which the removal of any two vertices leaves at most two
connected components (counting an edge between the two
vertices as a component, if one exists), and (3) Graphs of
simple orthogonal polyhedra.

Our proof technique leads to a stronger result: if G is
the graph of a simple orthogonal polyhedron, then every
planar embedding of G can be represented as a simple or-
thogonal polyhedron.

5 Algorithms

Below we outline an algorithm that takes a 2-connected
cubic planar graph as an input and embeds it as a simple
orthogonal polyhedron, when such a representation exists.
The algorithms for taking as input a 3-connected graph and
representing it either as an xyz polyhedron or as a corner
polyhedron, when such a representation exists, are similar
but with fewer steps.

1. Decompose the graph into its triconnected components,
as represented by an SPQR tree, in O(n) time [9, 10].
Check that the SPQR tree does not contain any P nodes
(triconnected components that are multigraphs rather than
simple graphs). If it does, report that no orthogonal poly-
hedral representation exists and abort the algorithm.
2. Transform each atom (triconnected component that is
not a cycle) into its dual Eulerian triangulation. If any
atom is nonplanar or has a non-Eulerian dual, report that
no orthogonal polyhedral representation exists and abort
the algorithm.
3. Partition each Eulerian triangulation into 4-connected
Eulerian triangulations by splitting it on its separating tri-
angles.
4. Recursively decompose each 4-connected Eulerian tri-
angulation into simpler 4-connected Eulerian triangula-
tions using separating 4-cycles, pairs of adjacent degree-4
vertices, and isolated degree-4 vertices. While returning
from the recursion, undo the steps of the decomposition
and build a cycle cover for the Eulerian triangulation.
5. Convert the cycle covers into regular edge labelings by
a simple local pattern matching rule.
6. For each pair of colors x and y in the rainbow partition,
construct the subgraph ∆xy formed by edges with those two
colors, oriented by reversing the orientations of one of the
two colors from the orientation given by the regular edge
labeling, and find an st-numbering of each such graph us-
ing breadth-first search.
7. For each graph dual to one of the 4-connected Eulerian
triangulations, use the st-numbering to construct a repre-
sentation of the graph as a corner polyhedron: the coor-
dinates of each vertex of the corner polyhedron are triples
of numbers from the st-numbering, one from each of the
three bichromatic subgraphs of ∆.
8. Glue the corner polyhedra together to form orthogonal
polyhedra dual to each non-4-connected Eulerian triangu-
lation.
9. Glue 3-connected polyhedra together to form arbitrary
simple orthogonal polyhedra.

Theorem 6 We may construct a representation of a given
graph as a corner polyhedron, xyz polyhedron, or simple
orthogonal polyhedron, when such a representation exists,
in O(n) randomized expected time, or deterministically in
O(n(log logn)2/(log loglogn)) time with linear space.

The detailed descriptions of each step together with the
running time analyses are given in [7].

6 Conclusions

We have defined three interesting classes of orthogonal
polyhedra, and provided exact graph-theoretic character-
izations of the graphs that may be represented by these
polyhedra. In particular, every bipartite cubic polyhedral
graph has a representation as an orthogonal polyhedron.
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The following problems remain open for additional in-
vestigation:

- Is there a simple condition on the position of the dual
separating triangles that characterizes orthogonally convex
simple orthogonal polyhedra, and can we test this condi-
tion in polynomial time?

- The orthostacks defined by Biedl et al. [2] are also inter-
mediate between corner polyhedra and xyz polyhedra. Can
we characterize their graphs?

- Given the hardness of nonplanar xyz graph recogni-
tion [6] it seems likely that it will also be difficult to deter-
mine whether a given graph is the graph of an orthogonal
polyhedron with nonzero genus but what about graphs for
which an xyz graph representation is already known? In
that case, how difficult is it to determine whether the faces
of the xyz representation can be untangled to form a poly-
hedral representation?
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Evacuation of rectilinear polygons

Sándor Fekete∗ Chris Gray∗ Alexander Kröller∗

Abstract

We investigate the problem of creating fast evacuation
plans for buildings that are modeled as grid poly-
gons, possibly containing exponentially many cells.
We study this problem in two contexts: the �con�u-
ent� context in which the routes to exits remain �xed
over time, and the �non-con�uent� context in which
routes may change. Con�uent evacuation plans are
simpler to carry out, as they allocate contiguous re-
gions to exits; non-con�uent allocation can possibly
create faster evacuation plans. We give results on
the hardness of creating the evacuation plans and a
strongly polynomial algorithm for �nding con�uent
evacuation plans when the building has two exits. We
also give a pseudo-polynomial time algorithm for non-
con�uent evacuation plans.

1 Introduction

A proper evacuation plan is an important requirement
for the health and safety of all people inside a building.
When we optimize evacuation plans, our goal is to re-
move people from a building as quickly as possible. In
the best case, each of a building's exits would serve an
equal number of the building's inhabitants. However,
there might be cases in which this can not happen.
In this research, we study the computation of evac-

uation plans for buildings that are modeled as grid
polygons. We make the assumption that every grid
square is occupied by exactly one person and that at
most one person can occupy a grid square at any given
time. The �rst assumption may seem a bit contrived,
but in many cases it is impossible for a building de-
signer to know exactly where people will be in the
building in the moments before an evacuation, and
this pessimistic view of the situation is the only sen-
sible one to take. Also remember that in some cases,
such as in airplanes, the situation in which nearly ev-
ery bit of �oor space is occupied before an evacuation
is more common than the alternative.
Evacuation plans can be divided into two distinct

types. In the �rst, signs are posted that direct every
person passing them to a speci�c exit. In the second,
every person is assigned to a distinct exit that does

∗Department of Computer Science, TU Braunschweig, Ger-
many. {fekete,gray,kroeller}@ibr.cs.tu-bs.de This re-
search was funded by the German Ministry for Education and
Research (BMBF) under grant number 03NAPI4 �ADVEST�,
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not necessarily depend on the exits to which his or
her neighbors are assigned. The �rst type of evacua-
tion plan generates what is known as a con�uent �ow

and the second generates a non-con�uent �ow. More
precise de�nitions of these terms will be given later.

We �rst show that the problem of �nding an opti-
mal con�uent �ow belongs to the class of NP-complete
problems if the polygon has �holes��i.e., if it repre-
sents a building with completely enclosed rooms or
other spaces. We then give an algorithm with a run-
ning time linear in the description complexity of the
region (which can be exponentially smaller than the
number of cells) that computes an evacuation plan for
buildings without holes that have two exits; a gener-
alization to a constant number of exits is more com-
plicated, but seems plausible.

1.1 Preliminaries

We are given a rectilinear polygon P on a grid. There
exists, on the boundary of P , a number of special
grid squares known as exits. We call the set of exits
E = {e1, . . . , ek}. We assume that every grid square
in P contains a person. A person can move vertically
or horizontally into an empty grid square or an exit.
The goal is to get each person to an exit as quickly as
possible. When an exit borders more than one grid
square, we specify which squares people can enter the
exit from.

The area of P is denoted by A and the number
of vertices of P is denoted by n. Note that A can
be exponential in n. The set of people that leave
P through the exit e is called the e-exit class. We
also write exit class to refer to the set of people who
leave through an unspeci�ed exit. The grid squares
that are adjacent to the boundary of P are known as
boundary squares.

There are two versions of the problem that we con-
sider. We call these con�uent �ows and non-con�uent

�ows. In the �rst, we add the restriction that every
grid square has a unique successor. Thus, for every
grid square s, people passing through s leave s in only
one direction. This restriction implies that evacuation
plans are determined by space only. It does not exist
for non-con�uent �ows. It can be argued that inform-
ing people which exit to use is easier in the case of
con�uent �ows since a sign can be placed in every
grid square, informing the people who pass through
it which exit to use. However, we show in the full
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version of the paper that non-con�uent �ows can lead
to signi�cantly faster evacuations.
The major di�culty in the problem comes from bot-

tlenecks. We de�ne a k-bottleneck to be a rectangular
subpolygon B of P such that two parallel boundary
edges of B are the same as two edges of P , where the
distance between the common edges is k.

1.2 Related Work

The problem when restricted to con�uent �ows is sim-
ilar in many ways to the unweighted Bounded Con-
nected Partition (or 1-BCP) problem [8]. It has been
shown independently by Lovász [6] and Györi [5] that
a solution to the 1-BCP problem can be found for ev-
ery graph that is k-connected. However, their proofs
are not algorithmic.
Unfortunately, our graph can be 1-connected in the

case in which there are 1-bottlenecks. Also, since the
dual of the grid contained in our polygon can have
size exponential in the complexity of the polygon, we
would probably need to merge nodes and then assign
weights to the nodes of the newly-constructed graph.
The addition of weights, however, makes the BCP
problem NP-complete, even in the restricted case in
which the graph is a grid [3].
Given that our problem is on a grid, it can be seen

as a �discrete� problem. The �continuous� version of
our problem�that is, splitting polygons into subpoly-
gons of equal area�has also been studied. One in-
teresting result from this study is that �nding such
a decomposition while minimizing the lengths of the
segments that do the partitioning is NP-hard even
when the polygons are orthogonal [1]. However, poly-
nomial algorithms exist for the continuous case when
that restriction is removed [7].
Baumann and Skutella [2] consider evacuation

problems modeled as earliest-arrival �ows with mul-
tiple sources. They achieved a strongly-polynomial-
time algorithm by showing that the function repre-
senting the number of people evacuated by a given
time is submodular. Such a function can be optimized
using the parametric search technique of Megiddo.
Their approach is di�erent from ours in that they are
given an explicit representation of the �ow network as
input. We are not given this, and computing the �ow
network that is implicit in our input can take expo-
nential time. Also, their algorithm takes polynomial
time in the sum of the input and output sizes. How-
ever, the complexity of the output can be exponential
in the input size.

2 Confluent Flows

As mentioned in the introduction, in a con�uent �ow,
every grid square has the property that all people that
pass through it use the same exit.

e1

e2

Figure 1: The polygon P given a Partition instance
of {11, 6, 9}. To keep the picture a manageable size,
the elements have not been scaled and the left ends
of the �rst and �fth rows are truncated.

In this section, we present our results related to
con�uent �ows. First, we show the NP-completeness
of the problem of �nding an optimal evacuation plan
with con�uent �ows in a polygon with holes. This
holds even for polygons with two exits. We then give
a linear-time algorithm for polygons with two exits.

2.1 Hardness

Weak NP-hardness with two exits. We �rst show
that the evacuation problem with con�uent �ows is
NP-hard if we allow P to have holes. We reduce from
the problem Partition, which is well-known to be
NP-complete [4]. In this problem, we are given a set
S = {c1, c2, . . . , cm} of integers and we are asked to
determine whether we can �nd S1, S2 ⊆ S such that∑

ch∈S1
ch =

∑
ci∈S2

ci.
We note that if we scale all of the numbers in a

Partition instance by an integer `, the answer re-
mains the same�that is, a partition can be found in
the new set if and only if a partition could be found
in the old set�but the di�erence between the size of
non-optimal sets is at least `. This is because

∑
ch∈S1

`ch −
∑

ci∈S2

`ci = `

( ∑
ch∈S1

ch −
∑

ci∈S2

ci

)
≥ `

if the sums are not equal.
To transform the Partition problem into our

problem, we �rst scale the input by a factor of 2m+1.
We then do the following to make the polygon P .
We �rst make a rectangle whose width is m + 1 +∑
ci∈S ci and whose height is 5. We then remove all

the grid squares of P on the second and fourth rows
except those that are at position

∑j
i=1 ci + j for all

0 < j ≤ m. After this, we remove all grid squares
from the third row that are at position

∑j
i=1 ci +j+1

for all 0 < j ≤ m. Then we add a large number of
squares (at least equal to the current area of P ) to
the left end of the �rst and �fth rows. Finally, we add
an exit e1 to the right end of the �rst row and an exit
e2 to the right end of the �fth row.
See Figure 1 for a small example. We say that the

connected sets of grid squares in the third row each
correspond to one of the elements of the given Par-

tition instance. This leads to the following.
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Lemma 1 The polygon P with holes can be divided

into two con�uent exit classes of equal size if and only

if the given instance of Partition has a �yes� answer.

We de�ne the decision version of the problem of
evacuation with con�uent �ows to be: �Given a grid
polygon P with k exits and a natural number `, can a
con�uent �ow be found in which the largest exit class
has size at most `?�
Since areas of polygons can be computed in time

proportional to their number of vertices, we can ver-
ify if a solution is correct in O(kn) time (where n is
the number of vertices of the polygon and k is the
number of exits). This, along with Lemma 1, implies
that the decision problem is NP-complete in polygons
with holes. We summarize this result in the following
theorem.

Theorem 2 The problem of �nding an optimal con-

�uent �ow in a polygon with holes is NP-complete.

In the full version of the paper, we also prove that
�nding an optimal con�uent �ow in a polygon with
holes is strongly NP-complete (meaning that the size
of the numbers does not a�ect the hardness of the
problem). However, the proof requires that the poly-
gon have O(n) exits.

Theorem 3 The problem of �nding an optimal con-

�uent �ow in a polygon with holes and O(n) exits is

strongly NP-complete.

2.2 Algorithm for Simple Polygons with Two Exits

When the polygon P with no holes has only two exits,
e1 and e2, we can �nd an optimal con�uent �ow in
O(n) time. We give an algorithm that uses to the
rotating calipers paradigm [10].
We begin by computing a subset ω′ of the overlay

ω of the vertical and horizontal decompositions of P .
This subset contains only the rectangles that touch
the boundary of P . This subset can be computed in
linear time.
We create two pointers i1 and i2 with which we walk

through the intervals in ω′. For each pair of intervals
pointed to by i1 and i2 that we visit, we measure the
number of squares that must be in the e1- and e2-
exit classes if we assume that the endpoints of their
connections to the boundary of P begin and end in i1
and i2. We call these areas A1 and A2 respectively. If
we ever visit a pair of intervals for which A1 and A2

are both less than A/2, then we divide the remaining
squares so that both A1 and A2 are A/2�see the full
paper for details�and return the results. Otherwise,
we return the exit class that has size greater than A/2,
but whose size is minimal.
To begin with, we set i1 and i2 to be the interval

containing e2, so that the endpoints of the connection

of the e1-exit class are on either side of e2. We call
the area that the e1-exit class must have A1 and the
area that the e2-exit class must have A2. We then
move i1 closer to e1 until it either reaches e1 or would
cause A2 to be greater than A/2. As we progress,
we simply update A1 and A2 and keep track of the
smallest value for A1.
Once we have done this for i1, we do the same for

i2. Finally, we move i1 back towards e2. For each
interval that we move i1 towards e2, we move i2 as
much as possible towards e1 so that A1 is as small as
possible without causing A2 to be larger than A/2.
As before, we keep track of the smallest value for A1.
When i1 reaches e2 or i2 reaches e1, we stop.
When we have completed the algorithm for e1, we

repeat the process, switching e1 and e2. This gives us
the following theorem that we prove in the full paper.

Theorem 4 In the con�uent setting, the above algo-

rithm �nds the optimal evacuation plan for a polygon

P with two exits in O(n) time, where n is the number

of vertices in P .

We conjecture that one can use algorithms similar
to the one given above to compute the evacuation
of any polygon with a constant number of exits, but
the details become much more involved. We therefore
leave this question to future work.

3 Pseudo-Polynomial Algorithm for Non-
Confluent Flows

Compared with con�uent �ows, non-con�uent �ows
are clearly a stronger model. We note that any con-
�uent �ow is a non-con�uent �ow, but not vice versa.
In contrast to the case with con�uent �ows, for

which we showed that �nding an assignment of people
to exits is strongly NP-complete when we are dealing
with polygons with holes and O(n) exits, we can show
that, for non-con�uent �ows, a pseudo-polynomial al-
gorithm exists.
The algorithm is based on the technique of us-

ing time-expanded networks to compute �ows over
time [9]. Therefore, we compute a �ow network from
the input polygon as follows. We create a source ver-
tex s and a sink vertex t. For each grid square in P ,
we create two vertices�an in vertex and an out ver-
tex. We connect the in vertex to the out vertex with
an edge that has capacity 1 for every grid square. We
then make, for some integer T ≥ 1, T copies of the
polygon P1, . . . , PT , where each copy has these ver-
tices and edges added. For every grid square of P1,
we connect s to the in vertex of the grid square with
an edge that has capacity 1. We then connect the out
vertex of every grid square in Pi to the in vertex of all
its neighbors in Pi+1 for all 1 ≤ i ≤ T − 1. Again, the
edges we use all have capacity 1. Finally, we connect
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(a) (b) (c) (d)

Figure 2: (a) Assigning corner pixels to exits induces a split that leaves some pixels unassigned. (b) Splitting
the unassigned pixels optimally. (c) The idea for the linear-time algorithm. (d) Illustrating a solution for k = 3
exits.

the out vertex of every exit to t with an edge that has
capacity 1. We call this �ow network G.
It is fairly easy to see that if we are able to �nd a

maximum �ow of value A through G, then we are able
to evacuate P in T time steps. However, we note that
both T and |G| can be exponential in the complexity
of P , making this a pseudo-polynomial algorithm.

Theorem 5 There exists a pseudo-polynomial algo-

rithm to �nd an evacuation of a polygon with a non-

con�uent �ow.

4 Conclusions

We have discussed evacuations in grid polygons. We
�rst showed that �nding evacuations with con�uent
�ows in polygons with holes is hard, even for polygons
with only two exits. We then looked at algorithms to
�nd evacuations with con�uent �ows.
Our work raises some questions that require fur-

ther study. For simple polygons, there is evidence
that a constant number of exits allows strongly poly-
nomial solutions, even though some of the technical
details are complicated. What is the complexity of
�nding an evacuation plan with a con�uent �ow when
the number of exits is not constant? Can we �nd a
polynomial algorithm that gives the optimal evacua-
tion using non-con�uent �ows? Note that it is not
even clear that the output size of such an algorithm
is always polynomial. Finally, we conjecture that the
worst-case ratio between the evacuation times for con-
�uent �ows and non-con�uent �ows for polygons with
k exits is 2− 1

k .
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Robot Swarms for Exploration
and Triangulation of Unknown Environments

Sándor P. Fekete∗ Tom Kamphans*† Alexander Kröller* Christiane Schmidt*‡

Abstract

We consider a robot swarm in an unknown polygon.
All robots have only a limited communication range.
We then look for a triangulation of the polygon using
the robots as vertices such that the number of robots
used for the triangulation is minimized. All edges
in the triangulation have a length smaller than the
communication range. For this Online Minimum Re-
lay Triangulation Problem, we present a lower bound
of 9

8 on the competitive ratio for any online algo-
rithm. Moreover, we give an algorithm that is 21

4 -
competitive for simple polygons and 6-competitive for
general polygons.

1 Introduction

Exploring and guarding polygonal regions are classi-
cal problems that have been investigated for decades.
Hoffmann et al. [6] considered the online exploration
of simple polygons with unlimited vision, Icking et
al. [7] and Fekete et al. [5] exploration with limited
and time-discrete vision, respectively. Exploration
with both limited and time-discrete vision is presented
by Fekete et al. [4]. Placing stationary guards was first
considered by Chvátal [1], see also O’Rourke [8].

In this paper, we combine both problems, moti-
vated as follows. Consider a static sensor network
that needs to react to different scenarios by adding
further mobile sensors, e.g. sensor nodes attached to
mobile robots as in Figure 1. Typically, these sen-
sor nodes have a limited communication range, and
no common orientation or coordinate system is avail-
able; furthermore, the expanded network has to be
well connected, asking for a triangulated network.

Classical triangulation problems (see, e.g., [8, 2])
ask for a triangulation of all vertices of a polygon, but
allow arbitrary length of the edges in the triangula-
tion. This differs from our problem, in which a limita-
tion on the edge length (given by the communication
length) is given. Placing vertices of the triangulation

∗Algorithms Group, Braunschweig Institute of Technol-
ogy, Germany. Email: {s.fekete, t.kamphans, a.kroeller,
c.schmidt}@tu-bs.de, http://www.ibr.cs.tu-bs.de/alg
†Supported by 7th Framework Programme contract 215270

(FRONTS).
‡Supported by DFG Focus Program “Algorithm Engineer-

ing” (SPP 1307) project “RoboRithmics” (Fe 407/14-1).

Figure 1: A robot swarm consisting of iRobot Roombas.

(robots) on arbitrary positions in the polygon in order
to achieve this limited length is closely related to the
relay placement problem, in which a set of sensors is
to be connected by relays with limited range [3]. We
use the terms robots and relays synonymously.

The rest of the paper is organized as follows. The
following Section 2 provides definitions. We present
a lower bound on the competitive ratio in Section 3.
In Section 4 we describe a 6-competitive algorithm
for polygons (with holes) and prove that this algo-
rithm is 21

4 -competitive for simple polygons. In the
final Section 5 we discuss possible implications and
extensions.

2 Notation and Preliminaries

We are given an (unknown) polygon P with n vertices.
The length of P ’s boundary is denoted by D (in case
of a simple polygon, D is the perimeter of P ).

Every robot in the swarm has a (circular) commu-
nication range r. Within this range, each robot can
perceive other robots and communicate with them.
For the ease of description we assume that r is equal
to 1 (and scale the polygon accordingly).

Given an unknown polygon P , the Online Mini-
mum Relay Triangulation Problem (OMRTP) asks for
a triangulation of P that covers P . The triangulation
must not contain edges crossing the boundary of P ,
reflecting the impossibility to communicate through
walls. The triangulation therefore contains all ver-
tices of P , plus a number of relay points. The latter
are needed because edges in the triangulation must
not have a length exceeding r. The objective is to
minimize the number of robots; that is, vertices of
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Figure 2: The polygonal corridor of width 3/4. The dash-
dotted lines indicate parts of the transmission ranges of
the relays located at the vertices.

the triangulation. This is equivalent to minimizing
the number of relays. Let ROPT denote the number
of relays used by the optimum.

The robots start from a given point located at the
boundary of the unknown environment. Each robot
is allowed to move through the area, and will then
decide a new location for a vertex of the triangulation.
There it stops moving and becomes part of the static
triangulation. This is motivated in the application:
It is desirable to partially fix the triangulation as it
is constructed, to begin location services in this area
even if the polygon is not fully explored yet. This is
a crucial property if we assume a huge area that is
explored over long times, determined by the rate of
new robots being added to the system.

3 Lower Bound

For the lower bound we use a polygonal corridor of
width 3/4, see Figure 2. For a complete triangulation,
relays must be placed at the vertices, i.e., the position
of the first two relays is fixed.

In case the algorithm places the next relay on the
boundary (w.l.o.g. we assume that it places the re-
lay on the right boundary, otherwise a mirrored con-
struction is used), the polygonal corridor will be con-
structed as depicted in Figure 3(b). Hence, the opti-
mum needs 8 relays, the algorithm uses 9.

If, on the other hand, the algorithm locates the next
relay in the center, see Figure 4(a), the polygonal cor-
ridor will be constructed as depicted in Figure 4(b).
Consequently, the optimum needs again 8 relays for
the triangulation, while the algorithm uses 9.

An arbitrary number of these polygonal pieces can
be joined using small triangular structures as depicted
in Figures 3(b), 3(c), 4(b) and 4(c), as the vertices
require relays. Thus, we have:

Theorem 1 No deterministic algorithm for the on-
line minimum relay triangulation problem can be bet-
ter than 9

8 -competitive.

4 Online Triangulation

In the following, we describe our algorithm for the
online minimum relay triangulation problem. We split

(a)

(b) (c)

Figure 3: In case the algorithm places the next relay on
the boundary (w.l.o.g. on the right boundary) (a), the
optimum needs 8 relays (b), the algorithm 9 (c). The
dashed lines indicate the edges of the triangulation.

(a) (b) (c)

Figure 4: In case the algorithm places the next relay
in the center (a), the optimum needs 8 relays (b), the
algorithm 9 (c). The dashed lines indicate the edges of
the triangulation.

the construction in two parts: (i) a triangulation along
P ’s boundary and (ii) a triangulation of the interior.

For the boundary (i.e., the polygon’s outer bound-
ary and the boundary of holes in the environment)
we place relays within distance 1 along the boundary
and on vertices. Furthermore, we add a “second layer”
along the boundary by placing relays within a distance
of (at most)

√
3

2 to the boundary, and within distance
of (at most) 1 to the relays located on the bound-
ary, see Figure 5. Assuring this triangulated layer of
width

√
3

2 also at vertices, we need to have a closer
look at reflex vertices. The critical case for placing
many relays arises from a reflex vertex with interior
angle close to 360◦, see Figure 7. Thus, the maxi-
mum number of additional relays located at a reflex
vertex is 3, while we do not need any additional relays
at non-reflex vertices. So, we add at most 3n relays.
Consequently, the triangulation along P ’s boundary
does not use more than 2D + 3n relays.

We still need to take care of (ii): a triangulation
of the interior. Parts of the polygon of width less
than

√
3 are already covered, so we do not need to

take these into account, see Figure 8. For the remain-
ing polygon we use a triangular point grid with side
length 1, see Figure 6. In case points of this grid
would lie inside the triangulated

√
3

2 -layer along P ’s
boundary, they get dragged outside of this layer, as
depicted in Figure 9, in order to assure that the re-
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1

√
3

2

1

Figure 5: Example for the triangulation along the boundary, with cost at most 2D. The bold line represents the boundary
of P , the dashed lines indicate the edges of the triangulation, the dashed-dotted lines indicate again the communication
range for some relays.

sulting two parts can be glued into one triangulation
(i.e., in order to assure a distance of at most r = 1).
In case points of this triangular point grid would coin-
cide with the points from the boundary construction,
they will simply not be placed, so that no degenerate
triangles occur. Let k be the number of relays used
for this construction.

Altogether, we have:

RALG ≤ k + 2D + 3n (1)

On the other hand, we can establish lower bounds
on the number of relays for an optimal solution for
OMRTP (i.e., lower bounds for ROPT).

First, an easy observation yields the lower bound
in (2): For a complete triangulation of P we need to
place a relay on every vertex of the polygon.

ROPT ≥ n (2)

Moreover, the triangulation needs to establish edges
along all edges of the polygon P . As the maximum
distance of relays is r = 1, we have:

ROPT ≥ D (3)

As described earlier, k is the number of relays used
when overlaying P with a triangular point grid with
side length 1 such that all points are located inside of
P (i.e., in the interior, on edges or on vertices), see

Figure 6: Example for a cover of the interior of P , using
k relays.

Figure 6. Obviously, k is not uniquely defined, but for
any such overlay the optimum cannot use less than k
relays to triangulate P , i.e., we get a lower bound of

ROPT ≥ k (4)

Combining Equations 1–4 yields:

Theorem 2 There is a 6-competitive strategy for the
online minimum relay triangulation problem in poly-
gons (even with holes).

Note that we can find the places for relays in an
online fashion: From the given starting point, relays
move along the boundary, assuring the placement of
the relays for the triangulation along P ’s boundary.
Then, again starting from the given start point, an
overlay with a triangular point grid is constructed.
local adjustments of the type in Figure 9 assure the
placements of the relays in accordance with the strat-
egy. When a hole is encountered during the construc-
tion of the triangular grid for the interior the bound-
ary, a

√
3

2 -layer is constructed around the hole.

Simple Polygons. We can achieve a factor better
than 6 for simple polygons by a more careful anal-
ysis of the relays that we place at vertices. Let
n240 be the number of reflex vertices whose interior

Figure 7: Example for the triangulation at a 360◦ reflex
vertex. The black semi-bold lines represent the boundary
of P (for clarity the two boundary lines are not drawn
parallel but one is slightly offset from its actual position).
The circular points are relays charged to the reflex vertex.
Squares get charged to the perimeter—e.g., the shaded
squares to the shaded piece of boundary and the filled
squares to the bold piece of boundary. At most 3 addi-
tional relays are used.
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Figure 8: A polygon P . The layer of width
√

3
2

is depicted
in gray.

angle, αi, is greater than 240◦ and let nnr be the
number of non-reflex vertices. For the sum of the
interior angles in a simple polygon, Σαi, we have:
Σαi = (n− 2) · 180◦ < n · 180◦. This equation yields
a bound on n240:

Σαi ≥ n240 · 240◦ + nnr · 0◦

+(n− nnr − n240) · 180◦

⇔ (n− 2) · 180◦ ≥ (n− nnr) · 180◦ + n240 · 60◦

⇔ (nnr − 2) · 3 ≥ n240

⇒ n240 ≤ 3 · nnr

For each of the n240 reflex vertices we need at most
3 additional relays, for the nnr non-reflex vertices no
additional relays are placed. For each of the remaining
(n−nnr−n240) reflex vertices (with an interior angle
≤ 240◦) we place one additional relay. Hence, for the
total number of relays added at vertices, RV, we have:

RV ≤ (n− nnr − n240) · 1 + n240 · 3 + nnr · 0
≤ (n− nnr) · 1 + 6 · nnr = n+ 5 · nnr

We distinguish two cases as follows.

1. nnr ≤ n
4 ⇒ RV ≤ n+ 5

4n = 9
4n

2. nnr >
n
4 . In this case, we need at most 3 addi-

tional relays for at most 3
4 vertices:

n− nnr ≤ 3
4n⇒ RV ≤ 3 · 3

4n = 9
4n

Altogether, we have:

RALG ≤ k + 2D +
9
4
n ≤ 21

4
ROPT (5)

Theorem 3 A simple polygon allows a 21
4 -

competitive strategy for the online minimum
relay triangulation problem.

5 Conclusion

We introduced the online minimum relay triangula-
tion problem. We gave a lower bound of 9

8 for the com-
petitive ratio for any online algorithm (even in simple
polygons). For polygons we presented a 6-competitive
algorithm, and showed that it is 21

4 -competitive for

Figure 9: An example for the combination of the trian-
gulation along P ’s boundary and the triangulation of the
interior into one triangulation.

simple polygons. Considering the gap between the
lower bound and the given competitive ratio an open
question is whether we are able to improve the ratio.

Another closely related problem arises from con-
sidering a limited number of robots; the Maximum
Coverage Triangulation Problem (OMCTP) asks for a
triangulation using ` robots, such that the area within
an unknown polygon P that is covered is maximized.
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Malostranské nám. 25, 118 00 Praha 1,

Czech Republic

The full paper is available at:
http://www.math.tu-berlin.de/~felsner/Paper/new-pla.pdf

Abstract. Arrangements of lines and pseudolines
are important and appealing objects for research in
discrete and computational geometry. We show that

there are at most 20.657 n2
simple arrangements of n

pseudolines in the plane. This improves on previ-
ous work by Knuth who proved an upper bound of

3(n
2) ∼= 20.792 n2

in 1992 and the first author who
obtained 20.697 n2

in 1997. The argument uses sur-
prisingly little geometry. The main ingredient is
a lemma that was already central to the argument
given by Knuth.

1 Introduction

Arrangements of pseudolines are the topic of a chap-
ter in the Handbook on Discrete and Computational
Geometry [7]. The monograph [3] is another general
reference.

It is convenient to think of a pseudoline as an un-
bounded x-monotone curve in the Euclidean plane.
An arrangement of pseudolines is a family of pseu-
dolines with the property that each pair of pseudo-
lines has a unique point of intersection where the two
pseudolines cross. An arrangement is simple if no
three pseudolines have a common point of intersec-
tion. Due to the x-monotonicity of the pseudolines
there is a unique unbounded cell above all pseudolines
of an arrangement, the north-cell. Arrangements with
a distinguished unbounded cell, e.g., a north-cell, are
called marked arrangements.

Two arrangements are isomorphic, i.e., considered
the same, if they can be mapped onto each other
by a homeomorphism of the plane. In the case of
marked arrangements it is required that an isomor-
phism respects the distinguished cell and preserves
orientations. Note that every marked arrangement is
isomorphic to an arrangement of x-monotone pseudo-
lines with the north-cell as distinguished cell.

∗Partially supported by DFG grant FE-340/7-1
†Work by P.V. was supported by the projects 1M0545 and

MSM0021620838 of the Ministry of Education of the Czech
Republic.

In this paper we are interested in the number Bn

of marked simple arrangements of n pseudolines. It is
known that Bn ∈ 2Θ(n2). Our interest is in the multi-
plicative constant hidden in the Θ(n2). Knuth [8] con-
siders the counting problem for several related classes
of arrangements, e.g. arrangements without marking
or projective arrangements, their numbers only differ
by polynomial factors.

We are going to study the growth of bn = log2(Bn).
An easy lower bound construction is given in [10,
sec. 6.2]; it yields bn > 1

9n
2. Knuth [8, page 37] shows

bn > 1
6n

2 − O(n). In Section 3 we use enumeration
results for rhombic tilings to prove bn > 0.188 n2.

The upper bound Bn ≤ 3(n
2), i.e., bn ≤ 0.7924 n2

was shown by Knuth [8, page 39]. At the end of
this monograph Knuth [8, page 96] comments that
an improved bound of bn ≤ 0.7194n2 can be obtained
from the the sharpest version of the zone theorem.
Felsner [2] obtained the bound bn ≤ 0.6974 n2. In
Section 2 we review the idea in Knuth’s proof and
add a new simple idea to get bn ≤ 0.6609 n2. In the
full paper we refine the analysis and prove the bound
bn ≤ 0.6571 n2 stated in Theorem 4.

There are several nice representations and encod-
ings of simple arrangements of pseudolines. We close
the introduction by explaining three of them. Given a
marked arrangement A of n pseudolines we label the
pseudolines with 1, . . . , n such that they cross a ver-
tical line west of all intersections in increasing order
from bottom to top; see Figure 1 (left).

Local sequences. Associate with pseudoline i the
permutation αi of {1, .., n}\i reporting the order from
left to right in which the other pseudolines cross line
i. The family (α1, α2, . . . , αn) is called the family of
local sequences of the arrangement.

Wiring diagrams. Goodman [6] introduced a class
of drawings of simple arrangements called wiring dia-
grams to get well-arranged pictures of arrangements.
The idea is to specify a set of n horizontal lines (wires)
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and confine the pseudolines to these wires except for
positions where they cross another pseudoline and
thereby change to an adjacent wire. Figure 1 shows
an example.

6
5
4
3

1
2

6
5
4
3

1
2

Figure 1: An arrangement A and a wiring dia-
gram of A.

Zonotopal tilings. A zonotopal tiling T is a tiling
of a regular 2n-gon with vertices x0, x1, . . . , x2n−1 in
clockwise order starting with the highest vertex x0.
The tiles of T are rhombi R(i, j), 1 ≤ i < j ≤ n, such
that R(i, j) has one side which is a translate of the
segment [xi−1, xi] and one side which is a translate of
the segment [xj−1, xj ]. The tiles are not allowed to
be rotated.

Zonotopal tilings can be viewed as normalized
drawings of the duals of marked simple arrangements.
Figure 2 shows an example. For additional informa-
tion on zonotopal tilings and their relation to arrange-
ments see [3] and [1].

Proofs of equivalence of the three representations
are detailed in [3]. The basic tool for the proof of
equivalence is to sweep the representations, resp. the
arrangement, from left to right.

Figure 2: Arrangement A with its dual and the cor-
responding zonotopal tiling.

2 The upper bound

The idea in [2] was based on ‘horizontal encodings’
of arrangements. The first step was to replace the
numbers in αi by bits, a 1 for numbers j with j < i
and a 0 for j > i.

The proof of Knuth [8] takes a ‘vertical’ approach.
Let A be an arrangement of n + 1 pseudolines and
consider pseudoline n+ 1 drawn into the wiring di-
agram of the arrangement A′ induced by the first n
pseudolines of A. The course of pseudoline n+ 1 de-
scribes a cutpath descending from the north-cell to the

south-cell of A. Looking at the zonotopal tiling rep-
resentation of A′ as a graph a cutpath corresponds to
a vertically decreasing path from the highest vertex
x0 to the lowest xn. See [8] for details.

The number of arrangements A such that A\n+ 1
equals A′ is exactly the number of different cutpaths
of A′. Define γn as the maximal number of cutpaths
of an arrangement of n pseudolines can have. It then
follows that

Bn+1 ≤ γn ·Bn. (1)

Knuth proves that γn ≤ 3n, he also notes that the
‘bubblesort arrangement’ (see Figure 3) of size n has
approximately n 2n−2 cutpaths. Knuth also conjec-
tures that the bubblesort arrangement is the maximiz-
ing example. The bubblesort arrangement is a par-
ticular Euclidean arrangement corresponding to the
projective cyclic arrangement, cf. [11].

Figure 3: Wiring diagrams of the bubblesort arrange-
ments of 6 and 7 lines.

In social choice theory a set T of permutations of [n]
is called an acyclic set if for all i, j, k ∈ [n] at most two
of ijk, jki, kij appear as a restriction of a permuta-
tion in T to {i, j, k}. The interest in acyclic sets comes
from the fact that they avoid Condorcet cycles. That
is, if voters are constrained to preference lists from an
acyclic set T , then the majority digraph on the alter-
natives is acyclic. It has been shown in [5] that the
set of cutpaths of an arrangement A is an acyclic set.
Fishburn [4] introduced the alternating scheme as a
large acyclic set. It turned out that the permutations
in the alternating scheme correspond to the cutpaths
of the bubblesort arrangement (Figure 3). Galambos
and Reiner [5] gave a precise formula for the size of
the alternating scheme and conjectures that this is the
largest size of an acyclic set that can be obtained as
the set of cuthpaths of an arrangement, i.e., in a dif-
ferent context they came up with the same conjecture
as Knuth.

In the remainder of this section we present the main
lemma of Knuth and show how to use it to bound the
number γn of cutpaths of an arrangement.

Consider a cutpath p descending through the wiring
diagram of A. Having reached a cell c the path has
to continue by crossing the wire w bounding c from
below. The cells that can be reached from c by cross-
ing w are ordered from left to right as c1, c2, .., cd. Let
their number d be the degree of c. When d ≥ 2 we
let c1 be the left successor of c, and cd be the right
successor of c. The other cells c2, . . . , cd−1 are called
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middle successors of c. When d = 1 we let c1 be the
unique successor of c.

When the cutpath p of A traverses a cell c such that
there is a middle successor cell c′ of c separated from
c by pseudoline j we say that p sees a middle of color
j at c. If p descends from c to c′ we say that p has
crossed pseudoline j as a middle.

Lemma 1 (Knuth) For every pseudoline j and ev-
ery cutpath p it holds: p sees a middle of color j at
most once.

pseudoline j

w

w′
c′

cutpath p

c

Figure 4: Illustrating the proof of Lemma 1

Proof. Suppose a cutpath p sees a middle of color
j at different cells c and c′. Assuming that p visits c
before c′ we have a situation as sketched in Figure 4.
Let t be the number of wires strictly between w and
w′. Between the visits of the borders of c and c′ pseu-
doline j has to change at least (t+ 1) + 2 times from
a wire to another, i.e., pseudoline j has at least t+ 3
crossings in this range. Every pair of pseudolines has
only one crossing. Therefore, every pseudoline cross-
ing j between c and c′ also has to be traversed by
the cutpath p on its way from c to c′. The cutpath p
only intersects t + 1 wires on its way from c to c′, a
contradiction.

We use the lemma to encode cutpaths of an ar-
rangement A. With a cutpath p we associate two
combinatorial objects:

• A set Mp ⊂ [n] consisting of all j such that
pseudoline j is crossed by p as a middle.

• A binary vector βp = (bp(0), bp(1), . . . , bp(n −
1)) such that bp(i) = 1 only if leaving the cell
between wire i and i+ 1 cutpath p proceeds to
the left successor of c.

Claim I. The mapping p→ (Mp, βp) is injective from
cutpaths of A to pairs consisting of a subset M of [n]
and a binary vector of length n.

From the claim it immediately follows that γn ≤
2n 2n = 4n. To improve the bound we use two simple
observations:

• Every j taken as a middle has a corresponding
entry in βp that is not used.

• The lookups of entries of βp are done in increas-
ing order of indices.

It follows that we can take βp to be a binary string
of length n− |Mp| and agree that lookups are always
taken at the fist unused position of β. This improved
encoding yields:

γn ≤
n∑

k=0

(
n

k

)
2n−k = 2n (1 +

1
2

)n = 3n. (2)

This is the upper bound of Knuth, only the arith-
metics in our derivation is simpler.

Note that our estimate for the length of βp does
not yet taking into account that some cells may have
degree one. Define ΓA(k, r) as the set of cutpaths in
A that take k middles and visit r cells of degree one.
From the above considerations we immediately have

|Γ(k, r)| ≤
(
n

k

)
2n−k−r (3)

With the next lemma we show how to make use of
this.

Lemma 2 |Γ(k, r)| ≤ min
{(n

k

)
,

(
n

r

)}
2n−k−r.

Proof. Paths in ΓA(k, r) can also be encoded as cut-
paths in the arrangement Â obtained from A via a
180◦ rotation of the plane. A cutpath p of A takes a
middle to change from c to c′ exactly if the rotated
cutpath p̂ of Â is reaching cell c as the unique succes-
sor of c′. In other words middles of p and uniques of
p̂ are in bijection as well as middles of p̂ and uniques
of p. This yields ΓA(k, r) = ΓÂ(r, k) and the lemma
follows from formula (3).

Using this lemma we get

γn ≤
∑
k,r

|ΓA(k, r)| (4)

≤
∑
k,r

min
{(n

k

)
,

(
n

r

)}
2n−k−r

≤ 2 · 2n
n∑

k=0

(
n

k

)
2−k

∑
r≥k

2−r (5)

= 2n+1
n∑

k=0

(
n

k

)
2−2k

∑
j≥0

2−j

= 2n+2
(

1 +
1
4

)n

= 4
(5

2

)n

. (6)

Combining this with (1) we get:

Theorem 3 The number Bn of arrangements of n

pseudolines is at most 4n−1
(

5
2

)(n−1
2 )

, hence for n large
enough bn ≤ 0.6609 n2.
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In the full paper we include a more careful analysis
of the distribution of middles along cutpaths. This
yields an improved bound on the size of Γ(k, r) and
the theorem:

Theorem 4 If Bn is the number of arrangements of
n pseudolines and bn = log2Bn, then bn ≤ 0.6571 n2

for large enough values of n.

3 A lower bound

Given three numbers i, j and k we consider the set of
i+ j+k pseudolines 1, 2, . . . , i+ j+k partitioned into
the following three parts: {1, . . . , i}, {i + 1, .., i + j},
and {i+ j+ 1, .., i+ j+ k}. A partial arrangement on
this set is called consistent if any two pseudolines from
different parts cross while any two pseudolines from
the same part do not cross. The zonotopal duals of
consistent partial arrangements are rhombic tilings of
the centrally symmetric hexagon H(i, j, k) with side
lengths i, j and k; Figure 5 shows an example.

Figure 5: The hexagon H(5, 5, 5) with one of its rhom-
bic tilings.

The enumeration of rhombic tilings of H(i, j, k) is
a classical combinatorial problem solved by MacMa-
hon [9]. There are

PP (i, j, k) =
i−1∏
a=0

j−1∏
b=0

k−1∏
c=0

a+ b+ c+ 2
a+ b+ c+ 1

(7)

such tilings.
Consider a consistent partial arrangement with

three parts of size n. Such an arrangement can be
completed to a ‘full’ arrangement of 3n pseudolines
by adding any arrangement of n lines for each of the
three parts. This shows that

B3n ≥ PP (n, n, n)Bn
3. (8)

To find the growth rate of PP (n, n, n) we first
note that PP (n, n, n) = T (n)/T (0) where T (k) =

∏n−1
a=0

∏n−1
b=0 (a + b + k + 1). Let t(k) = lnT (k) and

approximate t(k) by an integral

t(k) = lnT (k) =
n−1∑
a=0

n−1∑
b=0

ln(a+ b+ k + 1)

≈
∫ n

x=0

∫ n

y=0

ln(x+ y + k + 1) dy dx. (9)

From this approximation it can be concluded that

lnPP (n, n, n) = t(n)− t(0) ≈
(9

2
ln(3)− 2 ln(2)

)
n2.

(10)
Combining this with Formula (8) we get:

Proposition 1 The number Bn of arrangements of
n pseudolines is at least 20.1887 n2

.
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Grünbaum and Sloane, Discr. Math., 32 (1980),
pp. 27–35.

[7] J. E. Goodman, Pseudoline arrangements, in
Handbook of Discrete and Computational Geom-
etry, Goodman and O’Rourke, eds., CRC Press,
1997, pp. 83–110.

[8] D. E. Knuth, Axioms and Hulls, vol. 606 of
Lect. Notes Comput. Sci., Springer-Verlag, 1992.

[9] P. A. MacMahon, Combinatory analysis. Vol.
II., Chelsea, 1960. Reprint of the 1916 edition.
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Even and quasi-even triangulations of point sets in the plane

I. Fernández∗‡ C.I. Grima†‡ A. Márquez†‡ A. Nakamoto§ R. Robles†‡ J. Valenzuela†‡

Abstract

Given a point set in the plane, among all its triangu-
lations, we call even triangulations to those with all
the vertices with even degree, and quasi-even trian-
gulations to those with all interior vertices with even
degree. The former are the 3-colorable triangulations
of a point set. We study some problems of those tri-
angulations.

1 Introduction

A triangulation is said to be even or eulerian if each
vertex has even degree (e-triangulation for short); e-
triangulations have been studied since a seminal result
by Whitney

Theorem 1 ([Whitney])
A plane triangulation is 3-colorable if and only if

all its vertices have even degree.

Hoffmann and Kriegel proved an important com-
binatorial theorem [4]: Every 2-connected bipartite
plane multigraph G without 2-cycle faces has a trian-
gulation in which all vertices have even degree. Com-
bined with Theorem 1, this result implies that every
such graph has a 3-colorable plane triangulation. Us-
ing this theorem, Hoffmann and Kriegel significantly
improved the upper bounds of several art gallery and
prison guard problems. In fact, e-triangulations are
very much related with coloring problems [9], another
interesting reference is [6].

Recently, Nakamoto and some collaborators [7, 10]
have proven that, using sequences of some local trans-
formation (flips), it is possible to transform any e-
triangulation on certain surfaces into another.

In general, e-triangulations have been studied from
a topological point of view, meaning that the posi-
tion of the vertices in the plane or the realization of
the edges as line segments has not been taken into ac-
count. In this paper, we try to study this problems for
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geometric triangulations of point sets in the plane. By
geometric we understand that the vertices are actual
points (with fixed coordinates) in the plane, and the
edges are represented by non-crossing line segments.

Thus, given a point set S in the plane, we con-
sider, among all its (geometric) triangulations, two
special classes, the geometric even triangulations (e-
triangulations hereafter), and the geometric quasi-
even triangulations (q-e-triangulations) where all the
vertices with odd degree lie on the outerface (or,
equivalently, they are extreme points of the convex
hull).

Although the study of geometric e-triangulations
is natural by itself (see [5], for instance), it is easy to
see that geometric q-e-triangulations are exactly those
triangulations of a point set that can be 3-colorable.

Theorem 2 A (geometric) triangulation T of a point
set S is 3-colorable if and only if it is a q-e-
triangulation.

Proof. We can place the vertices of the convex hull
of S on the equator of an sphere, and make two copies
of the interior vertices of S, one in the northern hemi-
sphere and the other in the southern hemisphere, to
obtain a new set S′ on the sphere. Obviously T in-
duces in a natural way a triangulation T ′ of S′ that
is a triangulation of the sphere, and T ′ is even if and
only if T is even. Now, applying Theorem 1 we obtain
our result.

�

Thus, in some way, q-e-triangulations are a good
generalization of triangulations of polygons (in some
cases some results of triangulations of polygons–as the
original Art Gallery Theorem– are obtained just using
that they admit a 3-coloring).

2 e-triangulations of convex sets

In this section, we consider e-triangulations of point
sets in convex position. We study three main pro-
blems: the existence of such a triangulation, the num-
ber of e-triangulations, and the connectivity of the
graph of e-triangulations using some local transfor-
mations known as N-flips.

Throughout this section, S will be a convex set with
n ≥ 3 vertices. In general, we label these vertices in
a clockwise direction starting by 1 (and ending in n).
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2.1 Existence of e-triangulations in convex sets

In this subsection we study the convex sets admitting
an e-triangulation.

We call a piece P of a triangulation of S to three
consecutive vertices u, a, v with deg(u) = deg(v) = 2
and deg(a) = 4, the vertex a is called the apex of P .
The following result can be proved using induction
and the dual graph:

Lemma 3 Any e-triangulation T on S has at least
one piece; moreover, if |S| ≥ 9, then it has at least
two pieces.

As a consequence of this lemma, we can obtain se-
veral results. In particular, if a triangulation is colo-
red as a chessboard as in [1] (every triangle is either
black or white and edge-adjacent triangles have diffe-
rent colors), it is possible to give another characteri-
zation of e-triangulations.

Lemma 4 Let T be a triangulation of a convex poly-
gon P . The following conditions are equivalent

1. T is an e-triangulation

2. All the edges in P belong to triangles with the
same color.

3. Every vertex in P belongs to an odd number of
triangles.

In fact, some of the results of the above lemma (but
not all of them) are mentioned in [1], but it lacks in
a proof and it is not mentioned explicitly that those
conditions are equivalent.

Another result that it can be deduced from
Lemma 3 using induction is

Lemma 5 S admits an e-triangulation if and only if
|S| = 3k.

In fact Lemma 5 is saying us how to obtain a generic
e-triangulation: starting in a triangle, we add a piece
to one of the edges of the outerface, and so on. Of
course, if we have a polygon with a number of ver-
tices that is not a multiple of 3, we can think in
adding Steiner points in its interior in order to get an
e-triangulation, but this is hopeless again as a conse-
quence of the proof of Lemma 3:

Proposition 6 Let S be a point set that admits an
e-triangulation, then |CH(S)| = 3k.

2.2 Counting e-triangulations of convex sets

From now on T3k will denote the number of e-
triangulations of a convex set S with |S| = 3k points.

Remark 1 Observe that in an e-triangulation of a
convex set, if we remove any edge uv, and we consider
for u and v the degrees to the left and to the right of
uv, then the four (in principle different) degrees so
obtained have the same parity.

Lemma 7 The number f3k of e-triangulations of a
convex set S with |S| = 3k points such that all of
them contain the triangle 1, 2, 3k, verifies

f3k = T3T3(k−1) + T3·2T3(k−2) + . . . + T3(k−1)T3

T3 = 1, T6 = 2.

Proof. (sketch) If we have an e-triangulation T of S
with the triangle 1, 2, 3k, then the edge 3k, 2 is inte-
rior and must belong to another triangle 3k, 2, v. First
of all, observe that, by Remark 1, that T induces e-
triangulations in the subsets S1 = {2, 3, . . . , v} and
S2 = {v, v + 1, . . . , 3k}. Then the result is obtained
from the following observations a) Since S1 and S2

admit e-triangulations, then v = 3m+2. b)The num-
ber of e-triangulations of S containing both triangles
1, 2, 3k and 3k, 2, v is the number of e-triangulation of
S1 (T3m) times the number of e-triangulations of S2

(T3k−3m). �

Proposition 8 The number T3k can be computed by
the following recursion

T3k = f3f3k + f3·2f3(k−1) + . . . + f3kf3

f3k = T3T3(k−1) + T3·2T3(k−2) + . . . + T3(k−1)T3

with T3 = f3 = f6 = 1.

From this proposition, we can compute the values
of T3k

k 1 2 3 4 5 6 7
f3k 1 1 4 22 140 969 7084
T3k 1 2 9 52 340 2394 17710

k 8 9 10
f3k 53820 420732 3362260
T3k 135720 1068012 8579560

In the same way, we can obtain another method
to obtain an explicit formula given the number of e-
triangulations (check [1]).

Indeed, if we set an = f3(n+1) and bn = T3(n+1),
where a0 = b0 = 1, then we have

an = b0bn−1 + b1bn−2 + . . . + bn−1b0 =

=
∑n−1

k=0 bk bn−k−1

bn = a0an + a1an−1 + . . . + ana0 =
=
∑n

k=0 ak an−k
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Proposition 9 The generating series A(x) =∑+∞
n=0 an xn and B(x) =

∑+∞
n=0 bn xn verifies the

algebraic equations

A(x) = 1 + x B(x)2 , B(x) = A(x)2

These algebraic generating series can be expressed
as finite sums of a kind of hypergeometric series in
several variables using well-known techniques to ob-
tain (see [1])

A(x) =
+∞∑
n=0

(
4n

n

)
xn

3n + 1

B(x) =
+∞∑
n=0

(
4n + 2

n

)
xn

2n + 1

This implies

Corollary 10 T3k =
(
4k−2
k−1

)
1

2k−1 and f3k =(
4k−4
k−1

)
1

3k−2

On the other hand, it can be seen that the num-
ber f3k =

(
4k−4
k−1

)
1

3k−2 is related with the number of
dissections of a polygon, the number of rooted loop-
less n-edge maps in the plane (planar with a distin-
guished outside face) [8], the number of lattice paths
from (1, 0) to (3n + 1, n) which, starting from (1, 0),
only utilize the steps +(1, 0) and +(0, 1) and, additio-
nally, the paths lie completely below the line y = 1/3x
(i.e. if (a,b) is in the path, then b < a/3) , enume-
rates quartic trees (rooted, ordered, incomplete) with
n vertices (including the root), and is the Pfaff-Fuss-
Catalan sequence Cm

n for m = 4 [3, 11]. See [2] for a
general reference on these sequences.

2.3 The graph of e-triangulations of a convex
polygon

In several papers [7, 10], Nakamoto and others have
studied the graph of (topological) e-triangulations
with respect to N-flips. Suppose we have a hexagonal
region in an e-triangulation T v1, v2, v3, v4, v5, v6 with
diagonals v1v3, v3v6, and v4v6 and no inner vertices.
The N-flip of the path v1, v3, v6, v4 is to replace the
diagonals v1v3, v3v6, and v4v6 by v1v5, v2v5, and v4v2
in the hexagonal region (see Figure 1).

We define the graph of e-triangulations of a set S
as the graph having as many vertices as different tri-
angulations has S, and with an edge between two ver-
tices if it is possible to transform each corresponding
e-triangulation into the other using one N-flip.

Theorem 11 The graph of e-triangulations of a set
S in convex position is connected.

Figure 1: An N-flip.

Figure 2: If the number of interior points in even, this
configuration has not q-e-triangulation.

3 q-e triangulations

Of course, there exists configurations of points that
does not admit q-e-triangulations, for instance four
points in non-convex position. It can be thought that
if there are many interior points, then we can always
obtain a q-e-triangulation, but this is not the case.

Lemma 12 There exist point sets (see Figure 2) ar-
bitrarily large without q-e-triangulations.

3.1 Extending a geometric graph to a q-e-
triangulation

As it has been mentioned in the Introduction, those
geometric graphs that can be extended to a q-e-
triangulation can be used in some applications as ex-
tensions of the Art Gallery Theorem. For topological
graphs Hoffmann and Kriegel [4] proved that every
2-connected bipartite plane multigraph G without 2-
cycle faces can be extended to an even triangulation.
But this result does not hold in the case of geometric
graphs, as shown in Figure 3. The bipartite geome-
tric graph depicted in that figure has only two ex-
tensions to triangulations and none of them is a q-
e-triangulation. Even more, we can prove, using a
reduction from PLANAR-3-SAT, the following result

Theorem 13 Given a geometric graph G with n
vertices, to decide if G can be extended to a q-e-
triangulation is a NP-complete problem.
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Figure 3: This geometric graph cannot be extended
to a q-e-triangulation.

Figure 4: Clauses gadget (only solid lines).

Proof. (sketch) We make a reduction from
PLANAR-3-SAT, using the following gadgets:
One gadget for the clauses (see Figure 4) to three
specific vertices we add pipelines (basically hexagons
joined by opposite vertices) until we reach the vari-
able gadget (see Figure 5). Completing the outerface
in a proper way, we can check that this graph can
be extended to a q-e-triangulations if and only if the
original PLANAR-3-SAT entry is satisfacible.

�
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Combinatorial Proof for fast Pivoting in K-matrix Linear Complementarity
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Abstract

We use a purely combinatorial argument to show that
simple principal pivot methods applied to linear com-
plementarity problems with K-matrices converge very
quickly. The proof is conducted in the setting of ori-
ented matroids.

1 Introduction

We are concerned with the linear complementarity
problem (LCP), which is for a given matrixM ∈ Rn×n

and a given vector q ∈ Rn to find two vectors w and
z in Rn so that

w −Mz = q,

w, z ≥ 0,

wTz = 0.

(1)

There is a broad range of applications. Many opti-
mization problems such as linear programming (LP),
convex quadratic programming (QP) and finding a
Nash Equilibrium of bimatrix games can be expressed
as LCPs.
It is NP-complete to decide whether an LCP has

a solution [2]. One in practice and theory likewise
important class of LCPs are the instances where the
matrix M is a P-matrix, i.e., a matrix with positive
principal minors. We denote such an LCP as a P-LCP.
It is well-known that every P-LCP(M, q) has a unique
solution for every right-hand side q [6]. Further, if
P-LCP were NP-hard, then NP = coNP [5]. Nev-
ertheless, up to now no polynomial-time algorithm
is known which finds the unique solution of every
P-LCP.
In this work we study the behavior of simple prin-

cipal pivoting methods in a combinatorial abstraction.
These methods share their essential idea with the sim-
plex algorithm. Given some LCP(M, q), we choose
any set B ⊆ [n] in the beginning. We then build a
matrix AB in Rn×n as follows: the ith column is the
ith column of −M if i ∈ B and the ith column of
the n-dimensional identity matrix otherwise. If AB is
invertible, we call B a basis; if M is a P-matrix, every
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subset B ⊆ [n] is a basis. Now, if A−1

B q ≥ 0, we have
discovered the solution: let

(wi, zi) :=

{

(0, (A−1

B q)i) if i ∈ B,

((A−1

B q)i, 0) if i /∈ B.

If on the other hand A−1

B q � 0, then w and z
defined above satisfy w − Mz = q and wT z = 0,
but w, z ≥ 0 fails. In simple principal pivoting, one
tries to improve the situation by replacing the basis
B with the symmetric difference B ⊕ {i}, where i is
selected by a pivot rule from the set of “bad indices”
{i : (A−1

B q)i < 0}. Some pivot rules terminate on ev-
ery P-LCP. Unfortunately, for many rules instances
with non-polynomial runtime are known. Because of
that we focus on a subclass of P-LCPs for which pivot-
ing methods run provably fast. A Z-matrix is a matrix
with non-positive off-diagonal elements. A K-matrix
is a P-matrix which is also a Z-matrix. For K-LCPs,
a recent result [4] shows that simple principal piv-
oting methods run in a number of pivot steps linear
in n and thus in polynomial time. In the following
we prove this result in a purely combinatorial way.
Consider the set

V =
{

sgnx :
[

In −M −q
]

x = 0
}

,

where sgnx is a vector in {−, 0,+}2n+1 defined as
(sgnx)i := sgnxi. We claim that the collection V
of sign vectors builds the set of vectors of an oriented
matroid on 2n+1 elements. We build up on Todd’s [7]
approach which consists in combinatorially generaliz-
ing LCPs by formulating the complementarity prob-
lem of oriented matroids (OMCP). First, we define
P-matroids, Z-matroids and K-matroids, combinato-
rial analogues of the LCP classes mentioned above.

Starting with algebraic properties of K-matrices,
given by Fiedler and Pták [3], we extract the com-
binatorics and derive properties of K-matroids, see
Theorem 5. Finally, in Theorem 6 we show that
simple principal pivot methods solve the OMCP on
K-matroids in a linear number of pivot steps.

Observe that Theorem 6 implies the aforesaid re-
sult of [4]. Our proof rests upon purely combinatorial
arguments, which is nice since we avoid the machinery
of matrix algebra.
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2 Oriented matroids

The theory of oriented matroids provides a natural
concept which generalizes combinatorial properties of
many geometric configurations.

2.1 Definitions and basic properties

We restrict the presentation to the bare minimum.
For more on oriented matroids consult, for instance,
the book [1].

Let E be a finite set of size n. A sign vector
on E is a vector X in {+, 0,−}

E
. We define X− =

{e ∈ E : Xe = −}, X⊖ = {e ∈ E : Xe = − or Xe =
0}, and the sets X0, X⊕ and X+ analogously. For
any subset F of E we write XF ≥ 0 if F ⊆ X⊕, and
XF ≤ 0 if F ⊆ X⊖; furthermore X ≥ 0 if XE ≥ 0
and X ≤ 0 if XE ≤ 0. The support of a sign vec-
tor X is X = X+∪X−. The opposite −X of X is the
sign vector with (−X)+ = X−, (−X)− = X+ and
(−X)0 = X0. The composition of two sign vectors X
and Y is given by

(X ◦ Y )e =

{

Xe if Xe 6= 0,

Ye otherwise.

The product X · Y is of two sign vectors is the sign
vector given by

(X · Y )e =











0 if Xe = 0 or Ye = 0,

+ if Xe = Ye and Xe 6= 0,

− otherwise.

Definition 1 An oriented matroid on E is a pair
M = (E, C) where C is a set of sign vectors satisfying
the following axioms:
(C1) 0 6∈ C.
(C2) If C ∈ C, then −C ∈ C.
(C3) For all C,D ∈ C, if C ⊆ D, then C = D or

C = −D.
(C4) If C,D ∈ C, e ∈ C+ ∩D− and f ∈ (C+\D−) ∪

(C−\D+), then there is a Z ∈ C with Z+ ⊆
(C+ ∪ D+)\ {e}, Z− ⊆ (C− ∪ D−)\ {e} and
Zf 6= 0.

The collection C is the set of circuits of the ma-
troid and the property (C4) is called strong circuit
elimination. An oriented matroid is equivalently de-
scribed by specifying the set V of vectors ; a vector is
obtained by taking all finite compositions of circuits,
i.e., V = {C1 ◦ · · · ◦ Ck : k ≥ 0, C1, . . . , Ck ∈ C}.
On the other hand a non-zero vector C ∈ V is a cir-
cuit if and only if there is no non-zero vector X ∈ V
satisfying X ⊂ C.
A basis of an oriented matroid M is an inclusion-

maximal set B ⊆ E for which there is no circuit C
with C ⊆ B. Every basis B has the same size, called
the rank of M.

Proposition 1 Let B be a basis of an oriented ma-
troid M. For every e in E\B there is a unique cir-
cuit C(B, e), called fundamental circuit, for which
C(B, e) ⊆ B ∪ {e} and C(B, e)e = +.

Two sign vectors X and Y are orthogonal if the set
{Xe · Ye : e ∈ E} either equals {0} or contains both +
and −. We then write X ⊥ Y .

Proposition 2 For every oriented matroid M =
(E, C) of rank n there is a unique oriented matroid
M∗ = (E, C∗) of rank |E| − n given by

C∗ =
{

Y ⊆ {−, 0,+}
E
: X ⊥ Y for every X ∈ C

}

.

This M∗ is called the dual of M. Note that
(M∗)∗ = M. The circuits of M∗ are the cocircuits
of M and the vectors of M∗ are the covectors of M.

For any F ⊆ E, the vector X\F denotes the sub-
vector (Xe : e ∈ E\F ) of X. Then let

C\F := {X\F : X ∈ C and Xf = 0 for all f ∈ F} .

It is easy to see that the pair M\F = (E\F, C\F ) is
an oriented matroid; it is said to be obtained from M
by deletion of F .

Definition 2 A matroid M̂ = (E ∪ {q} , Ĉ) with q 6∈
E is a one-point extension of M if M̂\ {q} = M.

2.2 Complementarity in oriented matroids

From now on we are considering oriented matroids
endowed with a special structure. The set of elements
E2n is a 2n-element set with a fixed partition E2n =
S ∪ T into two n-element sets and a mapping e 7→ e
from E2n to E2n which is an involution, that is, e = e
for every e ∈ E2n, and for every e ∈ S we have e ∈ T .
The element e is called the complement of e. For a
subset F of E2n let F = {e : e ∈ F}. A subset F
of E2n is called complementary if F ∩ F = ∅.

The matroids we are working with are of the kind
M = (E2n,V), where the set S ⊂ E2n is a basis of M.
In addition, we study their one-point extensions M̂ =
(Ê2n, V̂), where Ê2n = E2n ∪ {q} for some element
q /∈ E2n. We consider only extensions M̂ that have
the same rank as M.

Definition 3 For an oriented matroid M̂ the ori-
ented matroid complementarity problem (OMCP) is
to find a vector X so that

X ∈ V̂ , (2a)

X ≥ 0, Xq = +, (2b)

Xe ·Xe = 0 for every e ∈ E2n, (2c)

or to report that no such vector exists. A vector X
which satisfies (2b) is called feasible, one which satis-
fies (2c) is complementary. If an X ∈ V̂ satisfies (2b)
and (2c), then X is a solution to the OMCP(M̂).
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Now we show how LCPs are related to OMCPs.
Finding a solution to the LCP (1) is equivalent to
finding an element x of

V =
{

x ∈ R2n+1 :
[

In −M −q
]

x = 0
}

such that

x ≥ 0, x2n+1 = 1,

xi · xi+n = 0 for every i ∈ [n] .
(3)

We set V̂ = {sgnx : x ∈ V } and consider the OMCP
for the matroid M̂ = (Ê2n, V̂). Clearly, if the OMCP
has no solution, then V contains no vector x satis-
fying (3). If on the other hand there is a solution X
satisfying (2a)–(2c), then the solution to the LCP can
be obtained by solving the system of linear equations
[

In −M −q
]

x = 0, xi = 0 whenever Xi = 0 and
x2n+1 = 1. This correspondence motivates the follow-
ing definition.

Definition 4 An oriented matroid M = (E2n,V) is
LCP-realizable if there is a matrix M ∈ Rn×n such
that

V =
{

sgnx : x ∈ R2n and
[

In −M
]

x = 0
}

.

LCP-realizability of extensions M̂ = (Ê2n, V̂) is de-
fined analogously.

3 P-, Z- and K-matroids

In this section, we investigate what properties of ori-
ented matroids characterize oriented matroids realiz-
able by special classes of matrices.
A matrix M ∈ Rn×n is a P-matrix if its principal

minors are positive, or in other words, if there is no
non-zero vector x such that xi(Mx)i ≤ 0 for every
i ∈ [n]. In the setting of matroids this translates to:

Definition 5 A vector X ∈ {−, 0,+}E2n is sign-
reversing if Xe · Xe ≤ 0 for every e ∈ S. An ori-
ented matroid M on E2n is a P-matroid if it has no
sign-reversing circuit.

P-matroids were extensively studied by Todd [7].
Among many characterizations of a P-matroid, it was
shown that every rank-preserving one-point exten-
sion M̂ of M contains exactly one positive comple-
mentary circuit C with Cq = + if and only if M is a
P-matroid. In other words the OMCP on a P-matroid
has exactly one solution. The next statement will be-
come important later on.

Lemma 3 (Todd [7]) For a P-matroid M every
complementary subset B ⊂ E2n of cardinality n is
a basis.

The second class of matrices we examine is Z-
matrices; the corresponding matroid generalizations
are Z-matroids.

Definition 6 A matroid M on E2n is a Z-matroid if
for every circuit C of M we have: If CT ≥ 0, then
whenever e ∈ S and Ce = +, then also Ce = +.

The definition of a K-matroid is straightforward.

Definition 7 A matroid M on E2n is a K-matroid if
it is a P-matroid and a Z-matroid.

In 1962, Fiedler and Pták listed thirteen equivalent
conditions for a Z-matrix to be a K-matrix. Some of
them concern the sign structure of vectors:

Theorem 4 (Fiedler–Pták [3]) Let M be a Z-ma-
trix. Then the following conditions are equivalent:
(a) ∃x ≥ 0 such that Mx > 0;
(b) ∃x > 0 such that Mx > 0;
(c) the inverse M−1 exists and M−1 ≥ 0;
(d) ∀x 6= 0 there is k such that xk(Mx)k > 0;
(e) M is a P-matrix.

Our combinatorial generalization of the Fiedler–
Pták Theorem 4 is the following.

Theorem 5 For a Z-matroid M (with vectors V,
covectors V∗, circuits C and cocircuits D), the fol-
lowing statements are equivalent:
(a) ∃X ∈ V : XT ≥ 0 and XS > 0;
(b) ∃X ∈ V : X > 0;
(c) ∀C ∈ C: CS ≥ 0 =⇒ CT ≥ 0;
(d) ∄ a s.r. circuit C ∈ C, i.e., M is a P-matroid;
(a*) ∃Y ∈ V∗ : YS ≤ 0 and YT > 0;
(b*) ∃Y ∈ V∗ : YS < 0 and YT > 0;
(c*) ∀D ∈ D: DT ≥ 0 =⇒ DS ≤ 0;
(d*) ∄ a s.p. cocircuit D ∈ D.

Proof sketch. The entries (a*)–(d*) are properties
of the dual matroid M∗. We mentioned them because
matroid duality plays a crucial role in our proof. In
order to use duality, let us first define the reflection of
a matroid M = (E2n,V) to be the matroid ℜ(M) =
(E2n,ℜ(V)), where ℜ(V) = {ℜ(X) : X ∈ V} with

(

ℜ(X)
)

e
=

{

Xe if e ∈ S,

−Xe if e ∈ T .

Observe that ℜ
(

ℜ(M)
)

= M because of (C2), and
that ℜ(M∗) = ℜ(M)∗; thus

ℜ
(

ℜ(M∗)∗
)

= M. (4)

The implications (a) ⇒ (b), (b) ⇒ (c), (b) ⇒ (a) and
(d) ⇒ (a*) follow from matroid axioms. Then dual-
ity comes into play. Notice that a matroid M satis-
fies (a*) if and only if the reflection of its dual ℜ(M∗)
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satisfies (a); analogously for (b*) and (b), (c*) and (c),
and (d*) and (d). Thus if M satisfies (a*), then
ℜ(M∗) satisfies (a), hence also (b), and so (us-
ing (4)) M satisfies (b*). The missing implications
(b*) ⇒ (c*), (c*) ⇒ (d*), and (d*) ⇒ (a) are proved
analogously. �

4 OMCP on K-matroids

Here we prove that the unique solution to every
OMCP(M̂) where the underlying matroid M is a
K-matroid, is found by every simple principal pivot
algorithm in a number of pivot steps linear in n.

In the following we assume that M̂ is a P-matroid
extension. To study the algorithmic complexity of
the OMCPs(M̂), we must specify how the matroid
extension is made available to the algorithm. For
the present, we assume M̂ to be given by an oracle
which, for a basis B of M̂ and a non-basic element
e ∈ Ê2n\B, outputs the unique fundamental circuit
C(B, e).

A simple principal pivot algorithm takes any com-
plementary basis B0, for instance B0 := S, and pro-
ceeds as follows:

Algorithm 1 SimplePrincipalPivot(M̂, B0)

i := 0
C0 := C(B0, q)
while (Ci)− 6= ∅ do

choose ei ∈ (Ci)− according to a pivot rule R

Bi+1 := Bi\
{

ei
}

∪
{

ei
}

Ci+1 := C(Bi+1, q)
i := i+ 1

end while
return Ci

Since Bi is complementary, Bi+1 is also comple-
mentary and Lemma 3 asserts that it is indeed a basis.
The exchange of an element ei for its complement ei

in the actual basis is called a pivot step. If the number
of pivot steps is polynomial in n, then the algorithm
terminates in polynomial time, provided that the or-
acle operation is polynomial. In the LCP-realizable
case the operation is polynomial; in fact, it consists
in solving a system of n linear equations in 2n + 1
variables.

The number of pivots generally depends on the ap-
plied pivot rule and on some P-matroid extensions
some rules may even enter an infinite loop. If the in-
put is a K-matroid extension, though, then the Sim-

plePrincipalPivot method is fast. We prove that

Theorem 6 The simple principal pivot algorithm
runs in at most 2n pivot steps on every K-matroid
extension no matter what pivot rule is applied.

Proof sketch. First, one can show that the following
two properties hold. The proof of the first one is triv-
ial whereas the proof of the second property requires
Theorem 5.

• If M̂ is a P-matroid extension, then Ci+1

ei
≥ 0 for

every i ≥ 0.

• If M̂ is a K-matroid extension, then for every
f ∈ T : If Ch

f ≥ 0 for some h ≥ 0, then Ck
f ≥ 0

for every k ≥ h.

We prove that, no matter which pivot rule R one ap-
plies, every element e ∈ E2n is chosen at most once
as the pivot element. Consider any pivot step h in
the SimplePrincipalPivot algorithm. First sup-
pose that the pivot element eh is in S. According to
the first remark Ch+1

eh
≥ 0. Moreover, by the sec-

ond remark, for every k ≥ h we have Ck

eh
≥ 0 and

Ck
eh

= 0. In other words, the elements eh and eh can-
not become pivot elements in later steps. Secondly,
if the pivot eh is in T , the argumentation from above
fails. It may eventually happen for some k that eh

is chosen as pivot ek. However if so, our first argu-
ment applies for pivot step k and neither eh nor eh

can become pivot elements again. �
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Fitting Flats to Points with Outliers

Guilherme D. da Fonseca∗

Abstract

Determining the best shape to fit a set of points is a
fundamental problem in many areas of computer sci-
ence. We present an algorithm to approximate the
k-flat that best fits a set of n points with n − m
outliers. This problem generalizes the smallest m-
enclosing ball, infinite cylinder, and slab. Our algo-
rithm gives an arbitrary constant factor approxima-
tion in O(nk+2/m) time, regardless of the dimension
of the point set. For many practical sets of inliers, the
running time is reduced to O(nk+2/mk+1), which is
linear when m = Ω(n).

1 Introduction

Determining the best shape to fit a set of points is a
fundamental problem in statistics, machine learning,
data mining, computer vision, clustering, and pattern
recognition. The case of fitting a lower-dimensional
space deserves special attention since it can be used
to minimize the effects of the curse of dimension-
ality. A widely used measure of how well a shape
S fits a set P of n points in d-dimensional space
is maxp∈P mins∈S ‖ps‖, the maximum Euclidean dis-
tance between any point p ∈ P and the shape S.
Unfortunately, this measure is very sensitive to the
presence of outliers.

A more robust measure in the presence of n−m out-
liers and m inliers consists of minimizing the following
cost function: given a parameter m ≤ n, the cost is
the m-th smallest distance between a point in P and
the shape S. In this paper, we consider an approxi-
mation to the case when S is a k-dimensional flat, for
a given value of k ∈ {0, . . . , d − 1}. We show that,
for an arbitrary ε > 0, we can find in Oε(nk+2/m)
time1, with constant probability, a k-dimensional flat
S with cost at most 1 + ε times the optimum. We re-
fer to this problem as flat fitting. We assume that the
dimensions k, d are constants, but 1/ε is an asymp-
totic quantity. It is noteworthy that the complexity
depends only on the target dimension k, regardless
of the dimension of the point set. Our algorithm is
Monte Carlo, but can be made deterministic at the
expense of an O(m) factor in the running time.

∗Universidadade Federal do Estado do Rio de Janeiro
(UNIRIO), Brazil, fonseca@uniriotec.br

1We use the Oε(·) notation to hide polynomial ε-
dependencies.

In the most interesting case when m is a constant
fraction of n, the running time of our Monte Carlo
algorithm is Oε(nk+1). While the running time is
close to the Ω(nk) lower bound, the algorithm is still
super-linear for k ≥ 1. We show that when the set
of inliers satisfies some density criterion, the running
time is reduced to O(nk+2/mk+1), which is linear for
m = Ω(n). This way, we show that despite the high
worst-case complexity of the problem, there is a fea-
sible solution for some practical large data sets.

Related work. The case of k = 0 corresponds to
the well-studied problem of approximating the small-
est ball enclosing m points. The problem can be
solved in O(n/εd−1) expected time by using tech-
niques from [2, 5, 9]. An easier variation of this prob-
lem, when an inlier is known, is used as a base case
for our algorithm.

The case of k = d − 1 corresponds to approximat-
ing the narrowest slab enclosing m points. In con-
trast to the linear complexity of the k = 0 case, the
most efficient solution for k = d − 1 is a high prob-
ability Monte Carlo algorithm [6] with running time
O(nd(logO(1) 1

ε )/mε). Major improvements are un-
likely, since there is a lower bound of Ω((n−m)d−1 +
(n/m)d) for obtaining a constant approximation [6].

The case of k = 1 corresponds to approximating the
smallest infinite cylinder enclosing m points, which is
stated as an open problem by Har-Peled and Mazum-
dar [9]. A linear time solution for arbitrary values
of m is unlikely, since even the planar approximation
problem is 3SUM-hard [8]. To see that, note that it
is 3SUM-hard to decide if there are three points on
a line and that there is a planar cylinder of radius 0
enclosing three points if and only if there are three
points on a line.

When the number n − m of outliers is small com-
pared to n, we can use the coreset framework to re-
duce the number of points to O((n−m)/ε(d−1)/2) and
then solve the problem in the reduced point set [1].
The case when d is an asymptotic variable is con-
sidered in [10], where an algorithm linear in d but
exponential in 1/ε is presented. Approaches based
on random sampling such as RANSAC [7] are widely
used in practice, but do not guarantee approximation
with respect to the optimum.

The non-robust version of the problem (when m =
n) is generally solved using coresets [4]. The case
when d is an asymptotic variable is considered in [11].
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When k = 0, it is well known that the non-robust
exact version can be solved in O(n) time. Exact so-
lutions for other values of k are considerably less effi-
cient, even in the non-robust version. Chan [3] men-
tions an O(ndd/2e) algorithm for k = d − 1 and an
O(n2d−1+δ) algorithm for k = 1, where δ is an arbi-
trarily small constant.

The exact robust version seems even harder. A triv-
ial solution takes O(n(d−k)(k+1)+2) time, by counting
the number of points for each potential set of up to
(d−k)(k+1)+1 farthest inliers. When k = d−1, the
problem can be solved in O(nd) expected time [6],
improving the trivial solution by two O(n) factors,
one by efficiently counting the number of points using
arrangements, and one by using Chan’s randomized
optimization [2].

A lower bound of Ω((n − m)d−1 + (n/m)d) for ob-
taining a constant approximation when k = d − 1
in presented in [6]. The lower bound is based on a
conjecture for the complexity of the affine degeneracy
problem. We can linearly reduce the flat fitting prob-
lem with k = d−1 to the flat fitting problem in higher
dimension d′ ≥ d and the same value of k. Therefore,
the lower bound for k = d − 1 implies a lower bound
of Ω((n − m)k + (n/m)k+1) for arbitrary k. In the
most interesting case when m is a constant fraction of
n, the lower bound is Ω(nk) and we present an upper
bound of O(nk+1).

Next, we present approximate algorithms for the
flat fitting problem. We present a Monte Carlo al-
gorithm with running time Oε(nk+2/m) and a deter-
ministic algorithm with running time Oε(nk+2). In
Section 3, we show how to reduce the running time
of the Monte Carlo algorithm to Oε(nk+2/mk+1) for
some typical sets of inliers. Concluding remarks and
open problems are discussed in Section 4.

2 Approximate Algorithm

The general idea of the algorithm consists of finding
a vector v that is approximately parallel to the best
fitting flat and then projecting the points onto a hy-
perplane perpendicular to v and recursively solving
a lower dimensional problem. We use k = 0 as a
base case. Actually, the algorithm computes a some-
what small set of vectors that contains v and recurses
for each vector in the set, returning the best solution
found. We start by providing some definitions.

Let Sk,d(P ) and ck,d(P ) respectively denote the
optimal k-dimensional flat for point set P in d-
dimensional space and its cost. We refer to the m
points P ′ ⊆ P within distance ck,d(P ) of Sk,d(P ) as
inliers. Given a d-dimensional set of points P and a
vector v, let P|v denote a (d − 1)-dimensional point
set obtained by projecting P onto a hyperplane per-
pendicular to v. Given a vector v let v′ be the unit
length projection of v onto the optimal flat Sk,d(P ),

ck,d(P )

v
θv

Sk,d(P )

v
′

hv′(P
′
)

ck−1,d−1(P|v)

Figure 1: Definitions used to state Lemma 1. The
m = 10 inliers are represented by solid circles.

hv′(P ′) = maxp∈P ′ v′ · p − minp∈P ′ v′ · p be the direc-
tional width in direction v′ of the inliers, and θv be
the acute angle between v and v′. See Figure 1 for
a diagram of the previous definitions. The following
lemma follows from simple trigonometric arguments
and shows how to use the solution of a lower dimen-
sional problem in order to approximate the original
problem.

Lemma 1 For any vector v we have

ck,d(P ) ≤ ck−1,d−1(P|v) ≤ ck,d(P ) + hv′(P ′)θv.

By Lemma 1, it is possible to obtain a (1 + ε)-
approximation by finding a vector v with angle

θv ≤ ε ck,d(P )
d hv′(P ′)

= φ

and recursively solving the lower dimensional prob-
lem. Our algorithm considers a set of vectors that
contains a vector u with θu < φ, returning the solu-
tion of minimum cost found. The following lemma is
the key to obtain such set.

Lemma 2 For every inlier p ∈ P ′, there is an inlier
q ∈ P ′ such that the vector v = q − p has

θv ≤ 4ck,d(P )
hv′(P ′)

and

hv′(P ′)
2

≤ ‖v‖ ≤ 2ck,d(P ) + hv′(P ′).

Proof. (sketch) Consider the inlier q ∈ P ′ that re-
alizes the maximum directional distance maxq∈P ′ |v′ ·
p − v′ · q| and use simple geometric arguments (see
Figure 2). �

Say we have a vector v satisfying the properties
of Lemma 2. If ck,d(P ) ≥ hv′(P ′), then we obtain
a set of size O(1/εd−k) containing a vector u with
θu ≤ φ in the following manner. The intersection
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2ck,d(P )

hv′(P
′
)

v
||v||

θv

≤ hv′(P
′
)

≤ 2ck,d(P )

p

q

v′

≥ hv′(P
′
)/2

Figure 2: Proof of Lemma 2.

of a (d − k + 1)-flat F in general position and the
optimal flat Sk,d(P ) is a line `. Using a standard grid
of directions, we create a set of O(1/εd−k) vectors in
F that contain a vector u within angle at most ε/d
of `, and consequently has θu ≤ φ. Next, we focus on
the more interesting case when ck,d(P ) < hv′(P ′).

By Lemma 2, we have that ‖v‖ is a constant factor
approximation of hv′(P ′). By Lemma 1, we can re-
cursively solve the (d − 1)-dimensional problem with
point set P|v in order to obtain a constant factor ap-
proximation to ck,d(P ). Putting both approximations
together, we obtain a constant factor upper bound to
θv. We use the approximation of θv to obtain a set
of size O(1/εd−k) containing a vector u with θu ≤ φ.
The set is defined by a grid of directions in a (d−k+1)-
flat as before, but noting that the angle between v and
u is upper bounded by the approximation of θv.

Now, assume we know an inlier p ∈ P ′. By
Lemma 2, the set V = {p − q : q ∈ P} of size O(n)
contains a vector satisfying the condition of Lemma 2.
Therefore, we can obtain a set U of size O(n/εd−k)
that contains a vector u with θu ≤ φ.

For each vector u ∈ U , we project the points onto
a hyperplane perpendicular to u and recursively solve
the lower dimensional problem. Next, we discuss how
to solve the base case k = 0, given an inlier p. The
base case consists of approximating the smallest ball
enclosing m points, including the inlier p.

Using techniques from [5, 9], the base case problem
can be solved in time O(n+m(log 1

ε )/εd−1). If we use
Chan’s randomized optimization [2], we obtain a Las
Vegas algorithm with expected time O(n + m/εd−1).
Actually, there is a very practical and straightfor-
ward solution with running time O(n + m/εd), which
we present next for completeness. (i) Obtain a 2-
approximation a of the radius by finding the m-th
farthest point from p. (ii) Create a set Q containing
the Θ(m) points within distance 2a of p. (iii) Con-
sider a grid with cells of diameter εa. Compute the
radius of the ball enclosing m points from Q centered
at each of the O(1/εd) grid vertices within distance a
from p, returning the smallest radius found.

Plugging the previous results together, the ex-
pected running time tk,d of the flat fitting algorithm,
given an inlier is

tk,d =

{
O(n/εd−k)tk−1,d−1 if k > 0
O(n + m/εd−1) if k = 0.

Consequently,

tk,d = O

(
nk+1

εk(d−k)
+

nkm

ε(k+1)(d−k)−1

)
.

To get rid of the requirement of knowing an inlier,
we apply the following random sampling technique
used in [9]. Note that the set P contains m inliers.
Therefore, a random element of P is an inlier with
probability m/n and a random sample of n/m ele-
ments of P contains an inlier with probability at least
1−1/e. Also, the set P of O(n) elements is guaranteed
to contain an inlier.

Theorem 3 There is a Monte Carlo algorithm to
compute, with constant probability, a (1 + ε)-
approximation of the k-flat that best fits m out of
n points in d-dimensional space in time Oε(nk+2/m)
and, showing ε-dependencies,

O

(
nk+2

mεk(d−k)
+

nk+1

ε(k+1)(d−k)−1

)
.

There is also also a deterministic algorithm with
running time Oε(nk+2) and

O

(
nk+2

εk(d−k)
+

nk+1m log(1/ε)
ε(k+1)(d−k)−1

)
.

3 Outer-dense Inliers

In this section, we show that for many data sets a
random pair of inliers define a vector v satisfying
the properties of Lemma 2 with constant probabil-
ity. Consequently, we obtain a Monte Carlo algorithm
with running time Oε(nk+2/mk+1), which is linear for
m = Ω(n).

We say that a halfspace H with normal vector v′

is deep if hv′(P ′ ∩ H) ≥ hv′(P ′)/4. For a constant
α ≤ 1/2, we say that the set P ′ is α-outer-dense if
any deep halfspace H has |P ′ ∩ H| ≥ α|P ′|. The set
P ′ is outer-dense if there is a constant α such that P ′

is α-outer-dense. The following lemma is analogous
to Lemma 2 when the set P ′ is α-outer-dense.

Lemma 4 If the inliers P ′ are α-outer-dense, then
the vector v = q − p defined by two random elements
p, q ∈ P ′ has

θv ≤ 4ck,d(P )
hv′(P ′)

and

hv′(P ′)
2

≤ ‖v‖ ≤ 2ck,d(P ) + hv′(P ′)

with probability at least 2α2.
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Figure 3: Proof of Lemma 4.

Proof. (sketch) Consider two disjoint deep halfs-
paces H1,H2 with normal vector v′ such that v′ is
parallel to the optimal flat Sk,d(P ) and hv′(P ′∩H1) =
hv′(P ′ ∩ H2) = hv′(P ′)/4 (see Figure 3). Since P ′ is
outer-dense |P ′ ∩ H1|, |P ′ ∩ H2| ≥ α|P ′|. Therefore,
the probability that two random elements p, q ∈ P ′

are one in H1 and the other in H2 is at least 2α2.
The lemma follows from the same trigonometric ar-
guments as Lemma 2. �

Note that if a set of points is α-outer-dense, then
the projection of the set onto a (d − 1)-dimensional
hyperplane is α-outer-dense in dimension d−1. There-
fore, we obtain a Monte Carlo algorithm by sampling
n/mα2 pairs of points at each step, and then solving
the lower dimensional problems.

Theorem 5 When the set of inliers is outer-dense,
there is a Monte Carlo algorithm to compute, with
constant probability, a (1 + ε)-approximation of
the k-flat that best fits m out of n points in d-
dimensional space in time Oε(nk+2/mk+1) and, show-
ing ε-dependencies,

O

(
nk+2

mk+1εk(d−k)
+

nk+1

mk+1ε(k+1)(d−k)−1

)
.

4 Conclusions and Open Problems

We address a generalization to several natural prob-
lems such as the smallest m-enclosing ball (k = 0),
infinite cylinder (k = 1), and slab (k = d−1). Except
for the two extreme cases, we present the first solu-
tion for the flat fitting problem. When m is a constant
fraction of n, the gap between the lower bound and
our Monte Carlo upper bound is only Θ(n).

We show that if the set of inliers is outer-dense, then
the problem becomes exceedingly easier, with a linear
time solution. Many practical sets of inliers are outer-
dense. For example, point sets uniformly distributed
in a convex region and on the boundary of a convex
region are outer-dense with high probability.

A related decision problem which may be useful to
reduce the running time of our Monte Carlo algorithm

for general point sets by an Oε(n) factor is the fol-
lowing. Given a set P of n points in d-dimensional
space and an integer m ≤ n, determine if there is
a line ` that passes through the origin and is within
distance 1 from m points of P . The algorithm may
give an approximate answer in the sense that points
within distance between 1 and 1 + ε may be counted
either way. Except for the planar case, we know of no
near linear solution, nor do we know if the problem is
3SUM-hard.

References

[1] P. K. Agarwal, S. Har-Peled, and H. Yu. Robust
shape fitting via peeling and grating coresets.
Discrete Comput. Geom., 39(1):38–58, 2008.

[2] T. M. Chan. Geometric applications of a ran-
domized optimization technique. Discrete Com-
put. Geom., 22(4):547–567, 1999.

[3] T. M. Chan. Approximating the diameter, width,
smallest enclosing cylinder, and minimum-width
annulus. Internat. J. Comput. Geom. Appl.,
12(1/2):67–85, 2002.

[4] T. M. Chan. Faster core-set constructions
and data-stream algorithms in fixed dimensions.
Comput. Geom., 35(1):20–35, 2006.

[5] C. M. H. de Figueiredo and G. D. da Fonseca.
Enclosing weighted points with an almost-unit
ball. Inform. Process. Lett., 109:1216–1221, 2009.

[6] J. Erickson, S. Har-Peled, and D. M. Mount. On
the least median square problem. Discrete Com-
put. Geom., 36(4):593–607, 2006.

[7] M. A. Fischler and R. C. Bolles. Random sample
consensus: a paradigm for model fitting with ap-
plications to image analysis and automated car-
tography. Commun. ACM, 24(6):381–395, 1981.

[8] A. Gajentaan and M. H. Overmars. On a class
of O(n2) problems in computational geometry.
Comput. Geom., 5(3):165–185, 1995.

[9] S. Har-Peled and S. Mazumdar. Fast algorithms
for computing the smallest k-enclosing circle. Al-
gorithmica, 41(3):147–157, 2005.

[10] S. Har-Peled and K. R. Varadarajan. Projective
clustering in high dimensions using core-sets. In
Proc. 18th Annu. ACM Sympos. Comput. Geom.,
pages 312–318, 2002.

[11] S. Har-Peled and K. R. Varadarajan. High-
dimensional shape fitting in linear time. Discrete
Comput. Geom., 32(2):269–288, 2004.

172



EuroCG 2010, Dortmund, Germany, March 22–24, 2010

Hardness of discrepancy and related problems parameterized by the
dimension

Panos Giannopoulos∗† Christian Knauer∗† Magnus Wahlström‡§ Daniel Werner∗¶

Abstract

We study the complexity of the problem of star
and box discrepancy, monochromatic and bichromatic
empty box, and maximum empty subinterval, param-
eterized by the dimension d of the underlying space.
We show that they are all W[1]-hard, and hence not
solvable in O(f(d)nc) time, for any computable func-
tion f and constant c (unless FPT=W[1]). We also es-
tablish NP -hardness of the box discrepancy problem
and show that the largest empty subinterval problem
is W[1]-hard even to approximate.

1 Introduction

We study the complexity of the following problems
parameterized by the dimension d:
(i) Given two point sets R, B in Rd, compute an
axis-aligned box that does not contain any point of
R and that contains as many points of B as possible
(Bichromatic-Rectangle).
(ii) Given a set P in [0, 1]d, compute

• the largest empty axis-aligned box inside [0, 1]d

that contains the origin (Maximum-Empty-
Subinterval).
• the largest empty axis-aligned box inside [0, 1]d

(Maximum-Empty-Box).
• the star discrepancy of P (Star-Discrepancy).
• the box discrepancy of P (Box-Discrepancy).

These problems (apart from Box-Discrepancy)
are known to be NP -hard when the dimension d is
part of the input and all known exact algorithms run
in nO(d) time, where n is the total number of objects in
the input. Here, we ask whether any of these problems
can be solved in O(f(d)nc) time, for some computable
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traße 9, D-14195 Berlin, Germany, {panos, knauer,

dwerner}@inf.fu-berlin.de.
†This research was supported by the German Science Foun-

dation (DFG) under grant Kn 591/3-1.
‡Max-Planck-Institut für Informatik, D-66123 Saarbrücken,

Germany, wahl@mpi-inf.mpg.de.
§This research was supported by the German Research

Foundation (DFG) via its priority programme “SPP 1307: Al-
gorithm Engineering”, grant DO 749/4-1.
¶This research was funded by Deutsche Forschungsgemein-

schaft within the Research Training Group (Graduiertenkolleg)
“Methods for Discrete Structures”

function f and some constant c, i.e, whether they are
fixed-parameter tractable with respect to d.

Results. We prove that all these problems are W[1]-
hard with respect to d. Moreover, problem (i) is
shown to be W[1]-hard when parameterized with both
d and the size of the solution k, i.e., the number of
points in B that the box contains. These results are
obtained by fpt-reductions from the W[1]-complete [5]
k-clique problem in general graphs, based on the
general framework by Cabello et al. [3]. Moreover,
since the fpt-reductions are actually polynomial (in
both k and n), they also show the NP -hardness; for
Box-Discrepancy this was not previously known.
We also show that Maximum-Empty-Subinterval
is W[1]-hard to approximate by a factor of (1/2)n

(with respect to parameter d).

Related work. Bichromatic-Rectangle was
shown to be NP -hard by Eckstein et al. [7]; in the
same paper anO(n2d+1) algorithm was given. Aronov
and Har-Peled [1] gave an (1 − ε)-approximation
algorithm that runs in O(ndd/2e(ε−2 log n)dd/2+1e)
time.

Maximum-Empty-Box has only recently been
shown to be NP -hard [2] when the dimension is part
of the input, and the fastest exact algorithm runs
in O(nd logd−2 n) [2]. Also recently, Dumitrescu and
Jiang [6] gave an O((8edε−2)d · n logd n)-time (1− ε)-
approximation algorithm for this problem. The hard-
ness of Maximum-Empty-Subinterval was shown
by Gnewuch et al. [8].

When the dimension is part of the input, Star-
Discrepancy has been shown to be NP -hard by
Gnewuch et al. [8]. A non-trivial algorithm that still
runs in O(n1+d/2) time was given in [4]. Thiémard [9]
has given an approximation algorithm that achieves
additive error and runs in fpt-time with respect to the
error and the dimension.

2 The Bichromatic Rectangle Problem

We consider here Bichromatic Rectangle, for
which the least technical details are required. We will
then show how to adapt the construction to the other
problems. The parameterized decision problem is de-
fined as follows:
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Definition 1 k–d–Bichromatic-Rectangle
Given: A set R of red points and a set B of blue
points in Rd and a k ∈ N.
Question: Is there a hyperrectangle (box) H =
[l1, r1]×· · ·× [ld, rd] s.th. H∩R = ∅ and |H∩B| ≥ k?

A box that does not contain any point from R will be
called feasible.

The idea. For a given simple graph G = ([n], E) we
will construct sets RG,k and BG,k in R2k such that G
has a clique of size k if and only if there is a feasible
rectangle that contains k + 1 blue points.

In addition to the (blue) origin 0, we will put points
into k pairwise orthogonal planes. Each plane will
contain n blue points, corresponding to the vertices
of the graph, and n + 1 red points which are placed
such that it will not be possible for any feasible box to
contain more than one blue point from a single plane.
Then we forbid rectangles corresponding to vertices
of G that are not connected to be chosen at the same
time by putting red points into the pairwise product
of the respective planes (which are four-dimensional
subspaces).

For 1 ≤ i ≤ k, we define

R2
i = {(x1, y1, . . . , xk, yk) | xj = yj = 0, j 6= i)} ⊆ R2k.

For 1 ≤ i < j ≤ k, we set R4
ij to be the product of

R2
i and R2

j , i.e., R4
ij = R2

i × R2
j . For p ∈ R2

i and a
point q ∈ R2

j , observe that the unique point in R4
ij

that (orthogonally) projects to p (into R2
i ) and to q

(into R2
j ) is p+ q.

Encoding vertices. Let ε = 1/4. For a vertex 1 ≤
v ≤ n, we define the point bi(v) ∈ R2

i as bi(v) =
(v + 1− ε, n+ 2− v − ε). Then we set

Bscaffold
i = {bi(1), . . . , bi(n)} ⊆ R2

i .

Choosing a (rectangle containing) point bi(v) will cor-
respond to choosing vertex v from G. Let Bscaffold =
]1≤i≤kB

scaffold
i be the set of all these blue points.

As we want the feasible boxes to contain at most
one point from each R2

i , we add a set of red points
as follows: For 1 ≤ v ≤ n + 1, we define ri(v) =
(v, n+ 2− v) and set

Rscaffold
i = {ri(1), . . . , ri(n), ri(n+ 1)} ⊆ R2

i .

Then we set Rscaffold = ]1≤i≤kR
scaffold
i . See Figure 1

for an example of the scaffold construction.
It is easy to verify that any feasible box can contain

at most one point from each Bscaffold
i .

Encoding edges. We will place several red points
between all pairs of R2

i s that forbid certain blue points
to be selected at the same time. For a vertex 1 ≤

v ≤ n, we define the point rkill
i (v) ∈ R2

i as having
coordinates (v+ 1− 3ε, n+ 2− v− 3ε). These points
are themselves not added to the set of red points.
Observe that any rectangle that contains bi(v) also
“contains” the point rkill

i (v). Then, for 1 ≤ i ≤ j ≤ k
and two vertices 1 ≤ u, v ≤ n, we define the point

rkill
ij (uv) = rkill

i (u) + rkill
j (v) ∈ R4

ij .

The set of all killing points in R4
ij is then

RE
ij = {rkill

ij (uv), rkill
ij (vu) | uv /∈ E}.

As the graph contains no loops, all points of the
form rij(uu) are also added. Finally, we let RE =
]1≤i 6=j≤kR

E
ij . See Figure 1.

rkill
i,j (uv)

rkill
j (v)

bj(v)

R2
i R2

j

bi(u)

rkill
i (u)

ri(u)

ri(u + 1)

Figure 1: rkill
i (u) is the projection of rkill

ij (uv) to R2
i

and rkill
j (v) is the projection of rkill

ij (uv) to R2
j .

The overall construction. For G = ([n], E) and k >
0 we construct point sets RG,k = Rscaffold ∪ RE and
BG,k = {0} ∪Bscaffold.

The two sets have size O(k2n2) and the coordinates
of the points can be encoded by O(log kn) many bits.
Clearly the construction can be performed in time
polynomial in both k and n.

Lemma 1 G has a k–clique if and only if
H(RG,k, BG,k) = k + 1.

Proof. By the previous remarks, any feasible box H
can contain at most k + 1 points.

Let v1, . . . , vk be a clique of size k. We choose a
box H with upper right coordinates (xi, yi) as bi(vi)+
(ε/2, ε/2).
H contains exactly one blue point from each of the

R2
i , and also the origin, making it a total of k + 1

points. We show that H is feasible. First, by defini-
tionH contains no point of Rscaffold, asHi∩Rscaffold

i =
∅. As the vertices are pairwise connected, H also does
not contain any point from RE.

Now assume that there is no clique of size k. Let
H be any box containing k + 1 points. We show that
H is infeasible. If H contains a red point from one of
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the R2
i ’s, we are done. Otherwise, it can contain at

most one blue point from each R2
i . Let vi and vj be

two vertices corresponding to blue points contained
in H that are not connected in G. As there is no k–
clique, such a pair must exist. Then H also contains
rkill
ij (vivj), and thus H is infeasible. �

Theorem 2 k–d–Bichromatic-Rectangle is
W [1]-hard when parameterized with both the
dimension d and the size of the solution k.

3 The Maximum Empty Subinterval Problem

In this section, we consider a closely related problem.

Definition 2 d–Maximum-Empty-Subinterval
Given: A set R ⊂ Rd and a rational number V
Question: Is there a box H = [0, r1)× · · ·× [0, rd) ⊂
[0, 1)d containing none of the points whose volume is
at least V ?

Since the origin is included in the box, the planes will
be considered separately again. In this construction,
the analog of the rectangles containing a blue point
from one of the R2

i is now a rectangle that is large
(of size C for some 0 < C < 1 to be determined
later). In each plane, there will be n large rectangles
to choose from, corresponding to the vertices of G. It
will only be possible to choose large rectangles from
two different planes, if the corresponding vertices are
connected in G.

The construction. Let µ > 1 be a parameter to be
specified later. In each R2

i we put points

ri(u) =
(
Cµu−1,

1
µu

)
, 0 ≤ u ≤ n.

We set Rscaffold
i = {ri(u) | 0 ≤ u ≤ n} and Rscaffold =

]1≤i≤kR
scaffold
i . Then the rectangles with upper right

corner ci(u) =
(
Cµu−1, 1/µu−1

)
, 1 ≤ u ≤ n are

empty and have volume C.
If a rectangle has its upper right point anywhere

else on (x,C/x) or above, it contains a point from
Rscaffold, and any other feasible rectangle has smaller
size. So there are exactly n feasible rectangles of size
C in each R2

i , each supported by two blocking points
from Rscaffold

i . See Figure 2.
If the vertices corresponding to two different large

rectangles in the planes R2
i and R2

j are not connected,
we will add a point in the product R4

ij that forbids
these two rectangles to be chosen at the same time.
Let rkill

i (u) = (Cµu−2, 1/µu) (again, these points are
themselves not added to the set R) and then define
rkill
ij (uv) = rkill

i (u) + rkill
j (v). Then the set of all kill

points is RE = {rkill
ij (uv) | i 6= j, uv /∈ E}. Finally,

the set of all points is defined as R = RE ∪ Rscaffold.

ci(u)

ci(n) = (1, C)

ci(1) = (C, 1)

x, C
x



ri(n)
ri(u)

ri(0)

ri(u− 1)

yi

xi

(1, 1)

(0, 0)

rkill
i (u)

Figure 2: The plane R2
i . A rectangle selecting vertex

u is indicated.

The size of R is O(n2k2), and if we set µ = 2, all
coordinates have size polynomial in the size of the
input. Clearly the construction can be performed in
time polynomial in k and n. The proof of the next
lemma is analog to Lemma 1. The second part comes
from the fact that if there is no k–clique, in at least
one of the R2

i we have to chose a rectangle of size at
most C/µ.

Lemma 3 G has a k–clique if and only if there is an
empty box of size Ck. Otherwise, the largest empty
box is of size at most Ck/µ.

Theorem 4 d–Maximum-Empty-Subinterval is
W [1]-hard with respect to the dimension d.

By Lemma 3, the ratio between a large box for a
point set constructed from a positive instance and one
constructed from a negative instance is at least µ.
Since we can even choose µ = 2O(|R|) (this takes only
polynomially many bits), we can even derive a result
that is much stronger than Theorem 4:

Corollary 5 It is W [1]-hard to approximate d–
Maximum-Empty-Subinterval by a factor of
(1/2)n, where n is the number of points, and the pa-
rameter is the dimension d.

4 The Star Discrepancy Problem

Now we show that computing the star discrepancy of
a point set inside the unit cube is W [1]-hard.

Definition 3 The star discrepancy of a point setR ⊆
[0, 1]d is defined as

D∗(R) = sup
Y ∈Y

∣∣∣∣vol(Y )− |Y ∩R||R|
∣∣∣∣

where Y = {[0, x1)× · · · × [0, xd) | xi ∈ [0, 1]} is the
set of all half–open boxes containing the origin.
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In order to adapt the above proof, there are two issues
to deal with: First, we have to make sure that the
maximum is attained for a large box with few points
inside. Then, we have to argue that such a box really
does not contain any points at all. For a graph G, let
N be the total number of points in our construction
from the previous section. Observe that any box that
contains all points must have a volume of 1, as there
are points with xi = 1 and yi = 1 for all 1 ≤ i ≤ k.
Thus, for all boxes B we have |B∩R|

|R| −vol(B) ≤ N−1
N ,

If we choose µ = 1+ 1
t with t = 2knN then the largest

empty box is of size at least Ck > (N−1)/N and thus
the discrepancy is attained for an empty box: Adding
a point can increase the volume by at most 1 − Ck.
But as Ck > (1 − 1

N ), picking such an extra point
cannot increase the discrepancy. Constructing the set
R with this value of µ, we see that G has a clique of
size k, if and only if D∗(R) = Ck. Hence,

Theorem 6 d–Star-Discrepancy is W [1]-hard
with respect to the dimension d.

5 Largest Empty Box Problem

Next, we consider a slightly more general problem
where we have to find an empty box that does not
necessarily contain the origin. Observe that in the
previous construction, the box [ε, 1)2k for arbitrarily
small ε does not contain any points but has volume
almost 1. Still, by using a little trick we can fix this.
From a graph G, we first construct the set R with
the constant Ck = 2/3. Then, define the function
lift : R2k → R2k as follows

lift(x) = (x′1, . . . , x
′
2k) with x′i =

{
xi if xi 6= 0
1
2 otherwise

Now we apply the function lift to all points in the R.
For the lifted point x, we call the R2

i that the point
was lifted from the corresponding R2

i .

Lemma 7 Any box having volume at least 2/3 con-
tains a point x if and only if the projection onto the
corresponding R2

i contains the projection of x.

Further, any box of volume 2/3 must have its lower
left endpoint inside [0, 1/2)2k. Thus, any maximum
empty box will contain the origin. As above, we now
get that there is an empty box of volume Ck if and
only if G has a k–clique.

Theorem 8 d–Maximum-Empty-Box is W [1]-
hard with respect to d.

6 The Box Discrepancy Problem

The box discrepancy D(R) of a point set R is defined
analogously to the star discrepancy, except that now

the boxes do not have to contain the origin. By merg-
ing the previous proofs, we can show the hardness of
the corresponding decision problem: First, we add
one point at the origin and one point at (1, 1, . . . , 1).
Then, we construct the point set with the constants
determined in Section 4 and lift it as in Section 5. Be-
cause of the two additional points, no box not having
volume 1 can contain all points from R. Arguing as
above, the box discrepancy is attained for a maximum
empty box, and using the analog of Lemma 7, we get:

Theorem 9 d–Box-Discrepancy is W [1]-hard
with respect to the dimension d. The problem is also
NP -hard when d is part of the input.
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Nearest-neighbor queries with well-spaced points

Chris Gray∗

Abstract

We assume we are given points in R3 that have
the property that their Voronoi diagram restricted
to some suitable bounding box consists of only fat
cells. We call such points well-spaced points. We give
a linear-sized data structure for �nding the nearest
neighbor to a query point among well-spaced points
in O(log n) time. We further show how to make this
data structure dynamic and how to extend the results
to higher dimensions.

1 Introduction

In recent years, there has been much research in
the computational-geometry community on what is
known as realistic-input models. In this research, one
usually limits some aspect of the input (for example,
the number of �large� polyhedra that can intersect a
�small� region) to some minimum or maximum value.
The claim is that in most applications such a bound
is almost never violated. In some cases, this restric-
tion allows us to design algorithms that have better
performance than lower bounds on unrestricted input
would allow.

Much of the research to date on algorithms for re-
alistic input has been done on groups of polygons
or polyhedra. Some examples include bounds on
the union complexity of [2], data structures for ray-
shooting in [3], and algorithms for computing the
depth orders of [1] collections of fat objects. However,
there has been relatively less done on point clouds.
One reason for this is that it is not obvious which
aspect of the point cloud to limit. However, in the
meshing community, one nice realistic-input model
has emerged: well-spaced points. We de�ne these
terms more precisely in Section 1.1, but intuitively
a point set P (usually in R3, but some of our results
also apply in higher dimensions) is well-spaced if the
Voronoi diagram of P satis�es the condition that ev-
ery cell is fat.

In this paper, we provide a data structure for �nd-
ing the nearest point in P to a query point. We
then show how to make this data structure dynamic.
We also describe a modi�cation of the Voronoi dia-

∗Department of Computer Science, TU Braunschweig.
gray@ibr.cs.tu-bs.de This research was funded by the Ger-
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gram that allows us to obtain similar results in terms
of space and query-time complexity in higher dimen-
sions.

1.1 Definitions

The Voronoi diagram of a set of points P =
{p1, . . . pk} in Rd is the division of space into cells
{c1, . . . , ck} (where each cell ci corresponds to point
pi), where each cell ci has the property that every
point p ∈ ci is closer to pi than to any other point in P .
The distance metric in this de�nition can be changed,
but we use the standard Euclidean distance in this
paper. Note that some of the cells of any Voronoi
diagram are unbounded. The Delaunay graph of a
point set P is the graph formed by creating an edge
(pi, pj) if and only if the Voronoi cells of pi and pj are
neighbors in VD(P ).
The most important realistic input model that we

use in this paper is the notion of fatness. There are
many di�erent de�nitions of fatness, but most are
asymptotically equivalent for convex objects. In this
de�nition, let vol(o) denote the volume of the object o.

De�nition 1 Let β be a constant with 0 < β ≤ 1.
An object o in Rd is de�ned to be β-fat if, for any

ball b that has a center inside o and that does not

completely contain o, we have vol(b ∩ o) ≥ β · vol(b).

We say that a set of points P = {p1, . . . , pk} is a set
of β-well-spaced points if, for every point pi, the cell
ci in the Voronoi diagram of P restricted to a suitable
bounding box is β-fat. See Figure 1.

C

Figure 1: A set of well-spaced points. The circle
C determines the fatness of the gray Voronoi cell.
Since this is the least-fat cell, this determines the well-
spacedness of the point set.

Fatness is only one realistic input model. Another
model that we make use of is the low-density model.
Following Van der Stappen [16], we de�ne the den-

sity of a set of objects to be the smallest number λ
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where any ball B is intersected by at most λ objects
o with size(o) ≥ size(B). The following lemma relates
fatness and density.

Lemma 1 (Van der Stappen [16]) Any set of dis-

joint β-fat objects has density λ for some value of λ
that is a constant multiple of 1/β.

1.2 Related Work

The notion of well-spaced points was introduced in
the thesis of Talmor and the preceding papers [15, 11].
Since then, it has been used in many papers related
to meshing [8, 7]. As mentioned earlier, well-spaced
points can be seen as a realistic-input model. Other
realistic-input models have been proposed for points,
and work has been done related to Voronoi diagrams
for these point sets. Erickson [6] examined the rela-
tionship of the spread�the ratio of the largest dis-
tance between any pair of points to the smallest dis-
tance between any pair of points�of a set of points
to the complexity of the Delaunay graph of those
points. He showed that the Delaunay graph of a set of
points with spread ∆ has complexity O(∆3). Spread
and well-spacedness, however, are not directly com-
parable: well-spaced points can have arbitrarily high
spread, and that point-sets that have constant spread
can be not well-spaced.

The nearest-neighbor search problem in high di-
mensions has been extensively studied. Exact
searches for the nearest neighbor have long been
known to be plagued by what is called the �curse of
dimensionality�. This is a conjecture that states that
either the storage or search time for an exact nearest-
neighbor search problem must grow exponentially in
d for certain values of n. To date, this conjecture ap-
pears to be holding true, both in theory and practice.
The best currently-known algorithm, by Liu [10], uses
O(nd) space and requires O(d5 log n) search time. For
more on the subject, as well as an overview of the re-
sults obtained for the approximate nearest-neighbor
problem, see the survey by Indyk [9].

The data structure recently developed by Hudson
and Türko§lu [8] in some ways is the most similar to
ours. In R3, their data structure can be built in the
same time bound as ours, and with a small modi�-
cation in the query algorithm, can �nd exact near-
est neighbors in O(log n) time. It is also dynamic
(though it only handles insertions). We believe, how-
ever, that our data structure compares well with that
of Hudson and Türko§lu. Our results have the advan-
tage that they are based on the Voronoi diagram�a
well-studied and widely-used decomposition of space.
Also, our results are a bit more general (at least as
stated): any set of well-spaced points will do and
the order of the input does not matter. The data
structure by Hudson and Türko§lu and its proper-

ties are tuned to a speci�c family of meshing algo-
rithms. Finally, we use de�nitions for realistic-input
models that are more standard in the computational-
geometry community. We hope that in doing so, more
research into other data structures for well-spaced
points will emerge.

2 Size of Voronoi diagrams of well-spaced points

We begin by stating some nice properties of well-
spaced points and their Voronoi diagrams. To save
space, we omit proofs from this abstract, but include
them in the full version of the paper.
Given a set of well-spaced points, we might ask

questions about the complexity of their Voronoi di-
agrams. With the tools that we have introduced so
far, it is quite simple to see that this complexity is
linear in the number of points.

Lemma 2 The complexity of the Voronoi diagram of

a set P of β-well-spaced points is O((1/β)n).

Note that the complexity of a Voronoi diagram
in Rd without any restrictions on the fatness of the
cells is Θ(ndd/2e + n log n) [13]. This implies that
the complexity of the Voronoi diagram of well-spaced
points in three dimensions is better by a factor of
O(βn). However, as d increases, the complexity of
the cells of the Voronoi diagram also increases: the
number of facets of all dimensions in a convex d-
dimensional polyhedron with n vertices (or, dually, n
d−1-dimensional facets) is O(nbd/2c) [17]. Since some
(large) Voronoi diagram cells can have many (small)
neighbors, Voronoi diagrams of well-spaced points1

can have large complexity.
Since a large Voronoi diagram cell can only have

small neighbors that are very near the site of the cell
(or else they would be larger), we can de�ne a modi-
�ed Voronoi diagram cell that has constant complex-
ity. Let pi be the site of a cell ci. Further, let si be a
hypersphere centered at pi with radius ε · size(ci) for
some constant ε > 0. We de�ne the modi�ed Voronoi

cell of ci to be si ∪ ci�see Figure 2.

Lemma 3 Let 1 > ε > 0 be a constant and P be

a set of β-well-spaced points. The complexity of the

modi�ed Voronoi cell of any point in P is O(1/(εdβ)).

In Section 3, we give a data structure that uses
these modi�ed cells to �nd the exact nearest neighbor
of a query point. This data structure uses O(n) space
and has O(d log n) query time.

1This is only true using our (more standard) de�nition of
fatness. When fatness is de�ned using the ratio of radii of
inner- and outer-balls both centered at the site of the Voronoi
diagram cell (as in [7]), very large cells cannot be adjacent to
very small cells, which means that the complexity of any cell is
guaranteed to be constant.
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pi

Figure 2: The modi�ed Voronoi cell of the point pi.

3 Nearest-neighbor query data structure

The data structure that we construct to answer
nearest-neighbor queries amongst well-spaced points
is essentially an object-BAR-tree [4] where the objects
are the cells of the Voronoi diagram of the points.
We describe the object-BAR-tree fairly thoroughly
because we use features in this and later sections.
The object-BAR-tree is, as the name implies, an

extension of the BAR-tree. The BAR-tree T (or Bal-
anced Aspect Ratio-tree) introduced by Duncan [5], is
a type of binary space partition on points with the
following properties (among others):

• Each cell of T has constant fatness and constant
complexity.

• Each leaf node of T contains a constant number
of points.

• The depth of T given n input points is O(log n).

The object-BAR-tree maintains these properties for
objects with low density. To be more precise, the
depth of T is O(λ log n), so if λ is constant, then the
depth is O(log n). The object-BAR-tree also has the
property that its size�the number of fragments that
the objects are split into�is linear in the number of
objects. The fatness of the cells of T can be bounded
by a constant that is not related to the input objects.
The construction algorithm for an object-BAR-tree

in not very complicated. We sketch it here. It begins
by associating a number2 of points, known as guards,
with every object. A BAR-tree T is then constructed
using these guards as input. The objects are then
distributed to object lists in the leaf nodes of T . An
object o is put on the object list in the leaf node ν if
o intersects ν.
Since we assume that the objects have low density

and since the cells of T are fat (and thus also low
density), we can easily see that the number of inter-
sections between objects and leaf nodes is linear in the
number of objects and leaf nodes. This implies that
the average number of such intersections per object

2Unfortunately, the number of guards is quite high in higher
dimensions: approximately 23d(d−1). There is no lower bound
given, however, and it is not clear that this number could not
be reduced.

is constant. However, in some situations it is desir-
able to have a stronger guarantee. Thus, we describe
a modi�cation where each object is in at most a con-
stant number of object lists.
In the modi�ed version of the object-BAR-tree T ,

we place an object o in an object list of a (possibly
non-leaf) node ν of T if and only if size(o) > size(ν)
or ν is a leaf node which is larger than o, or size(o) ≤
size(parent(ν)), and o intersects ν.
Using these properties, we obtain:

Lemma 4 Let o be an object and S be a set of ob-

jects where {o}∪S has density λ and where the objects

in {o} ∪ S are disjoint. Assume that T is a modi�ed

object-BAR-tree built on the objects in {o}∪S. Then
the number of object lists in T containing o is O(λ).
The number of objects in any object list is also O(λ).

The query procedure for the modi�ed object-BAR
tree is quite simple: for each level of the modi�ed
object-BAR tree, �nd the node ν containing the query
point p. For each of the Voronoi diagram cells in the
object list of ν, �nd the cell with the site that is closest
to p. Since there are O(λ) objects in the object list of
ν, we can �nd the closest site by simply �nding the
distance between p and every site in the object list.
This takes O(dλ) time per level, meaning that it takes
O(dλ log n) time overall. This procedure works with
the modi�ed Voronoi cells as well.

4 Dynamic data structure

The BAR-tree data structure can be made to sup-
port insertion and deletion operations using a tech-
nique known as partial rebuilding [12]. Essentially, we
insert and delete nodes using the standard tree op-
erations, allowing the tree to become slightly imbal-
anced. When we determine that the tree has become
too imbalanced, we rebalance the tree by rebuilding
part of it from scratch. Since most of the insertion and
deletion operations can be completed very quickly, we
can argue that the amortized cost of any insertion or
deletion is fairly low. This technique was �rst ap-
plied to BAR-trees by Duncan [5]. We describe it for
completeness and then show how it can be applied to
object-BAR-trees.
To allow for the imbalance in the tree structure, we

create a parameter η with 0 < η < 1. We say that a
tree is η-balanced if and only if, for every node ν, no
grandchild of ν has more than η times the number of
children of ν. It is easy to see that any tree that is
η-balanced has depth O(log2−η n).
To insert a point p in a dynamic η-balanced BAR-

tree T , we �rst �nd the leaf node ν of the BAR-
tree that contains p. We save the path of nodes
{ν1, . . . , νk} that are visited from the root to ν. We
then check whether inserting p as a child of ν would
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cause any of the nodes in {ν1, . . . , νk} to lose the prop-
erty that they are η-balanced. If the insertion does
not cause any of these nodes to lose the property that
they are η-balanced, then we insert p according to the
normal rules of the BAR-tree.
If adding p as a child of ν would cause one of the

ancestors of ν to lose its η-balanced property, we �nd
the highest node in the tree where this would be the
case. Call this node νj . We remove the entire subtree
rooted at νj from T and build a BAR-tree on the
points that have been removed as well as p. We attach
this new BAR-tree (which is balanced, since it is a
BAR-tree) to νj . In so doing, we have added p to T .
Deleting a point p from T can be handled analogously.

Lemma 5 (Duncan [5]) A point p can be inserted

into or deleted from a BAR-tree in O(log2 n) amor-

tized time.

We now move to object-BAR-trees. We argue that
the same ideas can be applied to these trees. This
question has been brie�y considered before in the
context of I/O-e�cient algorithms by Streppel and
Yi [14]. They note that the addition of object lists to
the nodes creates a complication: each object can in-
tersect an arbitrarily high number of nodes. However,
we avoid this problem by using the modi�ed object-
BAR-trees from the last section.

Theorem 6 An object o can be inserted into or

deleted from a modi�ed object-BAR-tree T in

O(log2 n) amortized time.

5 Conclusions

In this paper, we presented a new data structure that
we can use to query the nearest neighbor in a set of
well-spaced points. We then showed how to make this
data structure dynamic.
We also de�ned a modi�ed data structure that work

in higher dimensions. Unfortunately, the dependence
of the time and space complexity on the dimension
is quite high, making these algorithms tractable only
for dimensions that are O(

√
log n). The bottleneck in

this regard is the object-BAR-tree structure. If the
relationship between the dimension and the number
of guards required by this structure could be reduced
to even O(2d), then our data structure would work in
dimensions up to O(log n).
This work raises some open problems beyond what

have been mentioned previously. First, we would like
to use the data structures presented here to develop
a simpler algorithm to compute Voronoi Diagrams
in higher dimensions. We conjecture that one can
use the dynamic nearest-neighbor data structure pre-
sented in Section 4 to design an incremental algorithm
that is simpler than existing algorithms in higher di-
mensions. We would also like to investigate whether

there is any relationship between well-spaced points
and other realistic-input models.
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Removing Local Extrema from Imprecise Terrains

Chris Gray∗ Frank Kammer† Maarten Löffler‡ Rodrigo I. Silveira§

Abstract

In this paper, we study imprecise terrains, that is, tri-
angulated terrains with a vertical error interval in the
vertices. We study the problem of removing as many
local extrema (minima and maxima) from the ter-
rain as possible. We show that removing only minima
or only maxima can be done optimally in O(n log n)
time, for a terrain with n vertices, while removing
both at the same time is NP-hard. To show hard-
ness, we exploit a connection to a graph problem that
is a special case of 2-Disjoint Connected Sub-
graphs, a problem that has received quite some at-
tention lately in the graph theory community. This
special case of 2-Disjoint Connected Subgraphs
is shown NP-hard.

1 Introduction

A triangulated (or polyhedral) terrain is a planar tri-
angulation with a height associated with each ver-
tex. This results in a bivariate and continuous func-
tion, defining a surface that is often called a 2.5-
dimensional (or 2.5D) terrain.

Even though in computational geometry it is usu-
ally assumed that the input data is exact, in prac-
tice, terrain data is most of the time imprecise. The
sources of imprecision are many, starting from the
methods used to acquire the data, which are ulti-
mately based on error-prone measuring devices. Of-
ten such methods produce heights with a known error
bound or return a height interval rather than a fixed
height value. Even though terrain data may contain
error also in the x, y-coordinates, we consider impre-
cision only in the z-coordinate. This simplifying as-
sumption is justified by the fact that error in the x, y-
coordinates will most likely produce elevation error.
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Politècnica de Catalunya, Spain, rodrigo.silveira@upc.edu

Supported by the Netherlands Organization for Scientific Re-
search (NWO).

Moreover, often the data provided by commercial ter-
rain data suppliers only reports the elevation error [2].

We describe an imprecise terrain by a set of n ver-
tical intervals in R3, together with a triangulation of
the projection. See Figure 1(a). We say that a trian-
gulated terrain is a realization of an imprecise terrain
if it has the same triangulation in the projection, and
exactly one vertex on each interval. The large number
of different realizations of an imprecise terrain leads
naturally to the problem of finding one that is best
according to some criterion. Problems that have been
studied in this context include finding smooth realiza-
tions and shortest paths [3, 5, 8].

1.1 Removing Local Extrema

In this paper, we attempt to solve the minimizing-
minima, the minimizing-maxima, and the mini-
mizing-extrema problem on imprecise terrains, i.e., we
attempt to find the realization of an imprecise terrain
(by placing the imprecise points within their intervals)
that minimizes the number of local minima, local max-
ima and local extrema, respectively. A local minimum
(or pit) is usually defined as a point (or larger area
of constant height) that is surrounded by only higher
points, or that has no lower neighboring point. A lo-
cal maximum (or peak) is defined analogously, as a
point surrounded by lower points or without higher
neighbors. Each local minimum and local maximum
is also a local extremum.

When terrains are used for land erosion, landscape
evolution, or hydrological studies, it is generally ac-
cepted that the majority of local extrema in terrain
models are spurious, caused by errors in the data or
model production. A terrain model with many pits
or peaks does not represent the terrain faithfully, and
moreover, in the case of pits, it can create problems
in water flow routing simulations. For this reason the
removal of local minima from terrain models is a stan-
dard preprocessing requirement for many uses of ter-
rain models [11, 13].

Much research has been devoted to the problem
of removing local minima from (precise) terrains, al-
though most of the literature assumes a raster (grid)
terrain (e.g. [9, 13]). Only a few algorithms have
been proposed for triangulated terrains, mainly in the
context of optimal higher order Delaunay triangula-
tions [1, 6]. In particular, Gudmundsson et al. [6] show
that the best possible number of both local minima
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and local maxima can be removed from first-order De-
launay triangulations in O(n log n) time. Silveira and
Van Oostrum [10] study moving vertices vertically in
order to remove all local minima with a minimum
cost, but do not assume bounded intervals.

1.2 P2-MaxCon

As we see later, there is a strong connection between
the problem of removing local extrema from impre-
cise terrains and a graph problem, which we will call
Planar 2-Disjoint Maximally Connected Sub-
graphs (or P2-MaxCon, for short). This problem
takes as input a planar graph, of which two subsets
of the vertices are colored red and blue. The object
is to color the remaining vertices in such a way that
the total number of connected components of both
colors is as small as possible. This problem is very
much related to the 2-Disjoint Connected Sub-
graphs problem, which is the same except that the
graph is not required to be planar and the objective is
to make the red and blue subgraphs both completely
connected. This problem is known to be very hard,
and has recently received some attention in the graph
theory community. For example, it has been shown
that 2-Disjoint Connected Subgraphs is NP-
hard even when there are only two red vertices [12].
See also [7] for a related result.

1.3 Results

We first study the minimizing-minima and the
minimizing-maxima problem on imprecise terrains.
We present a relatively simple algorithm that removes
local minima or local maxima optimally in O(n log n)
time. Then we prove that minimizing the number
of local extrema is NP-hard. This is achieved in two
steps. First we reduce our problem from a graph prob-
lem that we call P2-MaxCon, which is a special case
of 2-Disjoint Connected Subgraphs. We then
show that P2-MaxCon is NP-hard. As a further re-
sult in the full version [4], we can show with a more so-
phisticated proof that the minimizing-extrema prob-
lem on imprecise terrains cannot be approximated in
polynomial time within a constant unless P=NP.

2 Removing local minima

We propose an efficient algorithm based on the idea
of selectively flooding parts of the terrain that finds
the realization with the smallest number of local min-
ima. The algorithm begins with all vertices as low as
possible, and simulates flooding parts of the terrain.

Algorithm We sweep a plane vertically, starting at
the lowest point on any interval and moving upwards
in the z direction. As the plane moves up, it pulls

(a) (b)

Figure 1: (a) An example of an imprecise terrain. (b) The
same terrain, shown by drawing the floor and the ceiling.

some of the vertices with it, whose height change to-
gether with the plane. At any moment during the
sweep, each vertex is in one of three states: (i) Mov-
ing, if it is currently part of a local minimum, and is
moving up together with the sweep plane. (ii) Fixed
at a height lower than the current one. (iii) Unpro-
cessed, if it has not been reached by the sweep plane
yet.

As the sweep plane moves upwards, we distinguish
two types of events: (i) The plane reaches the begin-
ning (lowest end) of the interval of a vertex, (ii) The
plane reaches the end (highest end) of the interval of
a vertex. When an event occurs, let v denote the ver-
tex whose interval just began or ended, and let h be
the current height of the plane. Note that all fixed
vertices are fixed at a height lower than h.1

An event of type (i) can create a number of situa-
tions. If v has a neighbor that is already fixed, then
v will never be a local minimum, thus v is fixed at
its lowest possible height, h. Moreover, if some other
neighbor of v is currently part of a local minimum (i.e.
is moving), then all the vertices that are part of that
local minimum become fixed at h, and automatically
stop being a minimum. This occurs for each neighbor
of v that is currently part of a local minimum. If all
neighbors of v are currently unprocessed, then v will
become a new local minimum, and will start to move
up together with the plane. Finally, if no neighbor
is fixed but some neighbor is moving, thus is part of
a local minimum, then v will join that existing local
minimum and also start to move up together with the
plane (note that if there is more than one local min-
imum that becomes connected to v, at this step they
all merge into one).

Events of type (ii), when an interval ends, are easier
to handle. If v is fixed, nothing occurs. If v was
moving, then v and all of the vertices in the local
minimum containing v become fixed at h.

We prove the correctness of this algorithm in the
full version [4] using an simple induction argument on
the events.

1For simplicity we assume in this description that all interval
heights are different. The removal of this assumption does not
pose any problem for the algorithm.
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Sorting the interval ends for the sweep requires
O(n log n) time. The rest of the steps can be im-
plemented in linear time. Every vertex only starts
and stops moving once, so events can be charged to
these vertices. We can also merge moving minima in
constant time by representing each moving local min-
imum as a tree of components that were merged. A
more detailed proof of the running time is left for the
full version [4].

Theorem 1 The minimizing-minima and the mini-
mizing-maxima problem on imprecise terrains can be
solved in O(n log n) time.

It is interesting to note that when a group of k con-
nected vertices at the same height without any lower
neighbors is regarded as k different local minima, the
problem can be proved NP-hard. Details are omitted
due to lack of space.

3 Removing all local extrema

We now move to the problem of removing both local
minima and local maxima, that is, removing as many
local extrema as possible at the same time. In the
full version [4], we show that we can in fact apply the
algorithm of Section 2 to remove the local minima,
or to remove the local maxima, and this will result
in two solutions that do not intersect, effectively nar-
rowing down the solution space. However, we must
now find a compromise between the two. It turns out
that finding such a compromise is NP-hard. Firstly,
show that this problem is as hard as P2-MaxCon.
The reduction takes the input to P2-MaxCon—

a planar graph with red, blue and white vertices—
and builds an imprecise terrain from it. We will first
embed the graph in the plane with straight line edges
and convex faces. We then turn all red vertices into
precise vertices at height 8, and all blue vertices into
precise vertices at height 2. Finally, we turn the white
vertices into imprecise vertices with interval [2, 8].
The problem of minimizing extrema on this graph

is equivalent to that of minimizing connected compo-
nents after recoloring. This is due to the fact that
the only way to remove local minima in this “terrain”
is by connecting the minima to each other by assign-
ing the white vertices at height 2. Similarly, the local
maxima can only be removed by assigning white ver-
tices at height 8.
In order to have a proper imprecise terrain, we still

need to triangulate the graph. We show how to do
this in detail in the full version [4], but the idea can
be seen in Figure 2(b).

3.1 P2-MaxCon is NP-hard

We prove that P2-MaxCon is NP-hard by a reduc-
tion from planar 3-SAT. In this problem, the nor-
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Figure 2: (a) An instance of P2-MaxCon. (b) In the
output, we fixed the red vertices at height 8, and the blue
at height 2. The remaining white vertices are intervals [2, 8].
The rest of the vertices are added to make sure that the graph
is triangulated, and that the new vertices do not interfere
with the number of local extrema.

mal 3-SAT problem is restricted so that the bipartite
graph connecting variables and clauses is planar. We
call this graph GS = ((V ∪ C), E), where an edge
e = (v, c) ∈ E if variable v is in clause c. As is usual
in such reductions, we first embed GS in the plane so
that none of the edges in E cross. We then replace the
vertices and edges in the embedding with “gadgets”.

The variable gadget is simply a white vertex. We
show below that coloring the vertex red is equivalent
to setting the corresponding variable to true and col-
oring the vertex blue is equivalent to setting the cor-
responding variable to false.

Another gadget that we use is the inverter gadget,
shown in Figure 3(a). This gadget consists of two
white vertices and k red and k blue vertices. Each col-
ored vertex is connected to both white vertices. This
gadget ensures that one of the white vertices must be
colored red and the other one blue, because otherwise
there will be k components in the output. To ensure
that this is unacceptable, we make k at least as large
as the number of gadgets in our construction.

A clause gadget is a collection of 3 inverter gadgets,
and 4 extra red vertices. These are all connected as
shown in Figure 3(c). The red vertices form one large
component as long as at least one of the white vertices
adjacent to the central red vertex is colored red.

Finally, we create edge gadgets to connect variable
gadgets to clause gadgets. An edge gadget is simply
a chain of inverter gadgets. See Figure 3(d). If a vari-
able v is negated in clause c, then we replace the edge
(v, c) with a chain of an odd number of inverter gad-
gets, otherwise, we use an even-length chain. Since
the number of inverter gadgets between a variable
gadget and one of the clause gadgets that it is con-
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(a) (b) (c) (d)

Figure 3: (a) An inverter, consisting of k red and k blue vertices. (b) Symbolic representation of an inverter. (c)
In a clause, we connect three inverter gadgets using four extra red vertices. (d) We can chain inverter gadgets.
The white vertices in a chain must always be colored alternately red and blue.

nected to determines the color of the final white vertex
in the chain, we can see that coloring a variable gadget
red corresponds to the final white vertex in a chain to
a clause in which that vertex is not negated being col-
ored red. This implies that coloring a variable gadget
red is equivalent to setting its value to true and that
coloring a variable gadget blue is equivalent to setting
its value to false.
The total number of connected components is equal

to the number of white vertices in the construction,
minus 2 per clause since the red components are con-
nected, plus the number of unsatisfied clauses. Hence,
minimizing the number of connected components in-
volves determining whether the 3-SAT clause can be
satisfied completely, which proves the following.

Theorem 2 P2-MaxCon is NP-hard.

Corollary 3 The minimizing-extrema problem on
imprecise terrains is NP-hard.

4 Discussion

We have shown that the minimizing-minima and the
minimizing-maxima problem on imprecise terrains
can be solved in O(n log n) time, while solving the
minimizing-extrema problem on imprecise terrains
cannot be solved in polynomial time unless P=NP.
We have also shown that P2-MaxCon is NP-hard,
which constitutes the first result about 2-Disjoint
Connected Subgraphs for planar graphs.
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Recursive tilings and space-filling curves with little fragmentation

Herman Haverkort∗

Abstract

This paper defines the Arrwwid number of a recursive
tiling (or space-filling curve) as the smallest number a
such that any ball Q can be covered by a tiles (or curve
fragments) with total volume O(volume(Q)). Recur-
sive tilings and space-filling curves with low Arrwwid
numbers may be applied to optimise disk, memory or
server access patterns when processing sets of points
in Rd. This paper presents recursive tilings and space-
filling curves with optimal Arrwwid numbers. When
d ≥ 3, regular cube tilings and space-filling curves
cannot have optimal Arrwwid number; alternatives
with better Arrwwid numbers are presented.

1 Introduction

Consider a set of data points in a bounded region U
of R2, stored on disk. A standard operation on such
point sets is to retrieve all points that lie inside a cer-
tain query range, for example a circle or a square. To
prevent large delays because of disk head movements
while answering such queries, it is desirable that the
points are stored in a clustered way [1]. Similar con-
siderations arise when storing spatial data in certain
types of distributed networks [3] or when scanning ob-
jects to render them as a raster image; in the latter
case it is desirable that the pixels that cover any par-
ticular object are scanned in a clustered way, so that
the object does not have to be brought into cache too
often [4]. For ease of explanation, we focus on the
application of clustering to storing points on disks.

We could try to achieve a good clustering in the fol-
lowing way. We divide U into tiles. The tiles could,
for example, form a regular grid of hexagons (Fig. 1).
Now we store the points in each tile as a contiguous
block on disk. To answer a query, say with a region
Q bounded by a circle, we compute which tiles in-
tersect Q. For each intersecting tile, we move the
disk read head to the position where the first point
in that tile is stored, and then we retrieve all points
in the tile, scanning them sequentially without fur-
ther delays from disk head movements. Since some of
the tiles that intersect Q may lie partially outside Q,
some of the points thus retrieved may be false an-
swers: they are no answers to our query and need to
be filtered out in post-processing.

∗Dept. of Computer Science, Eindhoven University of Tech-
nology, the Netherlands, cs.herman@haverkort.net

Figure 1: Sorting points into (non-recursive) tiles.
Queries with small query ranges (shaded disk on the
left) may necessitate scanning the full contents of a
crowded tile. Queries with large ranges (shaded disk
on the right) may necessitate looking up many tiles.

The approach sketched above may work well if the
following conditions are met: (i) A couple of tiles suf-
fice to cover Q (so that we do not have to move the
disk read head to the starting point of another tile too
often); (ii) The tiles that cover Q are not much larger
than Q (so that they do not contain too many false
answers). However, as illustrated in Fig. 1, these two
conditions can be hard to meet if we choose any fixed
tile size and the density of the points stored varies
by region or in time. To avoid this problem, we can
use recursive tilings. A recursive tiling is a subdivi-
sion of U into tiles, that are each subdivided into tiles
recursively. We store the data points in such a way
that for each tile, on any level of recursion, the data
points within that tile are stored as a contiguous se-
quence on the disk. Hopefully we can now cover any
disk-shaped region Q with a small set of tiles from
the level of recursion where the tiles have size propor-
tional to Q. Thus we would satisfy condition (i) and
(ii) at the same time. For a precise problem state-
ment, we define the Arrwwid number of a recursive
tiling of a region U as follows:

Definition 1 The Arrwwid number is the smallest
number a such that there is a constant c such that
any disk Q that lies entirely in U can be covered by
a tiles with total area at most c · area(Q).

Thus the Arrwwid number is the maximum number of
tiles needed to cover any disk if we require the tiles to
be relatively small. We call c the cover ratio. The def-
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inition is essentially from Asano, Ranjan, Roos, Welzl
and Widmayer [1], and we name it Arrwwid number
in their honour. Considering that moving the disk
head once may easily cost as much time as scanning
ten thousands of points from disk, it is really impor-
tant to keep the number of tiles, that is, the Arrwwid
number, small. Hence the topic of this study: what
recursive tilings have small Arrwwid numbers?

Until now, we only required that the data points
within each tile are stored contiguously, but we did
not require anything of the order in which the subtiles
of any tile are stored with respect to each other. How-
ever, it may be possible to improve query efficiency by
controlling the order in which tiles are stored. A well-
chosen order may have the result that some of the tiles
used to cover a query range are stored consecutively
on disk, thus eliminating the need to move the disk
head when going from one tile to the next. When a re-
cursive tiling is enhanced with a recursive definition of
how the subtiles within each tile are ordered relative
to each other, the result constitutes the definition of
a recursive scanning order or a recursive space-filling
curve (we will use these two terms interchangeably;
the full paper explains the subtle differences [2]). The
Arrwwid number of a space-filling curve is defined ex-
actly as for recursive tilings, only replacing “tiles” by
“curve fragments” (sets of consecutive tiles).

In the above definitions we could exchange disks for
squares: this would only affect the cover ratios c but
not the Arrwwid numbers a. The definitions naturally
extend to higher dimensions, replacing disks by balls,
area by volume, and squares by (hyper)cubes.

Previously Asano et al. studied scanning orders
based on a recursive tiling with four squares per
square [1]. The Arrwwid number of such a tiling is
four, and Asano et al. proved that no ordering scheme
of this tiling has Arrwwid number less than three.
They presented the AR2W 2 scanning order, which
has Arrwwid number three. Other authors considered
other ways of assessing how well space-filling curves
succeed in keeping the number of fragments needed to
cover a query range low (references in full paper [2]).

In this paper, we extend the scope of our knowledge
on Arrwwid numbers to different tilings (not necessar-
ily with four squares per square) and to higher dimen-
sions. The results are the following: in two dimen-
sions, no recursive tiling and no recursive scanning
order has Arrwwid number less than three if the tiles
are simply connected regions in the plane. The paper
presents recursive tilings with Arrwwid number three
(regardless of the order), and an alternative square-
based scanning order with Arrwwid number three but
without the diagonal connections that are suspected
to harm the performance of the AR2W 2 curve.

In d dimensions, no recursive tiling has Arrwwid
number less than d + 1. We prove that in three di-
mensions, putting the tiles in a certain order will not

(a) (b)

(c) (d)

1

√
φ

φ = 1
2

√
5 + 1

2

Figure 2: (a) A simple, uniform, regular recursive
tiling. (b) A simple, uniform recursive tiling. (c) Uni-
form but not simple. (d) Simple but not uniform.

enable us to get below this bound if the tiles are con-
vex polyhedra. There are recursive tilings and scan-
ning orders with fractal-shaped tiles that have Arr-
wwid number d + 1, and tilings and scanning orders
with rectangular blocks that have Arrwwid number
3
4 · 2d. Any regular (hyper)cube-based tiling has Arr-
wwid number 2d, and any scanning order based on it
has Arrwwid number at least 2d − 1.

Omitted proofs can be found in the full paper [2].

2 Two-dimensional tilings

A recursive tiling of a region U (called the unit tile)
in the plane is defined by a finite set of recursive tiling
rules. Each rule specifies (i) the shape of a finite re-
gion to be tiled; (ii) how this region is tiled with a fixed
number of tiles; (iii) which rules should be applied to
subdivide each of these tiles recursively. Fig. 2 shows
some examples. Each rule is identified by a letter, and
depicted by drawing the shape of its region, the tiles,
and within the tiles, the letters of the rules to be ap-
plied to them; each letter is rotated and/or mirrored
to reflect the transformations that should be applied
to the subtiles of the tile. Next to each set of rules
we see the tiling that is produced after expanding the
recursion down to tiles of a few millimeters.

Simple tilings are recursive tilings that use only one
rule. We define uniform tilings as recursive tilings in
which all tiles have the same shape, and each rule sub-
divides such a shape into an equal number of tiles of
equal size. The size of a uniform tiling is the number
of tiles in each rule. By square or rectangular tilings
we mean tilings whose tiles are square or rectangular.
Regular recursive tilings are those that form a fully
regular grid when the recursion is expanded to any
fixed depth (Fig. 2(a)). Given any tiling, the degree
of a point p ∈ U is the maximum number of interior-
disjoint tiles meeting in p. The vertex degree of a tiling
is the maximum degree of p over all points p ∈ U .
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(d)(c)

(a) (b)

Figure 3: How to turn a “shifted” grid of squares into
a recursive tiling with Arrwwid number three.

It is easy to show that the Arrwwid number of a re-
cursive tiling cannot be lower than its vertex degree,
and therefore each two-dimensional recursive tiling
has Arrwwid number at least three.

To find a tiling that actually has Arrwwid number
three, we need to find a tiling with vertex degree at
most three. We can modify a grid of squares such
that it has vertex degree three: just shift each sec-
ond column up by half a square’s height, like the
large squares in Fig. 3(a). However, such a tiling
is not recursive: a square in such a grid cannot be
subdivided into smaller squares arranged in a similar
shifted grid. A recursive tiling can be obtained by
recursively approximating larger squares by smaller
squares; this procedure will turn the boundaries of
the squares into fractals. To do so, we start with a
coarse tiling and a fine tiling as in Fig. 3(a). The fine
tiling is the same as the coarse tiling, scaled by a fac-
tor 1/3, and aligned with the coarse tiling such that
the fine tiling looks the same around each large tile.
We assign each small tile to the large tile with which
it has the largest overlap. All large tiles of the coarse
grid are now replaced by the union of the small tiles
assigned to them (Fig. 3(b)). We now replace the
small tiles by scaled copies of the large tiles (which
are no longer squares), and again replace the large
tiles by the unions of the small tiles assigned to them
(Fig. 3(c)). When we repeat this process ad infinitum,
the boundaries of the tiles converge to fractal shapes
such that each large tile is tiled by nine scaled-down
copies of itself (Fig. 3(d)). The resulting recursive
tiling has Arrwwid number three.

The full paper contains more examples of this tech-
nique along with proofs of the Arrwwid numbers [2].

The smallest uniform rectangular tiling with Ar-
rwwid number three is the Daun tiling (Fig. 4). The
full paper explains how this tiling was found and
proves that no four tiles ever meet in one point on
any level of recursion [2].

Figure 4: The Daun tiling, with level-two expansion.
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Figure 5: (a) Definition of the Hilbert scanning order.
(b) Definition expanded by one level.

3 Two-dimensional space-filling curves

A recursive scanning order is a recursive tiling in
which the rules also specify an order of the tiles. Fig. 5
shows an example. When defining a scanning order,
the recursion within a tile can be rotated and mirrored
as with recursive tilings. In addition a recursive rule
may be applied with reversed order; we indicate this
by a horizontal stroke above the letter that identifies
the rule (Fig. 6). As explained in the full paper [2],
scanning orders are so closely related to space-filling
curves that for the purposes of this paper, we use
these terms interchangeably.

Given any scanning order of a unit tile U , we de-
fine the prefix region pre(x) as the region within U
that has total area x · area(U) and comes first in the
scanning order; it can be constructed by subdividing
U recursively to a sufficiently fine level and collect-
ing tiles in scanning order until tiles with a total area
of x · area(U) have been collected. Let the fragment
U [x, y] be pre(y)\pre(x). Two fragments U [x, y1] and
U [y2, z] are consecutive if y1 = y2, and they connect
in a point p if U [x, z] shrinks to p when x approaches
y1 from below and z approaches y2 from above.

The Arrwwid number of a curve or scanning order is
the smallest number a such that there is a constant c
such that any disk Q that lies entirely in U can be cov-
ered by a fragments with total area at most c·area(Q).
Since every tile in the underlying recursive tiling con-
stitutes a fragment by itself, the Arrwwid number of
a curve is never more than the Arrwwid number of
the underlying tiling. However, the Arrwwid number
of a curve may be less than the Arrwwid number a of
the underlying tiling. Asano et al. define the AR2W 2-
curve [1] and prove that it has Arrwwid number three.
The Kochel curve (Fig. 6) is a new and simpler curve,
designed and proven to have Arrwwid number three.
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Figure 6: Definition of the Kochel scanning order,
with level-two expansion (starting from rule F).

The Kochel curve has the favourable [2] property that
consecutive tiles in the order always share an edge.

Theorem 1 Any space-filling curve based on a recur-
sive tiling with tiles that are topologically equivalent
to disks has Arrwwid number at least three.

Proof. (sketch) Consider any subdivision of a space-
filling curve, filling a unit tile U , into a set of frag-
ments F such that each fragment is topologically
equivalent to a disk. The boundaries of the fragments
in F form a plane graph G(V,E). By tiles(v) we de-
note the number of tiles that are incident on the vertex
v of G. By conns(v) we denote the number of pairs
of consecutive fragments of F that connect to each
other in v. We can argue that if the space-filling curve
has Arrwwid number less than three, we must have
tiles(v)− conns(v) ≤ 2 for every vertex of G (ignoring
effects on the boundary of the outer face). Summing
over all vertices this gives (i):

∑
tiles(v)−|F | ≤ 2|V |.

Since tiles(v) equals the number of edges incident on
v we have

∑
tiles(v) = 2|E| and Euler’s formula gives

(ii): 1
2

∑
tiles(v) − |F | = |V | (ignoring additive con-

stants). Subtracting (ii) from (i) twice we get |F | ≤ 0:
a contradiction (the full paper explains how to han-
dle the ignored constants). So the space-filling curve
cannot have an Arrwwid number less than three. �

4 Three and more dimensions

Many of the results and techniques presented above
generalise to higher dimensions.

Any d-dimensional recursive tiling has Arrwwid
number at least four. Similar to the “recursified”
shifted-squares tiling in Fig. 3, we can construct a re-
cursified shifted-hypercubes tiling with Arrwwid num-
ber d + 1. The Daun tiling of Fig. 4 can be used as
the basis for d-dimensional tilings and scanning or-
ders with rectangular blocks that have Arrwwid num-
ber 3

4 ·2d. Unfortunately, in three or more dimensions
no rectangular tiling with lower Arrwwid number was
found, but it might exist. Any uniform (hyper-)cube
tiling in d dimensions has Arrwwid number 2d.

The proof technique of Theorem 1 can be adapted
to obtain several results on three-dimensional space-
filling curves. The main difficulty in obtaining these
results is that Euler’s formula cannot be used to derive

a contradiction: one needs another way of establish-
ing a relation between

∑
tiles(v), |F |, and |V | in a

recursive tiling. Using properties of the specific tiling
we can prove that any uniform (hyper-)cube scanning
order has Arrwwid number at least 2d − 1. With an
excursion into spherical geometry one can prove that
any three-dimensional scanning order based on convex
tiles has Arrwwid number at least four.

5 Conclusions

This paper shows that in two dimensions the lowest
possible Arrwwid number is three; it is achieved by
certain uniform square space-filling curves and by a
certain rectangular tiling. Most widely known curves
have Arrwwid number four, so the difference is small.
However, in higher dimensions the stakes are much
higher: no uniform cube space-filling curve can have
an Arrwwid number as low as the best known rect-
angular space-filling curve, and the best known rect-
angular space-filling curve does not have an Arrwwid
number as low as the best known space-filling curve
on a fractal tiling. The gap in Arrwwid number in-
creases exponentially with the dimension. However,
there may also be an exponentially increasing gap in
cover ratio, in favour of the regular hypercube tilings.
It is therefore unclear whether the research described
in this paper led to anything that might be useful in
practice; I hope that this work at least opened some
new perspectives on how recursive tilings and space-
filling curves can be constructed.
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Straight Skeletons and their Relation to Triangulations∗

Stefan Huber† Martin Held†

Abstract

We study straight skeletons of polygons and inves-
tigate the dependence of the number of flip events
of the classical wavefront propagation by Aichholzer
and Aurenhammer on the underlying triangulation.
We show that their standard algorithm, applied to
a polygon with n vertices, has to cope with at least
Ω(n2) flip events. In particular, Ω(n) diagonals of a
triangulation may reappear Ω(n) times each. Still, by
allowing a linear number of Steiner points in the tri-
angulation we can avoid flip events completely. As an
application of this result we explain how the straight
skeleton of a simple polygon with n vertices can be
computed in time O(n2 log n) by a wavefront-based al-
gorithm that matches the simplicity of the algorithm
by Aichholzer and Aurenhammer.

1 Introduction

Since the introduction of straight skeletons by Aich-
holzer et al. [2] many questions related to straight
skeletons have remained unanswered. In particular,
there is a significant gap between the known lower
and upper bounds for computing straight skeletons:
While the best lower bound for the computation of
the straight skeleton of a simple polygon with n ver-
tices is Ω(n log n), the fastest known algorithms by
Eppstein and Erickson [4] and Cheng and Vigneron
[3] provide a worst-case runtime of O(n17/11+ε) and an
expected runtime of O(n3/2 log n), respectively. Both
algorithms seem very difficult to implement and, in
fact, no implementation is known.

In terms of implementability an approach based on
triangulations by Aichholzer and Aurenhammer [1]
looks much more promising. They take a triangu-
lation of the input polygon1 and simulate a wavefront
propagation by bookkeeping topological changes of
the underlying moving triangulation. Edge and split
events of the straight skeleton correspond to topologi-
cal changes in the triangulation. However, additional
topological changes of the triangulation — so-called
flip events — appear when a vertex crosses a trian-
gulation diagonal. The handling of the O(n) split
and edge events costs O(n2 log n) time, while a single
∗Work supported by Austrian FWF Grant L367-N15.
†Universität Salzburg, FB Computerwissenschaften, A-5020

Salzburg, Austria, {shuber,held}@cosy.sbg.ac.at
1Actually, their algorithm can handle planar straight line

graphs as input.

flip event can be processed in O(log n). It is widely
believed (but yet unproven) that the number of flip
events is bounded by O(n2), which would yield an
overall O(n2 log n) bound for their algorithm.

In Sec. 2 and 3 of this paper we present results
related to the unproven O(n2) bound on the number
of flip events. Subsequently, in Sec. 4 we use Steiner
points to obtain triangulations of polygons that are
free of flip events. As an application of this result
we explain in Sec. 5 how the straight skeleton of a
simple polygon with n vertices can be computed in
time O(n2 log n) by a wavefront-based algorithm that
matches the simplicity of the algorithm by Aichholzer
and Aurenhammer [1].

2 How often can diagonals reappear?

Currently, the best known upper bound for the num-
ber of flip events is O(n3). This follows from the fact
that three points that move with constant speed along
lines in the plane are either never, once, twice or al-
ways collinear. (The determinant of the matrix whose
columns consist of the homogeneous coordinates of
the points is a quadratic expression in time, and a root
indicates collinearity.) Consequently, a single diago-
nal of a triangulation can be crossed at most 2(n− 2)
times by other vertices, and since there are at most
O(n2) possible diagonals, an upper bound of O(n3)
follows. Of course, not every collinearity of three ver-
tices corresponds to a flip event.

This proof links the number of flip events with the
number of reappearances of triangulation diagonals.
The following lemma highlights that one cannot es-
tablish an O(n2) bound on the number of flip events
during the wavefront propagation by attempting to
show that the number of reappearances of every sin-
gle diagonal of an arbitrary triangulation is in O(1).

Lemma 1 There exists a sequence of polygons Pn,
with Θ(n) vertices, and corresponding triangulations
Tn such that Ω(n) diagonals of Tn reappear Ω(n)
times during the wavefront propagation applied to Pn.

Proof. Roughly, we come up with an appropriate ge-
ometric configuration of moving vertices that realizes
a sequence of topological transitions such that diag-
onals reappear as often as claimed. Our constructive
proof is split into three parts. First, we construct a
polygon P and a triangulation T where one diagonal
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reappears twice. Then we extend this construction
such that a single diagonal appears Ω(n) times. In
the third part we extend it such that Ω(n) diagonals
each reappear Ω(n) times. (Due to the lack of space
we omit details of Part 3 of the proof, though.) In
the sequel we denote by V (t) the position of the ver-
tex V at time t and by AB the supporting line of the
vertices A and B.

Part 1 : We start with showing how to make a diag-
onal AB reappear twice during the movement of six
vertices A, B, S1, S2, N1, N2 as induced by the wave-
front propagation. The wavefront propagation starts
at time −ε, for a sufficiently small ε > 0, and topo-
logical transitions will occur at times 0, 1, 2, 3, 4 and
5. The initial positions of the six vertices (discussed
in detail below) are shown in the top part of Fig. 1,
while the upper-left triangulation in the lower part
of Fig. 1 shows the initial triangulation of the ver-
tices. The other triangulations show topological tran-
sitions needed to recreate AB. Roughly, AB will dis-
appear because the vertex S1 crosses it. Then S1 falls
back behind AB again. After the recreation of that
diagonal S2(t) will cross it, causing it to disappear
again. The corresponding topological transitions are
illustrated in the bottom of Fig. 1.

We now discuss details of the geometric configura-
tion of the six vertices. Let the two vertices A, B both
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Figure 1: Part 1. Top: geometric configuration. Bot-
tom: Topological transitions at the six points in time
depicted as grey numbers in the top sub-figure.
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Figure 2: Part 3. Topological transitions of the first
reappearance cycle.

move northwards (parallel to the positive y-axis), with
B moving strictly faster than A. We want the ver-
tex S1 to move northeastwards and to cross AB at
time 0 and to fall back behind AB a bit later, say
at time 1. We achieve this by demanding S1(t) to
lie on A(t)B(t) for t ∈ {0, 1}, cf. Fig. 1. Once S1(0)
and S1(1) are fixed, the movement of S1 has been
specified completely. Since the area of the triangle
∆(A(t)B(t)S1(t)) is a quadratic expression in t and
since A(t)B(t)S1(t) are oriented clockwise (CW) for
some t > 1 we conclude that A(t)B(t)S1(t) is ori-
ented CW for t /∈ [0, 1] and counter-clockwise (CCW)
for t ∈ (0, 1). The recreation of the diagonal AB is
achieved by letting a vertex N1 move southwards to
the left of A such that it crosses A(t)S1(t) at, say,
time 2, cf. Fig. 1. Now we place a vertex S2 that
moves parallel to S1 between A and S1 such that
S2(t) ∈ A(t)B(t) for t ∈ {3, 4}. Again it holds that
A(t)B(t)S2(t) is oriented CW if t /∈ [3, 4] and CCW
if t ∈ (3, 4). Thus, the diagonal AB disappears at
time 3 and S2 falls back behind AB again at time
4. Similar to N1 we place a vertex N2 that recreates
the diagonal AB by requesting N2(5) ∈ A(5)S2(5), cf.
Fig. 1. Note that by increasing the inclination of the
supporting rays of the vertices S1, S2 we can force the
start positions of S1(−ε) and S2(−ε) to get arbitrar-
ily close to the line A(−ε)B(−ε). By doing so we can
guarantee that a polygon P exists such that the given
geometric configuration is achieved. (It is shown as a
curve depicted in light grey in Fig. 1.)

Part 2 : We add vertices S3, . . . , Sm from right to
left between S2 and A, according to the construction
scheme of part 1. That means that Si+1 gets collinear
with A and B at time 3i and 3i + 1. Analogously
we add vertices N3, . . . , Nm from left to right next
to N2 such that Ni+1 crosses ASi+1 at time 3i + 2.
Again, note that if the vertices S1, . . . , Sm are moving
nearly vertically then the start positions of S1, . . . Sm
get arbitrarily close to the line AB.

Part 3 : The basic idea is to arrange copies
A2, . . . , Ak of A1 along a reflex chain of the polygon
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such that the positions of A2(t), . . . , Ak(t) remain suf-
ficiently close to the line A1(t)B(t) for the entire time
span of the wavefront propagation. By doing so one
can achieve the topological transitions as sketched by
the first reappearance cycle in Fig. 2. �

3 Can we always find good triangulations?

As a byproduct of the previous lemma we obtain poly-
gons and triangulations that lead to Ω(n2) flip events.
However, this result hinges on meticulously chosen tri-
angulations which are bad in the sense that Ω(n) diag-
onals each reappear Ω(n) times. For example, in the
construction scheme above, we could have initially put
diagonals between Nm and A1, . . . , Ak, thus avoiding
the reappearance cycles of the diagonals. Can we al-
ways find, for every given polygon P , a good triangu-
lation T such that the number of flip events is low, say
o(n2) or even O(n)? The following lemma provides a
negative answer to this question.

Lemma 2 There exist polygons with n vertices for
which every triangulation leads to Ω(n2) flip events.

Proof. We consider the polygon shown in Fig. 3. The
vertices A, E1, . . . , Ek, B lie on a reflex chain such that
W is the only vertex initially seen by an Ei. Hence
every triangulation contains the diagonals WEi, for
1 ≤ i ≤ k. These diagonals are flipped by the notch
vertices N1, . . . , Nm which move southwards. We en-
sure that N1, . . . , Nm are fast enough that they cross
those diagonals before any edge or split event occurs
where a vertex E1, . . . , Ek is involved. Furthermore,
we request that for each i ∈ {1, . . . ,m − 1} the ver-
tex Ni+1 does not cross the supporting line of AE1

before Ni induced Ω(k) flip events. The claim follows
by choosing m, k roughly equal to n/2. �

One might feel that retriangulating at specific fa-
vorable moments could reduce the complexity. How-
ever, the polygon above seems to illustrate a counter

E1

Ek

N1

N2

Nm

W

AE1

. . .

. . .

A

B

Figure 3: A polygon where every possible triangula-
tion leads to Ω(n2) flip events.

example: Note that a retriangulation at any point in
time does not save more than O(n) flip events. Hence,
to gain a runtime advantage one would have to per-
form Ω(n) retriangulations. Assume that we perform
a retriangulation saving O(n) flip events. Handling
the flip events directly would have cost O(n log n)
time. A single retriangulation invalidates O(n) en-
tries in the priority queue. This means that one would
gain a runtime advantage only if O(n) entries in the
priority queue could be reset in o(n log n) time.

4 Steiner triangulations without flip events

In this section we investigate whether Steiner points
can be used to obtain triangulations with a low num-
ber of flip events or, more precisely, with no flip events
at all.

Lemma 3 Every simple polygon P with n vertices
admits a triangulation that employs at most n − 2
Steiner points and which is free of flip events.

Proof. We consider the straight skeleton S of P and
add its at most n − 2 inner nodes as Steiner points
and its arcs as initial diagonals of the triangulation.
It now remains to triangulate the faces of S.

Let the face f of S be induced by the segment s of
P . Let p, q denote the endpoints of s. Note that f
(as a polygon) is monotone with respect to s and that
reflex vertices of f are only present in the correspond-
ing monotone chain that does not contain s. Recall
that split event nodes correspond to reflex vertices of
f . If f contains no reflex vertices then we triangulate
f arbitrarily. Otherwise we choose that reflex ver-
tex v which has minimum orthogonal distance to s,
and insert two diagonals vp and vq. Note that f con-
tains the diagonals completely: otherwise we would
have missed a split event node of f having smaller or-
thogonal distance to s. Then f is decomposed by the
triangle pqv into two remaining parts A and B, where
A contains the diagonal pv and B contains the diag-
onal qv, see Fig. 4. We proceed recursively within A
and B. That is, if A has no reflex vertex then we tri-
angulate arbitrarily. Otherwise we find a reflex vertex
v′ with minimum orthogonal distance to s and insert
two diagonals v′p and v′v. Then A is split by the
triangle pvv′ into two parts, and so on.

During the wave propagation the vertices of P move
on the straight skeleton and hence do not cross any
diagonal at any time. For every face f the correspond-
ing segment s is moving in a self-parallel manner in-
wards and may be split when reaching reflex vertices
of f . In contrast to that the Steiner points stay in
place and wait until the corresponding segments of
P reach them. The triangles in a face collapse only
when s reaches a node of f and hence an edge or a split
event occurs. However, no diagonal crosses a Steiner
point such that a flip event needs to be handled. �
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p qs
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Figure 4: The triangulation scheme for a straight
skeleton face of a segment s.

5 Motorcycle graph based straight skeletons

Obviously, the proof of the previous lemma does not
result in a new algorithm for computing straight skele-
tons. However, we recall again that convex vertices
of P do not cause flip events. On the other hand,
in the former construction, reflex vertices of P are
barred from causing flip events since those vertices
move along triangulation diagonals which are part of
the straight skeleton. Fortunately, this property also
holds if we replace the straight skeleton by the motor-
cycle graph M induced by the moving reflex vertices.

For the sake of simplicity we also adopt the assump-
tion of Cheng and Vigneron [3] that no split event of
higher degree exists, i.e., that no two or more reflex
vertices meet simultaneously in a common point. Un-
der this assumption Cheng and Vigneron [3] showed
that a reflex arc of the straight skeleton is not longer
than the trace of the corresponding motorcycle. (We
assume that motorcycles crash at the boundary of the
initial polygon.) Note that M always decomposes P
into convex parts during the entire shrinking process.

This suggests that we can obtain an algorithm for
computing straight skeletons by by employing the mo-
torcycle graph during the wavefront propagation pro-
cess. In contrast to the former sections we do not
consider a triangulation but maintain the intersec-
tion points of M with the wave front and call them
Steiner vertices. The following types of events occur,
see Fig. 5: (i) edge event: two neighboring convex ver-
tices in a convex part of P meet; (ii) split event: a re-
flex vertex meets its corresponding Steiner vertex; (iii)
switch event: a convex vertex meets a Steiner event
and hence the convex vertex migrates to a different
convex part of P ; (iv) start event: a reflex vertex or a
(moving) Steiner vertex meets a (resting) Steiner ver-
tex, which is the endpoint of a different trace and has
to start moving. Note that only neighboring2 vertices
meet in the propagation process since the motorcy-
cle graph decomposes the shrinking polygon P at any
time into convex parts.

Hence, it suffices to check only for collisions among
vertices which are neighbors. We put correspond-
ing events into a priority queue and process them in

2On the wave front or on the motorcycle graph.

(iii)

(i)

(ii)

(iv)

Figure 5: Different types of events for the motorcycle
graph based straight skeleton algorithm.

chronological order. In the worst case there are up to
O(n2) switch events, but all other events occur Θ(n)
times. Every event can be handled in O(log n) time,
since only a constant number of neighbors of the two
vertices affected have to be modified in their propaga-
tion speed. Hence, the algorithm runs in O(n2 log n)
time in the worst case but still enjoys a simplicity that
is comparable to the triangulation-based algorithm by
Aichholzer and Aurenhammer [1].

We note that the O(n2) bound on the number of
switch events seems overly pessimistic, and there is
reason to assume that for many data sets, in particu-
lar for those from real-world applications, there might
be only O(n) switch events, resulting in O(n log n)
runtime in practice (if the motorcycle graph is already
given). Furthermore, our algorithm need not be re-
stricted the interior of one polygon but could also be
extended to planar straight-line graphs.

Acknowledgement We would like to thank Gerhard
Mitterlechner for valuable discussions.
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Abstract

Let S be a set of n imprecise points in the plane that
each imprecise point is modeled by a segment. In
this paper, we study the problem of finding a min-
imum perimeter convex hull of S that segments are
either inside this convex hull or intersected by it. We
present the first polynomial time algorithm to solve
this problem in O(n2 log n) time where the segments
are disjoint.

1 Introduction

Computational geometry is a vast area of research
that mostly deals with designing algorithms that work
with exact input data, but in real world problems, due
to devices with limited accuracy, input data might be
imprecise. Therefore, a new class of problems focuses
on designing algorithms which are able to work with
imprecise data. Imprecise data can be modeled by a
region they lie on.

Suppose that S is a set of imprecise points where
each of its points is modeled by a segment in the
plane. We want to find the minimum perimeter
convex polygon that has no segments of S outside.
We assume there does not exist a line which in-
tersects all segments of S. Goodrich and Snoeyink
presented an algorithm that finds a convex polygon
whose boundary stabs a set of parallel line segments,
in O(n log n) time [1]. Meijer and Rappaport al-
lowed the interior and the boundary of the polygon
to stab the set S of parallel line segments, and found
a stabbing polygon of the smallest perimeter, called a
minimumstabbingpolygon of S, in O(nlogn) time [4].
Rappaport proposed an algorithm for the problem of
computing convex hull of a set of disjoint segments,
which is called minimumpolygontransversals, in
O(3kn log n) time [5]. Hassanzadeh showed that al-
gorithm could not work correctly in some cases. So,
he corrected it, resulting in an O(4kn log n) time al-
gorithm, and presented several approximation algo-
rithms to solve that problem as well [2]. Löffler
and van Kreveld studied minimum/maximum perime-
ter/area convex hull of imprecise points where each
imprecise point was modeled by a segment or a square.

∗Laboratory of Algorithms and Computational
Geometry, Department of Mathematics and Com-
puter Science, Amirkabir University of Technology,
{ahmadjavas,mohades,mdmonfared,f.sheikhi}@aut.ac.ir

They also proved the problem of finding maximum
area/perimeter convex hull is NP-hard [3].

No polynomial time algorithms are known to solve
the problem of finding the minimum perimeter convex
hull of a set of segments. In this paper, we present
the first polynomial time algorithm which solves this
problem in O(n2 log n) time.

2 Preliminaries

The algorithm that we present to solve the problem
proposed, is similar to QuickHull algorithm which
computes the convex hull of a point set in the plane.
Our algorithm is an iterative one that in each iteration
computes the convex hull of some special segments of
S by using an unfolding method [2], and then updates
the resultant convex hull regarding the segments that
lie outside it.

Before concentrating on details of the algorithm, we
present some useful concepts. Let P be a set which
includes endpoints of all segments of S, and CH(P )
denote its convex hull.

Theorem 1 Suppose at least one endpoint of each
segment of S lies on the boundary of CH(P ). A
tour MT which visits all segments has the minimum
length, if it intersects the segments in their clockwise
(or counter clockwise) traversal on the boundary of
CH(P ).

Proof. Let s1, s2, , sn be the ordered segments which
are visited in clockwise traversal on the boundary of
CH(P ), and wi be the intersection point of si and
MT . Assume MT does not visit segments in their
clockwise order, so there exist some segments like
si that MT visits it after sj , (i < j). Let MT
be . . . , wi−1, wi+1, wi+2, . . . , wj−1, wj , wi, wj+1 . . . in
clockwise order. If wiwj intersects wi−1wi+1,
and wi−1wiwi+1wj is a convex quadrilateral,
according to the triangle inequality, the tour
. . . , wi−2, wi−1, wi, wi+1, . . . , wj , wj+1, . . . is a shorter
tour, providing a contradiction. Otherwise, if wiwj

does not intersect wi−1wi+1, two cases will be arisen:
either wi−1wi+1 intersects si or does not. If wi−1wi+1

intersects si, we can obtain a shorter tour by replac-
ing the intersection point with wi. On the other hand,
if wi−1wi+1 does not intersect si, so si certainly lies
inside the convex shape (5- or 6-gon) which is con-
structed with si+1, si−1 and a part of the boundary

193



26th European Workshop on Computational Geometry, 2010

of CH(P ). Thus, wiwj intersects either si+1 or si−1.
Similarly, in both situations, we can obtain a shorter
tour by replacing the intersection point with either
wi+1 or wi−1, providing a contradiction. �

Lemma 2 Suppose that at least one point of each
segment of S, lies on the boundary of CH(P ). The
minimum length tour MT which visits all segments
of S, is convex.

Definition 1 Given a set of ordered segments, a min-
imum perimeter tour that visits all such segments is
denoted by MTOS.

Figure 1: Illustration of two choices that exist to select
Qi.

3 Convex hull of segments algorithm

At first, we compute the convex hull of P and denote
it by L0. Then, by a clockwise traversal on L0, we
find all segments of S which intersect L0, and insert
them into a list called SL0. Note that if there exist
some segments that have more than one intersection
point, we insert them only once. We set SL0 to CS1,
and compute the convex hull of the ordered set CS1

by using the following method. In this step, we prune
segments which are not important in the final solution
from CS1. Based on Theorem 1, MT visits every seg-
ment si between si−1 and si+1. Let ai and bi be the
endpoints of si which ai lies on the convex hull. We
will remove si from CS1 if it intersects with bi−1bi+1,
ai−1bi+1 and bi−1ai+1. After each removal, we up-
date CS1 and repeat this process until there are no
segments left to remove.

With respect to Theorem 1, for the ordered set CS1,
MTOS should visit si before si+1. Let a and b be end-
points of si, and c and d be endpoints of si+1. Ob-
viously, MTOS crosses either the quadrilateral abcd
or abdc. Let Qi be the quadrilateral which MTOS
crosses. If either abcd or abdc is a convex quadrilat-
eral, we will select the convex one as Qi. Otherwise, if
both abcd and abdc are non-convex, we will select Qi

as follows. Suppose that the extension of si intersects
si+1. Let b be the nearest endpoint of si to si+1. We
select the quadrilateral that contains the triangle that

lies on the right of the directed segment ab. On the
other hand, if the extension of si+1 intersects si, and
c is its nearest endpoint to si, we select the quadrilat-
eral that contains the triangle which lies on the right
of the directed segment cd (see Fig. 1).

Each two consecutive quadrilaterals Qi and Qi+1,
which are constructed by the way mentioned , share a
segment si+1. If we start from a segment of CS1 and
cross its related quadrilateral to get the next quadri-
lateral, we can construct a tour which completely lies
inside the union of all quadrilaterals, and also vis-
its all segments of CS1. This tour is a convex hull
for the ordered set CS1. The minimum tour, which
is denoted by CHS1, could be constructed in linear
time by unfolding method [2]. See Fig. 2. The pro-
cess mentioned in this section that computes MTOS
is called MTA.

Figure 2: Illustration of consecutive quadrilaterals
constructed and MTOS corresponding to CS1.

Lemma 3 For a set of n ordered segments, MTA
could compute MTOS in O(n) time.

Suppose that CSi and CHSi have been computed up
to the i-th iteration. Segments which are located in-
side CHSi will be removed form S. Considering seg-
ments which are located outside of CHSi, the convex
hull of their endpoints will be computed, and denoted
by Li. With a clockwise traverse on the boundary
of Li, segments which fall outside of Li and have at
least one point on the boundary of Li, will be added
to SLi in order; note that each segment will be added
to SLi only once. Regarding the location of Li and
CHSi, CHSi+1 could be computed in three different
cases as follows.

Case 1: if CHSi is inside Li, we will compute
intersection points of segments of CSi with Li, and
with a clockwise traverse on the boundary of Li, we
will add segments of CSi among those of SLi, and
CSi+1 will be computed. Further, convex hull of seg-
ments of CSi+1 will be computed by using MTA, and
denoted by CHSi+1.

Case 2: if CHSi is outside of Li (see Fig. 3), there
might exist some segments of CSi which intersect with
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Li at two points (s1 and s2, in Fig. 3, are such seg-
ments). We will take their farthest intersection points
from CHSi as the place they intersect with Li (points
p1 and p2 in Fig. 3). Each segment of this kind will
be added to SLi between the segments of this set
which their endpoints locate exactly before and after
the specified intersection point of such segment with
Li (in Fig. 3, s1 (resp. s2) will be added between
s6 and s15 (resp. s9 and s8)). Let sj , . . . , sj+m be
the segments of CSi which intersect with Li at two
points. The segment of CSi that is located before sj

(resp. after sj+m) and does not intersect with Li, is
denoted by sa (resp. sb), (in Fig. 3, sa = s3 and
sb = s4). It might be possible that sa = sb, but the
fact that CHSi is outside of Li ensures that at least
one of these segments exists.

By using an angular sweep line which is along sa

(resp sb), and rotates around the intersection point
of sa (resp. sb) and CHSi, the plane is swept in
counter-clockwise (resp. clockwise) direction; the first
vertex of Li that the sweep line intersects with it,
is denoted by vr (resp. vl), see Fig. 3. The chain
of Li that is located between vl and vr in a clock-
wise traverse, is called theupperchain, and denoted
by UC. Those segments of CSi which intersect with
Li at two points, will be removed from CSi, and
the segments of SLi that at least one of their end-
points is located on UC will be added to CSi be-
tween sb and sa in the order that their endpoints
are seen in a clockwise traverse on UC, (as an ex-
ample, in Fig.3; at first, CSi={s1, s2, s3, s5, s4} and
after adding the segments of SLi which one of their
endpoints is located on UC, CSi will be changed into
{s4, s14, s15, s1, s6, s7, s8, s2, s9, s10, s3, s5}). Now, we
have an ordered set of segments. By using MTA, we
could achieve an optimal convex polygon that inter-
sects the segments of CSi in order. CHSi+1 denotes
this polygon, and we set CSi to CSi+1.

Figure 3: Illustration of case 2.

Theorem 4 CHSi+1 is a convex polygon.

Proof. Let p (resp. q) be the intersection point of
sa (resp. sb) and CHSi. By Theorem 1, we know
that segments on UC should be visited in the order
they locate on UC, and by Lemma 2, it is clear that
the shortest path between p and q which visits those
segments, is a convex chain. This chain is denoted by
π. π and the chain which exists between p and q in
a clockwise traverse on CHSi, both contain p and q.
Therefore, we could construct a polygon T by using
them; see Fig. 4. T might have two concave vertices
at points p and q. Let q be the concave vertex, and
s (resp. r) be its previous (resp. next) vertex in a
clockwise traverse on T . Since sb has been visited
before the segments on UC, segment rs intersects sb.
Thus, by substituting rq and qs with rs in T , T still
intersects with all segments of CSi+1 and its concavity
in q is also removed. The same approach could be
taken for p, and T becomes a convex polygon which
visits all segments of CSi+1, as a result. According to
the fact that there exists a convex tour for visiting
ordered segments of CSi+1; CHSi+1, which is the
output of MTA, will also be convex. �

Figure 4: CHSi+1 that is computed by MTA is con-
vex.

Case 3: if Li intersects with CHSi, then seg-
ments which are not completely inside CHSi will
become important in computing CHSi+1; see Fig.
5. In Fig. 5, CSi={s1, s5, s6, s2, s7, s3, s8, s4, s9})
and SLi={s10, s11, s12, s13, s14, s15}. We will find seg-
ments of CSi that intersect with Li (in Fig. 5,
these segments are s1, s2 and s8). Segments of
this kind which their intersections with Li are out-
side of CHSi, will be added to SLi with respect
to their intersection points with Li, and they will
be removed from CSi; in Fig. 5, only s1 and s2

are such segments, and after such addition and re-
moval we will have CSi={s5, s6, s7, s3, s8, s4, s9} and
SLi={s10, s1, s2, s11, s12, s13, s14, s15}. We find inter-
sections of Li and CHSi. We call each part of Li

that is outside of CHSi, an exterior chain (denoted
by EC). It is clear that all exterior chains are convex
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(in Fig. 5, two exterior chains are shown in ovals).
Considering each EC, let sa (resp. sb) be the seg-
ment of CSi which is visited immediately after (resp.
before) the intersection point of EC and CHSi by a
clockwise traverse on the boundary of CHSi (in Fig.
5, sa = s5 and sb = s9 for EC1, and sa = s7 and
sb = s6 for EC2). Considering each EC, regarding
its sa and sb we find a UC. Segments which have at
least one of their endpoints on this UC, are added to
CSi between sa and sb corresponding to the specified
EC. It could be easily proved that segments which
are outside of CHSi and have one of their endpoints
on EC, should be visited by CHSi+1 between sa and
sb corresponding to that specific EC (proof is simi-
lar to Theorem 1). So, they should be added to CSi,
between sa and sb. Adding these segments to CSi in
away that running MTA on CSi results in a convex
polygon, could be done via a similar approach as the
one used in case 2; with the only difference that in
this case instead of a polygon fallen outside of CHSi,
we have some ECs that segments of them which have
one of their endpoints on ECs, should be added to
CSi to achieve CHSi+1. Similar to the proof of The-
orem 4, it could be proved that CHSi+1, which is the
output of MTA, is also convex in this case, and we
set CSi to CSi+1.

Figure 5: Illustration of case 3.

We will repeat this routine until there are not any
segments of S outside of CHSi at all, and in the end,
we will report CHSi as the final result of the problem.

4 Analysis of the algorithm

In each iteration of the algorithm, Li should be com-
puted. Finding segments which are outside of CHSi

as well as computing convex hull of their endpoints
needs O(n log n) time in worse case. Regarding the
location of Li and CHSi, determining the correspond-
ing case could be done in O(n) time. In case 1, Ac-
cording to the fact that Li is convex and both SLi

and CSi are ordered, finding intersection of Li with

the segments of CSi and adding the segments to SLi

could be done in linear time. In case 2, Finding UC
and adding the segments which have one of their end-
points on it, takes O(n) time, and finally, in case3,
since the total number of segments which have at least
one of their endpoints on ECs, is the same as the total
number of segments of SLi which is O(n), and they
could be handled in O(n) time in a similar way as case
2. In each iteration CHSi + 1 should be computed
by running MTA on CSi. From the fact that CSi is
always a set of ordered segments, removal of unimpor-
tant segments from CSi could be done in O(n) time.
Constructing quadrilaterals and utilizing unfolding
method take linear time [2]. So, MTA runs in O(n)
time. Therefore, each iteration of our algorithm takes
O(n log n) time. Since in each iteration just one seg-
ments may involve in computing CHSi+1 in the worse
case, the algorithm runs O(n) times. Thus, the time
complexity of the algorithm is O(n2 log n) time.

In situations where two consecutive segments of
CSi are collinear, the quadrilateral could not be con-
structed, but handeling these situations could be done
by unfolding method, and whenever CHSi becomes
a line segment, it will change into a convex polygon
in next iterations. So, these special cases could be
handled easily.

5 Conclusion

We have presented the first polynomial time algorithm
to compute the convex hull of a set of imprecise points
which are modeled by n disjoint segments in the plane.
Our proposed algorithm runs in O(n2 log n) time. The
main idea of the algorithm is to find an order for vis-
iting the segments. We believe that this idea can also
be useful for computing the minimum perimeter con-
vex hull of a set of imprecise points which are modeled
by polygons instead of segments.
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Hiding in the Crowd: Asymptotic Bounds on Blocking Sets

Nataša Jovanović∗ Jan Korst† Zharko Aleksovski‡ Radivoje Jovanović§

Abstract

We consider the problem of blocking all rays emanat-
ing from a unit disk U by a minimum number Nd of
unit disks in the two-dimensional space, where each
disk has at least a distance d to any other disk. We
study the asymptotic behavior of Nd, as d tends to
infinity. Using a regular ordering of disks on concen-
tric circular rings we derive upper and lower bounds
and prove that π2

16 ≤
Nd

d2 ≤
π2

2 , as d goes to infinity.

1 Introduction

Let U be a unit disk, i.e. a disk with radius 1, in the
two-dimensional space and let R denote the set of all
rays that emanate from U . A ray r ∈ R is said to
be blocked by a disk δ if r and δ have a non-empty
intersection. A set D of unit disks, with U /∈ D, is
called a blocking set if every ray r ∈ R is blocked by
a disk in D. In addition, a blocking set D is called
d-apart if the distance between each pair of disks in
D ∪ {U} is at least d, where distances are measured
from center to center.

Minimum Cardinality Blocking Set Problem.
Given d, what is the minimum cardinality Nd of a

d-apart blocking set?

More specifically, we are interested in the asymptotic
behavior of Nd as d tends to infinity. For reasons of
convenience, we focus on the following problem, which
is equivalent to the minimum cardinality blocking set
problem.

Maximum Distance Blocking Set Problem.
Given N unit disks, what is the maximum distance
d for which the disks can form a d-apart blocking set?

These problems are related to occlusion problems in
table-top interaction devices, where multiple sensors,
for example, light sensors or cameras, scan the two-
dimensional plane just above the table’s surface for
objects like game pieces or fingers. A disk in that
plane is no longer visible if all rays emanating from it
are blocked by other disks.
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1.1 Our Contributions

In this paper we prove that both upper and lower
bounds on the minimum number Nd of disks are
quadratic in d, i.e. we prove that Nd = Θ(d2). In
more detail, we first show that N disks can be po-
sitioned such that they form a 2-apart blocking set.
The disks of that blocking set are placed on a circle
concentric to U with neighboring disks being mutually
tangent. We present a simple algorithm of pushing the
disks towards the center of U such that the blocking
of rays is preserved. The algorithm provides a regular
ordering of disks on concentric circular rings such that
the disks form a d-apart blocking set, where d > 2.
Finally, upper and lower bounds are given showing
that

π2

16
≤ lim
d→∞

Nd
d2
≤ π2

2
.

1.2 Related Work

Jovanović, Korst and Janssen [6] consider a variant of
the above blocking set problem, where they consider
blocking all lines intersecting a given unit disk, instead
of blocking all rays emanating from a given unit disk.
Jovanović et al. [7] show that the minimum number
of unit disks needed to block all rays emanating from
a single point is quadratic in d. In addition, we refer
to Fulek, Holmsen and Pach [3], who focus on hit-
ting a maximum number of disks with one ray from
an arbitrary point, while we aim at blocking all rays
emanating from a given disk with a minimum number
of disks. The problem of our interest is also related
to the work of [2] and [1], where the authors consider
an illumination problem for maximal disk packings
by proving the existence of points that are not visi-
ble from outside a disk packing. We are not aware of
other work that is closely related, although there are
many more remotely related visibility problems; see
e.g. Chapter 28 on visibility by O’Rourke in [8]. For
further details on object detection on related table-
top devices we refer to [5, 4].

2 Blocking rays

In this section we propose an ordering of disks that
enables blocking all rays from R for a given number
N of disks. We assume for convenience that N = 6n.
The N disks are placed on a circle c concentric to the
given disk U , such that the centers of the disks are on
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the circle c and there is no gap between neighboring
disks; see Figure 1. The radius Rc of circle c is easily
derived from Rc = 1/ sin π

6n . Given the mutual tan-
gency of each pair of neighboring disks, one can easily
see that any ray r ∈ R is blocked by at least one and
at most two disks of the given set of 6n disks. Hence,
these disks form a blocking set. The minimum of all
pair-wise distances between the disks is 2. Therefore,
the constructed blocking set is 2-apart and we denote
it by D2.

Figure 1: 24 disks positioned on the circle of radius
Rc concentric to U .

For the maximum distance blocking set problem, we
are interested in the maximum distance d for which
the 6n disks form a d-apart blocking set for R. As
such, the problem appears to be hard: constructing
a d-apart blocking set for an arbitrary d is certainly
challenging. Therefore, we focus on transforming D2

into a d-apart blocking set. The transformation con-
sists of separating the disks of D2 from each other,
while the blocking of all rays is preserved.

One can easily prove that the rays blocked by a given
disk D ∈ D2 are still blocked by D after the disk is
moved towards the center of U , i.e. along the line
segment that connects the two disks’ centers. Conse-
quently, a transformation of the blocking set D2 where
some disks of D2 are shifted from their original posi-
tion on circle c towards the center of U represents
a transformation into a d-apart blocking set, where
d is the minimum of all pair-wise distances between
the disks; see Figure 2. The problem of our interest
now is to determine the maximum d for which we can
transform D2 into a d-apart blocking set.

Figure 2: Transformation of D2 into a d-apart block-
ing set.

3 Ordering disks on circular rings

Let D2 be the 2-apart blocking set constructed as ex-
plained in Section 2, for a given integer n. In the
interior of the circle c we can define a number of cir-
cles called rings and denoted as c1, c2, . . . , ck, where
the radius of the ring c1 is dr, the radius of c2 is 2dr,
etc. The last ring ck with the radius kdr is assumed to
be the given circle, which has radius Rc; see Figure 3.
In the process of shifting the disks of D2 towards the
center, we place each of them exactly on one of the
rings. In this way, the distance between any two disks
positioned on different rings is at least dr.

Figure 3: The definition of the circular rings.

The number k of rings determines the distance dr
for given n. Given that the radius of the largest ring is
Rc = 1/ sin π

6n and as we mentioned above Rc = kdr,
we have that

dr =
1

k sin π
6n

. (1)

The line segment that connects the center of a disk
in D2 and the center of U is called a thread. Thus, the
disks of D2 define 6n threads. Since we chose to place
the disks on the rings and the disks can be moved only
along their threads, each disk can be placed in one of
the k intersection points of its thread and the k rings.

Note that at most 6j disks can be placed on the j-th
ring, equally spaced, such that the distance between
two neighboring disks on this ring is at least dr. In
other words, at most 6 disks can be placed on the first
ring, at most 12 disks on the second ring, at most 18
disks on the third ring, etc. However, the restriction of
fixed positions for placing the disks, i.e. the positions
defined as the intersections of the rings and threads,
does not always allow placing this maximum number
of disks on the rings. Therefore, we choose to place
only 6nj = 6 · 2blog2 jc disks on the j-th ring, such
that the neighboring disks on this ring are equidistant.
Since 6 · 2blog2 jc ≤ 6j, 6nj disks can be placed on the
j-th ring such that the distance between each pair of
them is at least dr.

First, we show that any set of n disks can be split
into k subsets, where the j-th subset contains 2blog2 jc

disks or it is empty. The j-th subset is then placed
on the j-th ring such that the distance between each
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two disks is at least dr. More precisely, we show that
the given number n can be represented as

n = n̄1 + n̄2 + · · ·+ n̄k, (2)

where n̄j ∈ {0, nj}, or simplified, any natural number
n can be represented as

n = 1 + 2 + 2︸ ︷︷ ︸
max 2

+ 4 +· · ·+ 4︸ ︷︷ ︸
max 4

+ · · ·+ 2t +· · ·+ 2t︸ ︷︷ ︸
max 2t

, (3)

for some t ≥ 0. The conjecture is formally given as
follows.

Lemma 1 For any positive integer n a sequence
An = (a0, a1, . . . , at) exists such that

n =
t∑
i=0

ai · 2i (4)

where ai ∈ {0, 1, . . . , 2i} and at > 0.

Proof. The proof of the lemma follows from the bi-
nary number representation of n. �

For a given n, there are generally multiple sequences
An. The number of rings k corresponds to the num-
ber of addends in representation (3) of n, including
the zero-addends when we have less than maximum
number of equal addends, for all addends except for
the largest ones. Hence, the number of rings we define
is

k =
t−1∑
i=0

2i + at = 2t − 1 + at, (5)

where at is the number of largest addends 2t in (3).
For example, n = 15 can be represented as 15 = 1 +
2 + 0 + 4 + 4 + 4 and the number of rings needed is
k = 6. Using a representation 15 = 1+2+0+0+0+0+
4 + 8, the number of rings needed is k = 8. From the
definition of maximum distance blocking set problem
and Equation (1), our interest is in the sequences A∗n
for which 2t + at is minimal.

Figure 4: An example of a d-apart blocking set con-
sisting of four rings.

Next, we present an algorithm that for each disk of
D2 determines the ring on which it should be placed,

such that the disks form a blocking set that is dr-
apart; see Figure 4. For symmetry reasons, we focus
on one of the six sections of D2 with n disks. Further-
more, we restrict ourselves to finding the solutions for
all n divisible by its largest addend 2t in the repre-
sentation (3).

The disk ordering algorithm considers only non-
empty rings and it starts by placing nk disks on the
last ring. Without loss of generality, the first disk in
the ordered set of n disks is placed on the last ring.
As described in Section 3, nk = 2t and since 2t|n,
there is a subset of nk equidistant positions on the
last ring to place nk disks. For each disk positioned
on one ring, the intersection points of its thread and
all other rings are tagged as ”‘unavailable”’ positions.
The algorithm continues by placing the disks of one
ring in each iteration. More precisely, in iteration i,
with 1 < i ≤ k, nk−i+1 disks are placed on equidistant
positions, starting with the first available position on
the ring k − i + 1. Figure 5 illustrates the iterations
of the disk ordering algorithm for n = 8.

Figure 5: The three iterations of the disk ordering
algorithm for n = 8.

4 Upper and lower bounds

In Sections 2 and 3, we showed that we can construct
a dr-apart blocking set for each n that is divisible
by its largest addend in representation (3). In this
section, we present upper and lower bounds on the
cardinality Nd of such a blocking set, as a function of
minimum distance d. We start by deriving an upper
bound.

One can easily show that the ordering of disks
presented in Section 3 implies that the minimum of
all pair-wise distances between the disks is d = dr.
Hence, we have

d =
1

k sin π
6n

(6)

From the choice of sequence A∗n in Lemma 1, for which
at + 2t is minimal, we have that

t−1∑
j=0

22j ≤ n ≤
t−1∑
j=0

22j + at · 2t (7)

where at is the number of largest addends 2t in rep-
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resentation (3). From

t−1∑
j=0

22j =
1
3

(4t − 1) (8)

it follows that
2t ≤

√
3n+ 1 (9)

When bounding the number of rings k by a function in
n, we can prove that

√
3n+ 1−k has its local minima

at k = 2t, for t = 0, 1, . . .. Hence, using (9), we have

k ≤
√

3n+ 1 (10)

We transform (6) into

1
kd
≤ sin

π

6n
(11)

and multiply (10) by
√
n

k
√
n ≤

√
3n2 + n (12)

Multiplication of (11) and (12) and expressing the
limit for d→∞, results in

lim
d→∞

n

d2
≤ π2

12
(13)

and since N = 6n, we derived an upper bound on Nd,
i.e.

lim
d→∞

Nd
d2
≤ π2

2
(14)

In [7], the authors proved that the lower bound on
the minimum number of disks which form a d-apart
blocking set for the set of all rays emanating from a
single point is

lim
d→∞

Nd
d2
≥ π2

16
(15)

To block the rays emanating from a given unit disk
we need at least as many disks as to block the rays
emanating from its center. Hence, a lower bound on
the minimum number Nd of disks is given by (15).

Combining the results of (14) and (15), we proved
the following theorem.

Theorem 2 For the minimum cardinality Nd of a d-
apart blocking set to block all rays emanating from a
unit disk we have

π2

16
≤ lim
d→∞

Nd
d2
≤ π2

2
.

5 Conclusion

We expect that both bounds, especially the upper
bound, can be further improved. The following dis-
cussion provides some directions for potential im-
provements.

Constructing a d-apart blocking set from D2

through a sequence of transformation steps where a
number of disks is pushed towards the center results
in the rather large constant π2/2. The disks pushed
inside circle c block much larger sets of rays than the
sets of rays they block from their original positions on
c. Consequently, the sets of rays blocked by two disks
on different rings may not be disjunct. This implies
that constructing blocking sets for which the overlap
of sets of blocked rays is minimized may potentially
provide a better upper bound. In addition, the num-
ber of disks on one ring is less than the maximum
possible number for the majority of rings. Placing the
maximum number of disks on each of the rings may
further improve the upper bound. The main challenge
here is still the problem of proving that a set of disks,
positioned following some constraints, is a blocking
set for the set R of all rays.

References

[1] A. Dumitrescu, and M. Jiang. The forest hiding prob-
lem. Proceedings of the 21st ACM-SIAM Symposium
on Discrete Algorithms, 2010, Austin, Texas, USA.

[2] J. Mitchell. Dark points among disks. Open Prob-
lems from the 2007 Fall Workshop in Computational
Geometry, Hawthorne, New York, USA.

[3] R. Fulek, A.F. Holmsen, and J. Pach. Intersecting
convex sets by rays. Proceedings of the 24th Annual
ACM Symposium on Computational Geometry, 2008,
College Park, MD, USA, 385–391.

[4] G. Hollemans, T. Bergman, V. Buil, K. van Gelder,
M. Groten, J. Hoonhout, T. Lashina, E. van Loe-
nen, and S. van de Wijdeven. Entertaible: Multi-
user multi-object concurrent input. Adjunct Pro-
ceedings: Demonstrations, Proceedings 19th Annual
ACM Symposium on User Interface Software and
Technology, 2006, Montreux, Switzerland, 55–56.
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Largest Inscribed Rectangles in Convex Polygons (Extended Abstract) ∗

Christian Knauer † Lena Schlipf† Jens M. Schmidt† Hans Raj Tiwary ‡

Abstract

We consider approximation algorithms for the prob-
lem of computing an inscribed rectangle having
largest area in a convex polygon on n vertices. If
the order of the vertices of the polygon is given, we
present a deterministic approximation algorithm that
computes an inscribed rectangle of area at least 1− ε
times the optimum in running time O( 1

ε log 1
ε log n).

Furthermore, a randomized approximation algorithm
is given that works with high probability and achieves
a running time of O( 1

ε log n).

1 Introduction

Much work has been devoted to compute inscribed
objects of maximum area in a polygon in the past.
Most contributions to this problem focus on objects
that are again polygons, e. g., on largest axis-aligned
rectangles in convex or non-convex polygons [1, 5],
on largest squares and equilateral triangles in convex
polygons [6], and on largest empty rectangles on point
sets [4].

A rectangle is said to be fat if the aspect ratio of the
rectangle is bounded by a constant, say c. Hall-Holt et
al. [7] consider the problem of computing a c-fat rect-
angle with maximum area in a simple polygon and
present a PTAS for this problem assuming that the
largest inscribed rectangle is fat. In this paper, we
consider the following problem: Given a convex poly-
gon P with n vertices, compute a rectangle of largest
area that is inscribed in P . Our results show that
fatness is not required for approximating the largest
inscribed rectangle if the input polygon is convex.

Furthermore, the dependence of the algorithm of
Hall-Holt et al. is linear in the size of the input poly-
gon. Since the algorithm is not described in detail
in [7], it is not clear if a sublinear running time can
be obtained when the ordering of vertices of the in-
put polygon is known. Under the assumption that
we have that ordering, we show that approximation
algorithms exist, whose running times are only loga-
rithmically dependent on n.
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Such assumptions on the input are common when
handling polygons, in fact, Alt et. al show under that
assumption that the largest axis-aligned inscribed
rectangle inside a convex polygon can be computed in
logarithmic time [1]. When the ordering in not known,
it can be easily computed using standard convex hull
algorithms in O(n log n) time; throughout the paper
we will assume that the ordering is given.

The main result of this paper can be stated as fol-
lows.

Theorem 1 Let P be a convex polygon with n ver-
tices. Suppose the vertices of the polygon are given
in, say, clockwise order. Then, an inscribed rectangle
in P with area of at least (1− ε) times the area of the
largest inscribed rectangle can be computed

• in O( 1
ε log 1

ε log n) deterministic time.

• with high probability in O( 1
ε log n) time.

2 Preliminaries

We denote the area of a polygon P by |P |. A line
segment through two points a and b is denoted by ab
and its length by |ab|. For a given convex polygon P ,
let Ropt be a largest inscribed rectangle. Note that in
general the largest inscribed rectangle is not unique;
we will sometimes use Ropt to denote any one of the
largest inscribed rectangles.

We want to approximate the largest inscribed rect-
angle in a convex polygon. If we know the direction
dopt of one of the sides of Ropt, we can compute the
largest rectangle Ropt itself in O(log n) time by apply-
ing the algorithm of Alt et al. [1]. The general idea
of our algorithm is to approximate the direction of
alignment of a largest inscribed rectangle and to prove
that the area of the largest inscribed rectangle aligned
along this direction also approximates |Ropt|. For the
computation, we construct a set of candidate direc-
tions and find the largest inscribed rectangle along
each of this directions using the algorithm of Alt et al..
The number of candidate directions will be O( 1

ε log 1
ε )

for the deterministic version of our algorithm, and
O( 1

ε ) for the randomized version.

3 Approximating the direction of Ropt

We want to find a direction close enough to the direc-
tion of any side of Ropt. To define what close enough
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means, first suppose that we know Ropt and denote
the intersection of its diagonals as its center s (see
Figure 1). Let ab be one of the two shortest sides
of Ropt and let d be the midpoint of the segment ab.
Then �(asb) ≤ π

2 and we can define the triangles T1

and T2 as the two triangles with vertices s, d and
the third vertex being either f1 := d + ε(b − d) or
f2 := d − ε(b − d). Analogously, choosing the side
of Ropt opposite of ab gives the two triangles T3 and
T4 having the same area. The area for each trian-
gle Ti is ε|db||sd|/2 and therefore an ε/8-fraction of
|Ropt| = 4|db||sd|. We define a direction to be ε-close
if the line through s with that direction intersects
f1f2.

s

ba

PRopt

T4

d f1

T1

T3

T2

f2

Figure 1: A largest rectangle Ropt in a polygon P .
The area for each Ti, 1 ≤ i ≤ 4, is an ε/8-fraction of
|Ropt|.

Now we show that an ε-close direction gives us a
rectangle Rapx with |Rapx| ≥ (1− cε)|Ropt| for a con-
stant c. This can be reformulated to an (1−ε) approx-
imation later by replacing cε with ε′ at the expense of
an additional (but small) constant factor in the run-
ning time.

s

a
bd g

a′

b′

θ α

d′

Figure 2: The triangle T = asb.

Let us consider the triangle T = asb in Ropt (see
Figure 2) and an ε-close direction dapx that intersects
w.l.o.g. df1 (the case for df2 is symmetric). We first
rotate T around s until sd is aligned with dapx and
denote the angle between dopt and dapx by θ. Then
we scale the triangle such that s and sd are preserved
and the triangle is still isosceles, aligned with sb and

fits completely into T . This rotation and scaling maps
a to a point a′, b to a point b′ ∈ sb and we get a new,
smaller triangle T ′ = a′sb′ that lies completely inside
T . Consider the midpoint d′ of the segment a′b′. The
segment sd′ is aligned with the direction dapx. Let α
be the angle between dapx and sb.

Instead of comparing |Rapx| with |Ropt| directly, we
now compare the triangles T and T ′. If we can show
that |T ′| ≥ (1 − cε)|T | for some constant c, then the
largest rectangle aligned to dapx has at least an area
of (1 − cε)|Ropt|. The reduction to triangles does not
matter for the approximation, as |Ropt| = 4|T | and
|Rapx| ≥ 4|T ′|.

Theorem 2 For the triangles T and T ′ holds that
|T ′| ≥ (1− 6.2ε)|T |. Thus, |Rapx| ≥ (1− 6.2ε)|Ropt|.
Proof omitted.

4 How to get an ε-close direction

So far we have established that an ε-approximation
algorithm only has to find a ε-close direction to dopt.
We get such an ε-close direction as follows: Assume
first that we know the center s of Ropt. If we choose
O( 1

ε ) random points uniformly distributed inside P ,
with high probability (w.h.p.) at least one of them
lies in the triangle T ′, which gives us immediately an
ε-close direction. As we do not have the information
where s is, assume that any other point p inside Ropt
is given. Then there is a translated copy of T ′, where
the translation maps s to p. Note that at least one
of the triangles T ′1, . . . , T

′
4 in T ′ is inside P , as P is

convex. Picking a point q′ in this translated copy and
taking the direction pq has the same effect as picking
a point q in T ′ and taking the direction sq. So we do
not have to compute s explicitly, and we just have to
find a point inside Ropt.

Even though we do not know Ropt, picking points
from it essentially amounts to picking points from the
input polygon because the area of the largest inscribed
rectangle in a convex polygon is at least constant fac-
tor of the area of the polygon. More formally,

Lemma 3 ([9]) Let P be a convex polygon and Ropt
a largest inscribed rectangle in P , then |Ropt| ≥ |P |/2.

4.1 Randomized algorithm

It follows from Lemma 3 that if we pick k points sam-
pled uniformly at random from a convex polygon P ,
then the expected number of points inside Ropt is k

2 .
Furthermore, these points are distributed uniformly
at random inside Ropt. Thus, we have an algorithm for
approximating the largest inscribed rectangle under
the assumption that we can generate random points
inside P efficiently. We summarize the steps in Algo-
rithm 1.
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Algorithm 1 Computes for a given convex polygon
P and a source of random points in P an (1 − ε)
approximation Rapx for the largest inscribed rectangle
in P with high probability.
1: Take O(1) points in P uniformly at random

(u.a.r.) and store them in U .
2: Take O(1/ε) points in P u.a.r. and store them in
V .

3: |Rapx| = 0
4: for all u ∈ U do
5: for all v ∈ V do
6: Compute the largest inscribed rectangle S

that is axis-aligned to uv.
7: if |S| ≥ |Rapx| then
8: Rapx = S

return Rapx

It is easy to see that with a preprocessing of
O(n log n) we can create a data structure for a (not
necessarily convex) polygon P that returns a point
distributed uniformly at random inside P in O(log n)
time. This can be achieved by first computing a tri-
angulation of the point set and then creating a binary
tree with the triangles as leaves, where the weight of
any node is the sum of areas of all triangles contained
in the subtree rooted at that node. Sampling a ran-
dom point from P then amounts to traversing this tree
from root to a leaf and following the left or the right
child at any node with the probability proportional to
their weights.

Since the ordering of the vertices of P is given and
we want to avoid any preprocessing for P , we will not
sample points from P uniformly at random. Instead,
we take a uniform distribution over a square and “fit”
these points inside the polygon. Thus, the sampling
from P will simulate the sampling of random points
from a square. Let vt, vb be the topmost and the bot-
tommost vertices of P. We pick a height h between
the two vertices uniformly at random. We take the
longest horizontal segment that fits inside P at this
height and pick a point uniformly at random on this
segment. This will be our sample point in P. We can
repeat this process as many times as desired to get a
large set of sample points that are in P.

We need to show that such a sampling works for
our algorithm. Recall that we need two points p and
q from P such that p lies in a largest inscribed rectan-
gle Ropt and q lies in a triangle of area Ω(ε) that is a
translated copy of one of the Ti’s (see Figure 1). We
will show that with our sampling method, the proba-
bility of a sample point to lie in any convex region Q
of area ε|P | is at least ε

2 .

Let Lh be the length of the largest horizontal seg-
ment inside P at height h, and lh be the length of the
largest horizontal segment inside Q at height h. Also,
assume that the bottommost and topmost points in

1

0

Lh

P

lh

Q

1

0

Lh

P

lh

Q

h1

h2

Figure 3: Sampling from a convex region Q in P .

P are at heights 0 and 1 respectively (see Figure 3).

It holds |Q||P | =
R 1
0 lh dhR 1
0 Lh dh

. The probability that a sam-
ple point using the above sampling method lies in Q

is
∫ 1

0
lh
Lh
dh. Since for any value of h we can find a

quadrilateral that fits inside P and has area at least
Lh

2 , we have that Lh

2 ≤
∫ 1

0
Lh dh. Therefore,

∫ 1

0

lh
Lh

dh ≥ 2

∫ 1

0
lh dh∫ 1

0
Lh dh

Each of these sample points can be generated in
logarithmic time assuming that the ordering of ver-
tices of P is known in advance. Thus, the complexity
of our algorithm is O( 1

ε log n).

4.2 Deterministic algorithm

The algorithm for the deterministic case only needs to
compute the sample points in a different way. First,
observe that if we have a bounding box of P , whose
area is proportional to that of P , then an O( 1

ε × 1
ε )

grid on this bounding box allows us to have O( 1
ε × 1

ε )
grid points inside P. For such a grid, the number of
points in any convex region Qinside P that has an
area of at least ε will contain at least O( 1

ε ) of the grid
points.

We compute an enclosing rectangle Re, such that
P ⊂ Re and |Re| ≤ 2|P |. This can be done in loga-
rithmic time as follows.
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vb

vt

vi vj

R

P

Q

Figure 4: Polygon P and enclosing rectangle R, |P | ≥
|Q|.

Lemma 4 Let P be a convex polygon with n ver-
tices, which are given in cyclic order. There is an al-
gorithm that computes an enclosing rectangle R such
that P ⊂ R and |R| ≤ 2|P | in O(log n) time.

Proof. We can compute an antipodal pair of points
of the vertices of P in O(log n) time. Let this be
the vertices vi and vj and let l = |vivj | (see Figure 4).
Take the direction of l as x-axis and compute a vertex
vt of P with highest y-value and a vertex vb of P
with lowest y-value. Let the vertical distance between
vb and vt be k. We know that |P | ≥ kl

2 and the
rectangle R through vertices vt, vj , vb and vi has area
|R| = kl. �

We compute a 8
√

2× 8
√

2 grid on Re, so we know
that at least 8 × 8 of the grid points lie in P and
so at least one of this grid points lies in the largest
inscribed rectangle of P . Also, a

√
2
ε ×

√
2
ε grid on Re

is computed, and at least 1
ε × 1

ε of the grid points lie
in P and at least one points lies in the right ε-fraction
of P . Hence, we can take the direction of any pair of
the grid points of both grids and compute tha largest
inscribed rectangle aligned to that direction. So we
get one rectangle that has at least an area of (1 − ε)
times the area of the largest inscribed rectangle. The
running time is O( 1

ε2 log n). We can further reduce
the running time to O( 1

ε log 1
ε log n) by using the tools

from the theory of ε-nets [8].
We omit further technical details due to the space

limit.

5 Largest inscribed rectangles in simple polygons

The same ideas can be used to approximate the largest
inscribed rectangle in a simple polygon with or with-
out holes. We know that the largest inscribed rectan-
gle in a simple polygon (with or without holes) on n
vertices has an area of at least 1

2(n−2) times the area
of the polygon. A largest axis-aligned rectangle in a
simple polygon can be computed in O(n log n) time

[2] and in a simple polygon with holes in O(n log2 n)
[5]. An inscribed rectangle that has at least 1 − ε
times the area of the largest inscribed rectangle can
be computed w.h.p. in O( 1

εn
3 log n) time in simple

polygons and in O( 1
εn

3 log2 n) time in polygons with
holes, since we are dealing with an O( εn )-fraction for
the triangle T and with an O( 1

n )-fraction for the rect-
angle.

6 Conclusion

We have considered the problem of how to approxi-
mate the largest inscribed rectangle in a convex poly-
gon. If the order of the vertices of the polygon is given,
we have presented a deterministic algorithm that com-
putes in O( 1

ε log 1
ε log n) time an inscribed rectangle

of area at least (1 − ε) times of the largest inscribed
rectangle in the convex polygon. Also, a randomized
algorithm is given, that achieves a running time of
O( 1

ε log n) and computes w.h.p. an inscribed rectan-
gle of area at least (1−ε) times of the largest inscribed
rectangle in the convex polygon.
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2-Factor Approximation Algorithm for Computing
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Abstract

A 2-factor approximation algorithm for finding a max-
imum independent set of a given unit disk graph is
proposed. The time complexity of our algorithm is
O(n4). In particular, if it is a coin graph, then our ap-
proximation algorithm works in O(n log n) time. An
O(n2) time heuristic is also reported that produces
comparable results on randomly generated instances
of unit disk graphs of fairly large size.

1 Introduction

Unit disk graphs play an important role in formulat-
ing several problems in mobile ad hoc networks. A
unit disk graph G = (V,E) is the intersection graph
of a set of circular disks {c1, c2, . . . , cn} of same ra-
dius placed in a two-dimensional (2D) plane. Each
vertex vi ∈ V corresponds to a disk ci, and an edge
(vi, vj) ∈ E between vertices vi and vj indicate that
the corresponding pair of unit disks ci and cj inter-
sect (overlap). In mobile networks, the base stations
can be viewed as vertices of a unit disk graph, where
the range of the base stations is the same. Various
practical problems on this network in terms of unit
disk graphs. In this paper, we consider the problem
of computing the maximum independent set (MIS)
[8] of a given unit disk graph, where the co-ordinates
(xi, yi) of the center of each disk ci are given.

The problems of computing a maximum independent
set and a minimum vertex cover for unit disk graphs
are known to be NP-complete [2]. Thus, research on
this topic is concentrated on designing efficient ap-
proximation algorithms. Most of the related works
assume that the geometric representation or the lay-
out of the unit disks are given.

Earlier results: A dynamic programming based
shifting strategy was used by Erlebach et al.[7] to de-
sign a polynomial time approximation scheme (PTAS)
for finding a maximum weighted independent set (dis-
joint disks of maximum total weight) in a disk graph
for a set of n disks with arbitrary radii. Their pro-
posed algorithm achieves an approximation factor

∗Chennai Mathematical Institute, Chennai, India
†Indian Statistical Institute, Kolkata, India
‡Indian Statistical Institute, Kolkata, India

(1+ε) in time O(nO( 1
ε2

)), where 1
ε is an integer greater

than 1. Next, if all the disks have same radius (with-
out loss of generality the diameter can be assumed to
be 1) and their centers lie inside a region bounded by
a pair of parallel lines at a distance at most k apart,
then an algorithm by Matsui [10] computes an optimal
MIS in O(n4d 2k√

3
e) time. He also gave a (1 + 1

(r−1) )-
factor approximation algorithm for the MIS problem

of unit disk graphs that runs in O(rn4d 2(r−1)√
3
e) time,

for any positive integer r. Jan van Leeuwen [9] in-
troduced the concept of thickness to propose a fixed
parameter tractable algorithm for finding the MIS of
a unit disk graph. An instance of unit disk layout is
said to have thickness τ if the 2D region can be split
into a set of strips of width 1 such that each strip con-
tains at most τ disk centers. Further, he showed that
an instance of the problem with thickness τ can be
solved in O(τ222τn) time. Although there are PTAS
for finding an MIS of a given unit disk graph, the best
known constant factor approximation available for this
problem achieves an approximation factor 3 as follows
with time complexity O(n2) [11]:
(i) sort the disks with respect to the x-coordinates of

their centers in ascending order;
(ii) repeat

add the left-most disk c to the MIS; (There can be
at most 3 disks that overlap c, and yet are mutually
disjoint. If we choose c in the independent set, then
we can lose at most 3 disks in the independent set.)
delete c and all the disks that overlap c;
until no disk remains.

It needs to be noted that Agarwal et al. [1] pro-
posed a 2-factor approximation algorithm for the MIS
problem of the rectangle intersection graph with a set
of rectangles of fixed width. They also proposed a
PTAS for the MIS problem which produces a (1+ 1

k )-
factor approximation result in O(n log n+n2k−1) time
for any integer k. Recently, Chan and Har-Peled [4]
addressed the MIS problem for pseudo-disks in the
plane. In the unweighted case of a set of n pseudo-
disks, they provided a (1+ ε)-factor approximation in
time O(nO( 1

ε2
)), similar to Erlebach’s results [7] for n

disks. For the weighted case, they proposed an O(n3)
time algorithm to produce an independent set of total
weight Ω(OPT ) where OPT is the maximum weight
over all independent sets, provided the set of pseudo-
disks has linear union complexity.

Our main results: First we improve the approxi-
mation factor to 2 for computing the MIS of a unit
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disk graph. In other words, if the size of the optimum
solution for a given instance of the problem is OPT ,
then our algorithm produces a solution of size at least
1
2OPT . The worst case time complexity of our pro-
posed algorithm is O(n4), which is less than that of
the approximation algorithm by Matsui [10] for any
integer r ≥ 2.

Second, we consider the MIS problem for the coin
graph, which is also a unit disk graph, but proper
overlap between a pair of disks is not allowed. Here
an edge between a pair of vertices implies that the
corresponding unit disks touch each other. The MIS
problem for the coin graph is also known to be NP-
complete [3]. Our algorithm produces 2-factor ap-
proximation result for the coin graph in O(n log n)
time.

Finally, we propose a very easy-to-implement O(n2)
time heuristic for MIS of unit disk graphs which has
been observed to produce results comparable to our
2-approximation algorithm on randomly generated in-
stances of fairly large size.

2 2-factor algorithm for MIS of unit disk graphs

A layout of unit disks and the corresponding unit disk
graph are shown in Figures 1(a) and 1(b). An inde-
pendent set in this unit disk graph consists of a set
of disks IS ⊆ C which are mutually non-intersecting.
The objective of the MIS problem is to find the largest
subset of C which are mutually non-intersecting disks.

As in the 2-factor approximation algorithm for
the MIS problem of fixed width rectangle inter-
section graph [1], we split the region as shown
in Figure 1(c) into a set of m (≤ n) disjoint
strips {H1,H2, . . . ,Hm}, separated by horizontal lines
at y-coordinates {h1, h2, . . . , hm+1}, where h0 =
dmax1≤j≤n(yj)e, hm+1 = bmin1≤j≤n(yj)c and hi−1−
hi = 1 for all i = 1, 2, . . . , m+1. In other words, each
strip is of width 1. The j-th strip Hj contains the set
of centers Pj = {c = (x, y)|hj−1 < y ≤ hj}. Note
that each disk center ci lies in exactly one strip (see
Figure 1(c)). We study the problem under the general
position assumption where no disk-center has integer
y-coordinate, and each unit disk intersects exactly one
horizontal line.

It is shown in [10] that if the width of a strip is
√

3
2 ,

then the optimum solution for the MIS problem inside
that strip can be computed in O(n2) time where n is
the number of disk-centers inside that strip. We show
that for a strip of width 1 also, the optimum solution
of the MIS problem can be obtained in polynomial
time. We propose an O(n4) time algorithm for this
subproblem, and use it to design our 2-approximation
algorithm for the MIS problem of unit disk graph.

C1 C2 C3

C4

C5
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C7
C9

C8

C1
C2

C3

C4 C5 C6

C7
C8

C9

C1 C2 C3

C4

C5
C6

C7
C9

C8

h1

h2

h3

h4

(a) (b) (c)

Figure 1: (a) A layout of unit disks, (b) corresponding
unit disk graph, and (c) horizontal lines at distance 1
dividing the region into strips

Result 1 If Ij denotes an independent set of disks in
the strip Hj , then Ij ∩ Ik = ∅ if |j− k| > 1. However,
Ij ∩ Ij+1 may be non-empty.

Following the technique in the 2-factor approximation
algorithm of equal width rectangle intersection graph
[1], we compute the MIS for the disks in each strip
separately. Finally we compute ISodd = I1 ∪ I3 ∪ . . .
and ISeven = I2 ∪ I4 ∪ . . .. We report the one among
ISodd and ISeven whose cardinality is greater than
the other one. It can be shown that this produces a
2-factor approximation algorithm [1].

We first describe the method of computing the MIS
of the disks whose centers lie in a strip of width 1.
Consider a strip Hj , and the set of centers of the unit
disks Pj . We further split the horizontal strip into
unit squares by drawing vertical line segments unit
distance apart, and then delete all the vertical lines
that do not intersect any disk inside Hj . Let us name
the active vertical lines as v1, v2, . . . , vk. Let Cj

α be
the set of disks whose centers lie inside Hj , and are
intersected by the active vertical line vα.

Now, we have the following two observations: (i) the
size of the MIS among the set of disks Cj

α may be 1
or 2, and (ii) if we consider a pair of vertical lines vα

and vβ , then there exists no pair of intersecting disks
c ∈ Cj

α and c′ ∈ Cj
β if |α− β| > 1 (see Result 1).
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(d)

Figure 2: Assignment of edges in the graph Gj

Being motivated by the above two observations, we
define a directed graph Gj = (V j , Ej) for Pj . The
nodes V j = V j

1 ∪ V j
2 . . ., where V j

α = Aj
α ∪ Bj

α. Each
node in Aj

α corresponds to a unit disk in Cj
α, and each

node of Bj
α corresponds to a pair of non-intersecting
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unit disks in Cj
α. While putting edges in Ej , we con-

sider each pair of sets V j
α and V j

β (α < β). Between a
pair of nodes u ∈ V j

α and v ∈ V j
β , there is a directed

edge (u, v) if each disk in node u does not intersect
any disk in node v (Figure 2). Note that (i) there is no
edge between any pair of nodes in a set V j

α , and (ii) a
pair of nodes u ∈ V j

α and v ∈ V j
β is always connected

if |α− β| > 1.

Gj defined thus is a k-partite graph, where k is the
number of active vertical lines for the strip Hj . Next,
we add a source node s from which there is a directed
edge to each of the nodes in V j

1 . The nodes in V j
k

are all connected to a sink node t by directed edges.
Finally, we assign a weight equal to 1 or 2 to each node
of Gj depending on the number of disks it represents.
The nodes s and t are assigned with weight 0. If the
number of centers of the disks in the strip Hj is τ ,
then |V j | = O(τ2) and |Ej | = O(τ4).

We find the longest path in the directed acyclic graph
G. Although the problem of finding the longest path
in a directed graph is NP-complete, it can be solved
in time proportional to the number of edges of the
graph [6] if the graph is acyclic. Since the two sets of
unit disks in the strips H2i+1 and H2j+1 are disjoint
for i 6= j, the time required to compute the MIS for
each of the odd indexed strips H2i+1 is O(n4), and
the total time complexity for ISodd is additive and
hence O(n4). The same time complexity result holds
for computing the MIS for all the even indexed strips
H2i. The final result reported by this algorithm is the
larger of the two sets ISodd and ISeven, leading us to
the following theorem:

Theorem 1 Given a set C of unit disks in a 2D
plane, a set of at least 1

2OPT non-intersecting disks
can be obtained in O(n4) time, where OPT is the
maximum number of mutually non-intersecting disks
in the set C.

3 MIS problem for coin graphs

In the coin graph, since no two unit disks properly
overlap, we can bound the number of non-intersecting
unit disks on a vertical line inside a strip to at most 2.
Thus, each vertical line inside a strip Hj contributes
at most 3 nodes in V j (see Figure 3). So, the total
number of nodes and edges in Gj are O(n) and O(n2)
respectively. However, since our objective is to find
the longest path in the resulting graph, we can reduce
the number of edges to O(n) by ignoring the edges
(u, v) where u ∈ V j

α , v ∈ V j
β and |α − β| > 2. Thus,

the time complexity of the algorithm is dominated by
the sorting time of the centers of the unit disks.

Theorem 2 Given a set C of n coins in a 2D plane,

C1

C2

C3

C4

C5

C6

C1

C2

C3

C4

C5

C6

C12
C34 C56

(a) (b)

Figure 3: (a) A geometric layout of coin graph, and
(b) the corresponding coin graph

a set of mutually non-touching coins of size at least
1
2OPT can be computed in O(n log n) time, where
OPT is the maximum number of mutually non-
touching coins present in the plane.

It needs to be mentioned that if the centers of the
unit radius non-overlapping disks (coins) have inte-
ger coordinates then we can determine the optimal
independent set of the coin graph in polynomial time
based on the following facts:

(a) As the centers of the unit disks are placed on the
vertices of a grid, the corresponding coin graph is
planar bipartite G = (V1 ∪ V2, E); the partition V1

(V2) of vertices comprises the disks with centers on
even (resp. odd) diagonals of the grid.

(b) A maximum independent set is obtained from a max-
imum bipartite matching of this coin graph, which
can be computed in polynomial time [8].

4 A fast and efficient heuristic

Let C be a set of n unit disks in the plane, and
G = (V,E) be the corresponding unit disk graph.
We repeatedly execute the following two steps until
all the vertices in V are deleted.

Algorithm MIS-Heuristic
Set IS=∅ ;
repeat

choose an unmarked vertex v of V
having maximum degree;

if (v has no two neighbors that are adjacent)
then add v to IS;

delete v and all its incident edges from G;
update the degrees of the remaining

vertices accordingly;
until (all the vertices in V are deleted).

The creation of the graph G needs O(n2) time, and
processing each vertex takes time equal to its degree,
which may be O(n). Hence the running time of the
MIS-Heuristic algorithm above is O(n2).

We executed our MIS-Heuristic algorithm as well as
the 2-factor approximation algorithm described in
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Table 1: Comparison of the size of independent set ob-
tained by our MIS-heuristic vs. our 2-approximation
algorithm on random instances∗

# disks Avg. |ISH |
|ISA| Avg. |ISH |

|ISA|
for # strips = 1 for # strips = 10

1 50 0.91 1.62
2 100 0.87 1.60
3 500 0.72 1.37
4 1000 0.70 1.25
5 2000 0.67 1.06
6 4000 0.69 1.0
7 5000 0.73 0.86
8 10000 0.76 0.77

∗ H denotes the MIS-Heuristic presented in this section,

and A the 2-approximation algorithm of Section 2.

Section 2 on random instances. For each n (num-
ber of disks), we have generated 5 random instances,
and run both the algorithms. We use ISH and ISA

to denote the size of the independent sets obtained
by our MIS-Heuristic and and our 2-factor approxi-
mation algorithm respectively. We report the typical
results obtained in Table 4 for two cases: (i) only one
horizontal strip of width 1, and (ii) the general case
with 10 horizontal strips of width 1. For the sake
of comparison, we present the average of the ratio of
the sizes of the independent sets obtained by the two
proposed methods on the same instance.

For case (i), our 2-factor approximation algorithm is
guaranteed to produce optimum solution by Theorem
1. The results obtained by MIS-Heuristic in this case
is observed to be far better than 1

2OPT . For other
cases, it is noted that for values of n upto about 4000,
our MIS-Heuristic algorithm performs better than the
2-factor approxmation. However, for large values of
n, i.e., for the dense instances the 2-approximation al-
gorithm produces marginally better result. Further,
it is not essential in MIS-Heuristic that the vertices be
processed in non-increasing order of their degrees. We
strongly believe that a careful analysis may show that
the solution produced by MIS-Heuristic will never
produce a solution of size less than 1

2OPT .

5 Conclusion

A 2-factor approximation algorithm for the MIS prob-
lem of a unit disk graph is proposed. Although the
worst case time complexity of the algorithm is O(n4),
it executes much faster for instances where the disks
are uniformly distributed. Our proposed algorithm
produces optimum solution if the disk centers are in-
side a strip of width 1, and it is faster than that of
[10]. The worst case time complexity of our 2-factor

approximation algorithm is less than that of [10] with
r = 2 in their expression of time complexity. Finally,
we conjecture that the proposed MIS-Heuristic algo-
rithm, which is faster, is also a 2-factor approximation
algorithm for the MIS problem. In fact, for instances
with fewer than 5000 disks, it is likely to be beneficial
to employ MIS-Heuristic.
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Visibility Polygons in the Presence of a Mirror Edge
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Abstract

Suppose P is a polygon which one of its edges is a
mirror. We consider the problem of computing the
visibility polygons inside P . Generally, the visibility
polygon of a point or an edge or a segment, inside a
simple polygon, can be computed in linear time. In
this paper we will show that, even when an edge of
the polygon is a mirror, the visibility polygon can still
be computed in O(n). Also, we will prove that com-
puting the visibility polygon of a query point, can be
done in the same time and space complexity, when an
edge is a mirror.
To prove these, we will propose an optimum linear
time algorithm for computing the union of two visi-
bility polygons inside a polygon.

1 Introduction

The visibility problem arises in many computational
geometry subjects, and so far various variations of
this problem have been studied. For example, in Art
Gallery, the goal is to find the minimum stationary
guards that can see all points in a polygon. In
Visibility Polygon problem we have a polygon, called
P , and a viewer as a point or an edge or a segment
inside P . The goal is to find the maximal subpolygon
of P , in which all the points are visible to the viewer.
There are linear time algorithms for computing the
visibility polygon for a point [6] or a segment [4]
inside a simple polygon. Also, using preprocessing,
an output sensitive algorithm can compute the
latter problem in time proportional to the size of
the visibility polygon. Bose et al. [3] presented an
algorithm with preprocessing time of O(n3logn) and
space complexity of O(n3) that can answer queries in
O(logn+ k) time, where k is the size of the visibility
polygon. Aronov et al. [2] found another solution
for the same problem with a preprocessing time of
O(n2logn) and space of O(n2) in O(log2n+ k).
Visibility in the presence of mirrors was introduced
by Klee, for the first time. He asked whether every
polygon whose edges are mirror, is illuminable
from every interior point [5]. Tokarsky in [7]
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Department of Mathematics and Computer Science, Amirkabir
University of Technology. b kouhestani@alum.sharif.edu;

asgaripour@aut.ac.ir; ss.mahdavi@aut.ac.ir;
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constructed a polygon inside which, exists a dark
point by putting the light source at a particular point.

Works similar to ours, are the papers about
visibility with reflection such as [1]. In this paper,
authors modeled two different reflections; specular
and diffuse. In specular reflection, light rays reflect
along a specific direction, abide the standard law of
reflection. In diffuse reflection, light rays reflect in
all directions. They show that the resulting visibility
polygon may not be simple, and prove a tight θ(n)
bound on the worst case combinatorial complexity,
based on the number of visibility polygon vertices.
They also present an algorithm with O(n2log2n) time
for computing it.
We consider the same problem when only one of the
edges is mirror. Our algorithm runs in an O(n) time.
Also, we show that the visibility polygon for a query
point in a polygon with only one mirror, can be
computed in the same order as [2] or [3] as desired.

This paper is organized as follows: In section 2, no-
tations are described. In section 3.1 an algorithm for
computing the union of two visibility polygons inside
a polygon in O(n) time is presented. Sections 3.2 and
3.3, deal with the computation of visibility polygon of
a point or a segment in a simple polygon with a mir-
ror edge. In section 4, it is discussed that visibility
polygon of a query point inside a polygon with a mir-
ror edge, is the same as simple polygons. And finally,
section 5 contains discussions and future works.

2 Notation

Suppose P is a simple polygon. Let int(P ) and bd(P )
denote interior and boundary of P , respectively.
Also, [a, b] means counterclockwise polygonal chain
from a to b, where a and b are two points on bd(P ).
Two points, x and y, are visible to each other (or can
see each other), if and only if the open line segment,
xy, lies completely in int(P ). The visibility polygon
of the point q in P , is denoted by VP (q) and consists
of all points of P , which are visible to q. Among
the edges of VP (q), those which are not edges of P ,
are called windows. Weak visibility polygon of a
segment, s in P , is denoted WVP (s), is the maximal
subpolygon of P which all points of it, are visible to
at least one point of s which is not an endpoint.
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Figure 1: visible using a mirror

VP (q) has an important property which is used in
this paper several times. This property says that the
order of visibility polygon’s vertices and edges are
exactly the same as their order on the boundary of
P . We use this property, called Order Property, to
obtain an O(n) time algorithm to compute the union
of two visibility polygons.
Combinatorial representation of VP (q), is a circular
list of vertices and edges of P , in the order which
they appear on the boundary of VP (q). Given
combinatorial representation, actual coordination of
each vertex can be computed in constant time.
Suppose edge e of P is a mirror. Two points x and y
inside P can see each other using the mirror e, if and
only if there exists a point r on e, which is visible to
both x and y such as xr and yr lie on the opposite
sides of the inward normal of e at r, and make the
same angle with it as is depicted in figure 1 (this
definition is the same as the definition of directly
visible with one specular reflection in [1]).

Now visibility polygon of a point q inside P with
mirror edge e, denoted by VP,e(q), is the maximal
subpolygon of P that all of its points, are visible to q
either directly or by using the mirror, e.

3 Computing visibility polygon in a polygon with
one mirror edge

3.1 Union of two visibility polygons

Most algorithms in sections 3 and 4, require com-
puting the union of two visibility polygons. Here, we
present an algorithm that can do this computation
in O(n) time.

Lemma 1 Suppose Q and W are two visibility
polygons inside P . The Union of P and Q can be
computed in O(n) time.

Proof. Suppose e = ab is an edge of Q and e′ = cd
is an edge of W . If e′ intersects e, then either c be-

Figure 2: e can at most intersect two edges of W

longs to [a, b] and d belongs to [b, a], or d belongs to
[a, b] and c belongs to [b, a]. Therefore, whereas both
Q and W have the Order Property, e can at most in-
tersect two edges of W , and the intersection of Q and
W have O(n) vertices (see figure 2). Vertices of the
union polygon consist of vertices of Q and W (which
are located at the boundary of P ), and some internal
vertices appeared on the intersection of Q and W . We
traverse the boundary of P , if we see two consecutive
vertices which belong to different polygons, for exam-
ple qi and wj (which qi belongs to Q and wj belongs to
W ), we may need to compute the intersection point
between these two vertices. This intersection point
is indeed, the intersection of edge qiqi+1 and wj−1wj

(other cases when one of these two vertices lies on the
edge of the other polygon can be handled easily).
By continuing this process the union of the two poly-
gons can be computed in O(n) time.

�

Note that, our algorithm actually works for any two
polygons inside P , with the Order Property.

3.2 visibility polygon of a point

In this subsection an algorithm is proposed to
compute VP,e(q) (as depicted in figure 3).
Our algorithm is composed of the following steps:

1. Compute VP (q) and determine the portion
of e that can be seen by q, v1v2.
2. If q can not see any interior points of e, then
VP (q) = VP,e(q) and we are done.
3. Compute q′, the projection of q using e (as a
mirror).
4. Compute the first intersection of the rays q′v1 and
q′v2 with the boundary of P (other than e) which is
shown by t1 and t2 in figure 3.
5. Construct a polygon by attaching the chain [t1, t2]
with the chain t2v2q

′v1t1. this polygon is called P ′.
6. Compute VP ′(q′).
7. Omit the triangle q′v1v2 from VP ′(q′) and call the
resulting polygon T (T is a portion of P , which q can
see using the mirror, e).
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Figure 3: visibility polygon of a point inside P

8. Compute the union of T and VP (q).

Theorem 2 The visibility polygon of a point inside a
polygon with a mirror edge can be computed in O(n)
time.

Proof. VP,e(q) consists of points that q can see either
directly or by using mirror, e. In step 1, we compute
the points that q can see directly. Polygon T which
is computed in step 7, is the portion of P that q can
see using the mirror, e. Therefore, the union of these
two polygons is indeed, VP,e(q).
Obviously steps 1 to 5 can be computed in O(n) time,
so constructing P ′ can be done in linear time. Also,
step 6 and 7 take O(n) time, so the computation of
polygon T can be done linearly. Because T and VP (q)
have the Order Property, step 8 can be done in O(n)
time by using Lemma 1.

�

3.3 Weak visibility polygon of a segment

Suppose s is a segment which completely lies in
P and we want to compute WVP,e(s). The idea
is similar to the computation of VP,e(q). First, we
compute WVP (s). If WVP (s) contains no interior
points of e, the work is done. Otherwise WVP (e) is
computed (e assumed to be open, not containing its
endpoints). Let s′ be the portion of s lies in WVP (e)
(after computing WVP (e), s′ can be computed in
constant time). We like to compute all the points
that are visible to s′, using e. Let P ′ be the polygon
obtained by adding the projection of WVP (e) using
e, to WVP (e) and omitting e, as depicted in figure 4.
Note that e is open, therefore, this polygon is simple.

We compute the weak visibility polygon of the
projection of s′ using e in P ′, and call it Q. Q ∩ P is
the portion of P that is visible to s using the mirror.
The union of this polygon and WVP (s) is the set of
all points which are visible to s, directly or by using

Figure 4: Construction of P ′

the mirror, e.
Q ∩ P can be computed in O(n) time by simply
cutting Q along e, using lemma 1 computation of
the union needs only O(n) time, therefore, all above
steps can be done in O(n) time. Hence, we have the
following theorem.

Theorem 3 Weak Visibility polygon of a segment in-
side a polygon with a mirror edge can be computed
in O(n) time.

4 Visibility polygon of a query point

In some applications, one may need to compute the
visibility polygon of a big number of points. Here
using an O(n) time algorithm is not efficient. There-
fore, methods were presented using preprocessing
to compute visibility polygons in a more efficient
time. The time complexity of these methods (after
preprocessing) are output sensitive. As we mentioned
earlier two of such methods can be found in [2]
and [3]. Suppose in a polygon, an edge is fixed to
be a mirror. The question is: Can previous methods
be extended so that they work for a polygon with
a (fixed) mirror? In the following we show that the
answer is yes.

First, we compute WVP (e) and construct polygon
P ′, the same as in section 3.3.
Then we preprocess P and P ′ by one of the methods
either presented in [2] or [3]. We also do a point
planar location preprocess on a copy of P in O(nlogn)
time, so that we are able to answer in O(logn) time
whether the query point, belongs to WVP (e) or not.
Now for answering visibility polygon of a query point
q, we check whether q is in WVP (e) or not. If q is not
in WVP (e), q can not see any portion of the mirror
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and compute the answer of query by the chosen
method.
If q is in WVP (e), q′, the projection of q using e, is
computed. Now we can compute VP ′(q′), by querying
q′ in P ′. We select the portion of VP ′(q′) inside
WVP (e). This selection can be done in O(|VP ′(q′)|)
easily, by finding intersection of VP ′(q′) and e, and
then cutting VP ′(q′) in the intersection points. Call
the resulting polygon Q. Q is indeed, the portion of
P , that is visible to q using the mirror.
Now VP (q) is computed by querying q in P . Then
the union of VP (q) and Q can be computed in
O(|Q + VP (q)|) time using the method mentioned in
lemma 1. The resulting polygon is obviously VP,e(q).
The time complexity of the added preprocesses is
equal to the time complexity of the chosen method.
Also, for answering the query, added steps need
O(logn + |VP,e(q)|) time. Therefore, the time and
space complexity of answering visibility polygons of a
query point in the presence of a fix mirror, are equal
to the situation without mirror.

5 Discussion

In this paper, we showed that adding a mirror edge
will not change the time and space complexity of
computing visibility polygons. In [1] it is shown that
having two mirrors, the resulting visibility polygon
-even with one reflection- may not be a simple
polygon. Also, having h mirrors, number of vertices
of the resulting visibility polygon, can be O(n + h2).
For h mirrors, each projection, and its relative
visibility polygon can be computed in O(n) time,
which is leading to overall time complexity of O(hn).
The challenging part is the efficient computation of
the union of these polygons. We proposed an efficient
algorithm in the case of computing the union of two
such polygons. We hope to improve this algorithm
to reach an efficient algorithm for polygons in which
the number of mirrors is more than one.
In section 4, we fixed an edge as a mirror. One
interesting problem is to find a method for answering
visibility polygon of a query point, when the mirror
edge, is also queried.
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Snap Rounding on the Sphere∗

Boris Kozorovitzky† Dan Halperin†

Abstract

Snap rounding (SR for short) is a well known method
for transforming a planar arrangement of segments
given in some arbitrary-precision coordinates into a
fixed-precision representation. We extend the method
to transforming an arrangement of geodesics on the
sphere. We present two approaches for solving the
problem. A simple approach of enclosing the sphere
in an isocube and projecting the arrangement onto its
faces and a more complex approach that makes use of
tools from Discrete Global Grid Systems (DGGS) to
create a better approximation to the sphere. We also
generalize the Guibas-Marimont proof of the topo-
logical properties preserved by the standard SR for
segments in the plane; the generalization is needed
for the DGGS approach. Finally, we give rounding
results for both methods, obtained with our Cgal
(Computational Geometry Algorithms Library) based
implementation.

1 Introduction

In computational geometry geometric objects and al-
gorithms are often described assuming infinite preci-
sion and exact calculations and predicates. In prac-
tice, using infinite precision and exact arithmetic is
possible, yet it is often too slow and space consum-
ing to run on real world inputs. Snap rounding is a
method for finite-precision approximation for arrange-
ments of segments in the plane: It transforms an ar-
rangement whose segment endpoints’ coordinates are
given in some arbitrary-precision into a low precision
representation.

Given a finite set of segments S, the arrangement
A(S) is the subdivision of the plane into vertices,
edges, and faces induced by S. The vertices of A(S)
are either endpoints or intersection points of segments
in S. For a given arrangement whose vertices are
specified in arbitrary precision snap rounding is the
following process. Tile the plane with a grid of unit
squares centered at integer coordinates. We refer to
each square as a pixel. Define a pixel to be hot if it
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contains a vertex of the given arrangement. Replace
each vertex by the center of the hot pixel containing
it. Replace each original input segment e by a polygo-
nal chain e′ going through the centers of the hot pixels
intersected by e in the same order the pixels are met
by e. Note that in the process, vertices, edges, and
faces of the original arrangement may collapse. At the
end of the process all the vertices in the snap rounded
arrangement are at integer coordinates.

We refer to an original (unrounded) segment and
to a resulting polygonal chain as ursegment and pol-
ysegment, respectively [5]. The snap rounded ar-
rangement preserves topological and geometric prop-
erties with respect to the original arrangement. Ge-
ometric similarity— the rounded polysegment e′ is
within the Minkowski sum of the original ursegment
e and a unit square centered at the origin. Topologi-
cal similarity— there is a continuous deformation of
the segments in S to their snap-rounded counterparts
such that no segment ever crosses over a vertex of the
arrangement.

In this paper we consider a variant of the rounding
problem. In our case the input is an arrangement of
geodesics (arcs of great circles) on a sphere with ver-
tices given in arbitrary precision. Our spherical snap
rounding (SSR for short) transforms this arrangement
into low precision representation, while preserving the
following properties: the rounded arcs drift such that
the directed Hausdorff distance on the sphere (see for-
mal definition in Section 3.4) between the rounded
polysegment and the original arc is no larger than the
diameter of the circumcircle of the largest spherical
pixel (s-pixel) in the defined grid. The original and
the rounded arrangements are topologically equiva-
lent up to the collapsing of features [5]. The point
to which we snap the arcs inside the spherical pix-
els can be represented using small (with respect to
bit length) rational values. The spherical pixels have
similar shape and area (though not the same) and are
fairly regular. Finally, the grid is refinable to allow
for increasing the approximation quality.

Related work SR was independently introduced by
Hobby [7] and by Greene (unpublished manuscript).
The scheme was then generalized by Guibas and Ma-
rimont [5] to a dynamic SR algorithm where the au-
thors also introduce some elementary proofs regarding
the topological and geometric properties of the snap
rounded arrangement. Two additional algorithms by
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Goodrich et al. [4] and by de Berg et al. [3] give two
versions of the SR algorithm, each of which performs
better in some cases and worse in others. Later, Her-
shberger [6] presented an improvement that makes the
SR algorithm perform well in all the cases. The sub-
division of the sphere that we use is based on known
methods in the field of Geodesy and Cartography;
Sahr et al. [8] show various favorable properties of
such subdivisions.

2 Grid Types for which SR Preserves Topology

First, we determine which types of planar pixels (p-
pixels) would preserve the topological properties of
planar SR; the geometric properties are easier to
maintain and prove. Furthermore, we show that for
certain grids the choice of reference point, namely the
point through which the polysegments will snap to in
each pixel is immaterial. It has to be, however, the
same point inside each pixel. These properties are
needed for our usage of the DGGS scheme. For ex-
ample, Ben-Moshe et al. [1] show why the standard
SR scheme would not work in the case of triangular
tessellations of the plane.

The Deformation Guibas and Marimont [5] look at
the SR process as a continuous deformation of the
segments from the ursegments to the polysegments.
First, the ursegments are divided into fragments by
adding vertices (nodes) at their intersection points
with the boundaries of the hot pixels. A fragment
is external if it does not intersect the interior of a hot
pixel and internal otherwise. During the first stage,
the hot pixels are contracted in the x-direction toward
the center dragging the nodes with the boundary of
the pixel until the pixel becomes a hot “stick”. In the
second stage, the stick is contracted in the y-direction
to the center of the pixel. During the deformation, no
external fragment crosses into a contracting hot pixel.
We extend this observation to a more general setting
as we aim to use DGGS grids. Consider a single pixel
of a general grid as a convex polygon P . We shrink
the hot pixels in a single stage from time t = 0 to
t = 1 by moving the vertices of the pixel at a con-
stant speed (per vertex) toward the reference point.
During this deformation process, the pixel is always
a homothetic copy of the original pixel and at time
t = 1 it is reduced to the reference point. We start
the discussion with two auxiliary lemmas.

Lemma 1 Let Q be a convex polygon in the plane.
If p is a point in the plane not contained in Q then for
every t ∈ [0, 1] it holds that (p⊕−tQ)∩ (1− t)Q = ∅.

The proof of the lemma is a fairly straightforward
extension of the well known observation that for two

polygons A,B in the plane, A ∩ B 6= ∅ if and only if
the Minkowski sum B ⊕−A contains the origin.

Lemma 2 Let h1 and h2 be two shrinking hot pix-
els and let sfrag(t) be an external fragment with
endpoints on the boundaries of h1 and h2 at time
0 ≤ t ≤ 1. The external fragment sfrag(t) ⊂ sfrag(0)⊕
(t · (−P )), where P is the pixel-polygon with its ref-
erence point at the origin.

We sketch the main idea of the proof. Each frag-
ment endpoint moves with a constant speed toward
the reference point. When we take the union of the
vectors that represent the movement of all the points
on the boundary of P at time t, and move them such
that they begin at the origin, we get the polygon
(t·(−P )) with a reference point that coincides with the
origin. The Minkowski sum of sfrag(0) with this poly-
gon is the union of all the segments sfrag(x), x ∈ [0, t]
regardless of where on the boundary of h1 or h2 the
endpoints of sfrag(0) are.

Theorem 3 Snap rounding applied to an arrange-
ment of segments with a grid which is a tiling of the
plane with identical (in terms of shape and orienta-
tion) convex polygonal pixels, maintains the topology
preserving property of the SR process for any choice
of a fixed reference point inside the pixel.

Proof. To prove that the topology is maintained we
show that during our deformation no external frag-
ment crosses over into a shrinking hot pixel. With-
out loss of generality, let sfrag(t) = s1s2 be an exter-
nal fragment with endpoints on the boundary of the
shrinking hot pixels s1 ∈ h1 and s2 ∈ h2, and let h3
be another (different) shrinking hot pixel. We know
that sfrag(0) does not intersect h3. Assume to the
contrary that sfrag(t′) crosses into h3 and let t′ > 0
be the first time where sfrag(t′) touches its boundary.
Assume now, w.l.o.g., that P := h3 contains the ori-
gin and that the origin coincides with the reference
point. Since sfrag(0) did not cross h3, it follows from
Lemmas 1 and 2 that sfrag(0)⊕ (t′ · (−P )) is disjoint
from (1 − t′) · P , and therefore it is impossible for
sfrag(t′) to touch the boundary of the shrunk h3.

�

Corollary 4 Every tiling of the plane with either
(i) identical parallelograms or (ii) identical hexagons
having parallel opposite edges preserves the topolog-
ical property of SR , for any selection of a reference
point within the boundary of the tile.

3 Two Approaches to SSR

3.1 The Isocube Approach

Our first approach is quite simple. We enclose the unit
sphere in an isocube and project the arrangement of
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arcs onto the faces of the cube using Gnomonic pro-
jection (GP ). In GP a point on the sphere is pro-
jected to a plane by extending a ray from the center
of the sphere through the point. The projected point
is the intersection of the ray and the plane (when such
exists). The result is six arrangements of segments,
one on each face of the isocube. We use the planar
SR scheme to round the resulting arrangements to a
given pixel size and project the result back onto the
sphere using the inverse Gnomonic projection (G−1P ).
Now we connect the resulting arrangements by adding
connection arcs between neighboring hot pixels on dif-
ferent faces of the cube. Some care needs to be ex-
ercised when making these connections; we give more
details on this step in the next section which explains
our second approach.

3.2 The DGGS Approach

In the DGGS approach we inscribe an octahedron in
the unit sphere and follow Corollary 4 to define par-
allelogram pixels on each triangular face. On every
face of the octahedron we perform ρ (given as an in-
put for the algorithm) steps of Class I Aperture 4
subdivision [8] creating 4ρ−1 triangles with two pos-
sible orientations os— similar to the orientation of
the face and oo— opposite orientation. We select one
of the face edges to be inclusive and starting from
that edge connect each triangular pixel with orien-
tation os to its neighbor (with orientation oo) thus
creating a parallelogram pixel (see Figure 1). For tri-

Figure 1: Merging the triangular pixels into parallel-
ogram pixels on a face.

angles in the last column that do not have a neighbor
we create a phantom triangle (outside the boundary
of the face) with orientation oo and connect the two
triangles. We define the reference point of each paral-
lelogram pixel to be the circumcenter of the triangle
with orientation os. This selection guarantees that all
the reference points of the parallelogram pixels are in
the interior of the face of the octahedron and not in
the phantom regions. The inclusive region of such a
pixel is the part of the parallelogram boundary that
was the boundary of the triangle with orientation os
(right and bottom sides and their joint vertex). We
use the parallelograms as p-pixels and create s-pixels
by projecting the non phantom parts onto the sphere

using the inverse Gnomonic projection.

3.3 The DGGS Spherical SR Process

As before, the input is an arrangement A(C) of
geodesic arcs (urarcs) on a unit sphere centered at the
origin and an integer ρ. We inscribe an octahedron
with vertices at (±1, 0, 0), (0,±1, 0), (0, 0,±1) inside
the unit sphere and subdivide each face into parallel-
ogram pixels. We project the arrangement A(C) onto
the faces of the octahedron using Gnomonic projec-
tion. A single arc may create a segment over sev-
eral faces, in this case we consider the segment to be
broken and the point of the intersection between a
segment and an edge of the octahedron as the break-
point of the segment (a segment can have more than
one break-point). We define a p-pixel to be hot if
it contains a vertex in the projected arrangement or
a break-point. For every break-point we create two
vertices infinitesimally close to it, one in each p-pixel,
and register the two p-pixels as boundary-connected
and hot. Each vertex of the projected arrangement is
replaced by a reference point of the hot p-pixel con-
taining it and each projected segment s is replaced
by a polygonal chain going through the hot p-pixels
in the same order they are met by s on a single
face. After the rounding process, all the rounded seg-
ments are projected back onto the sphere using inverse
Gnomonic projection. For each registered pair of con-
nected p-pixels, their corresponding s-pixels reference
points are connected with a geodesic arc.

3.4 Topological and Geometric Properties of
DGGS SSR

We define the distance d(a, b) between the points
a and b on the unit sphere as the length of the
geodesic between these points and use it in the di-
rected Hausdorff distance on the sphere, dH(X,Y ) =

max
x∈X

(
min
y∈Y

(d (x, y))

)
.

Lemma 5 Let fi be a face of the octahedron, let φi =
G−1P (fi) and let σ be an unrounded geodesic arc that
is contained entirely within φi. Let ξi be the s-pixel
with the largest circumcircle crossed by σ and let σ̂
be the spherically snap rounded polysegment induced
by σ. The Hausdorff distance dH(σ̂, σ) is no larger
than the diameter of the circumcircle of ξi.

Lemma 6 Let ξk and ξj be two registered boundary-
connected s-pixels and let pk = GP (ξk) and pj =
GP (ξj) be their corresponding p-pixels. Then, the
small geodesic arc connecting the reference points of
ξk and ξj is contained in G−1P (pk) ∪G−1P (pj).

Lemma 7 Let σ be an urarc and σ̂ = SSR (σ) (the
spherically snap rounded version of σ) and let ξi be
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the s-pixel with the largest circumcircle crossed by σ.
The Hausdorff distance dH(σ̂, σ) is no larger than the
diameter of the circumcircle of ξi.

It remains to show that this scheme preserves the
topological property as it is defined in the Introduc-
tion.

Theorem 8 Let fi be a triangular face of the octa-
hedron tiled with parallelograms and let A(S) be an
arrangement of segments contained completely in fi.
Then during the SR process on fi no vertex crosses
over an edge and no new vertices are created.

Proof. We define the pixels on the face fi as parallel-
ograms and their reference points as described above.
Because the arrangement A(S) is contained within fi
we can apply Theorem 3 directly to the planar SR
scheme. �

Let fi be a triangular face of the octahedron and gi
the triangle whose corners are the reference points of
the corner pixels of that face. We define the forbidden
region of the face as f forbi = fi \ gi.

Observation 1 After SR on the octahedron face fi
the forbidden region f forbi does not contain vertices or
segments in the rounded arrangement on fi.

Lemma 9 No two connection arcs intersect except
at their endpoints.

Theorem 10 The original and the rounded arrange-
ment are topologically equivalent up to the collapsing
of features.

Proof. From the properties of planar SR the theo-
rem holds inside a face of the octahedron. The inverse
Gnomonic projection does not change topology of fea-
tures on a single face thus the projected arrangements
of arcs conform as well. The projected arrangements
are disjoint. We show in Lemma 9 that the connec-
tion arcs are disjoint except at the endpoints and we
observe that they are disjoint from the projected ar-
rangements because the connection arcs are within
the forbidden region. Since the connection arcs do not
introduce new intersections the assertion follows. �

4 Implementation

We have implemented both the Isocube and the
DGGS algorithms using Cgal1 and the Arrangement
on Surfaces package [2]. We construct a specialized
arrangement from the input arcs and split them into
smaller arcs such that each arc projects onto a single
face of the underlying polytope. During this stage we
also record the connection points. Next, we project all

1http://www.cgal.org

the split arcs onto the faces of the polytope and run
planar SR on each face. Interestingly, in the DGGS
case we can transform the segments and the parallel-
ograms such that the parallelograms become squares.
We project the rounded arrangements from each face
back onto the unit sphere and add the connection arcs
using the previously recorded connection points. Fig-
ure 2 shows two examples obtained with our imple-
mentation.

Figure 2: Two examples of a snap rounded arrange-
ment of geodesic arcs. On the left we demonstrate
the Isorcube approach and on the right the DGGS
approach.
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Locating an Obnoxious Line Through a Set of Weighted Points
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Abstract

Let S = {p1, . . . , pn} be a set of points in the plane
with positive weights w1, . . . , wn. We find a line �,
with at least one point of S on each side, maximizing
the weighted Euclidean distance to the nearest point.
Our algorithm runs in O(n3 log n) time, uses O(n)
space, and extends easily to a much broader class of
metrics. We also show that the previously proposed
O(n3) solution to this problem is incorrect. Finally,
when � is restricted to a small set of possible orienta-
tions, an O(n log n) algorithm is possible.

1 Introduction

The problem of finding a farthest separating line,
also known as an obnoxious route, through a set
S = {p1, . . . , pn} of points in the plane has resulted
in algorithms for both the unweighted [4] and the
weighted cases [2, 3]. Given S and a set of associ-
ated positive weights wi, we search for a line �, with
at least one point from S on each side, that maximizes
the distance to S, minpi∈S wid(pi, �). In the sequel we
shall refer to the weighted distance simply as distance
and the optimal � as the obnoxious line.

A recent paper [2] considers a more general ver-
sion of this problem, that of separating polygonal re-
gions, yet the algorithms proposed work for the case of
points as well. The ideas in the paper use duality and
require O(n2) space. Furthermore, in order to com-
plete the algorithm for the weighted case parametric
search is utilized. In an earlier paper by Drezner and
Wesolowsky [3], the authors provide an O(n3)-time
and O(n)-space algorithm for computing the obnox-
ious line through a set of weighted points. However,
upon careful examination of the proposed algorithm,
we found a subtle error that renders the algorithm
incorrect. Additionally, the problem cannot be easily
corrected, without radically changing the algorithm.

In [3] the authors introduce formulas to com-
pute various quantities, such as the distance to the
weighted midpoint of the segment joining two points
(fij(Θ)) and the distance from a point to the line RL

equidistant either from one point on each side or from
two points on one side and one on the other (fk(Θ)).

∗Computer Science, University of Denver, malbow@du.edu
†Computer Science, University of Denver, cdurso@du.edu
‡Mathematics, University of Denver, mlopez@du.edu
§Computer Science, University of Denver, ymayster@du.edu

For the actual formulas as well as the specifics of their
derivations, the reader is referred to the original pa-
per. Here, 0 ≤ Θ < π is the angle made by T , the
vector perpendicular to RL, with the positive x-axis.
(Other interpretations of Θ lead to inconsistencies in
the distance formulas given in the paper.)

The authors outline an algorithm, consisting of two
parts, Procedure 1 and Procedure 2. The first com-
putes for any two points i, j the perpendicular route
� through the weighted midpoint and checks that no
other point is closer to �. It remembers the pair i, j
that yields the best such “empty corridor”. Procedure
2 then computes the distance fk(Θ) from any other
point k to the line RL equidistant from i, j on one
side of it and k on the other. It then classifies all
such points k as “below” or “above” (our terminol-
ogy) depending on whether the quantity Sk(Θ), the
signed Euclidean distance from RL to k, is positive or
negative, respectively, and picks the one closest to its
corresponding line for each set (see [3] for details). For
each i, j, the algorithm then picks as its candidate for
Procedure 2 the point k which yields the larger of these
two minimum distances. The intent is to choose the
wider of the two weighted “corridors” on each side of
RL. The algorithm terminates by returning the over-
all maximum among all candidates picked by both
procedures. In doing so, it appears that the authors
are using, for the weighted case, properties that only
hold for the unweighted case. Their assumption seems
to be that, in Procedure 2, they don’t need to check
for “emptiness” of the candidate regions, as they are
supposedly ensuring that by picking the k that gives
the smaller of the weighted distances on each side.
This, while perfectly reasonable for unweighted cor-
ridors, fails in the weighted case. Here, for the same
pair i, j, we have routes that have different slopes for
different points k (unlike the unweighted case!). This
means that for different k the weighted corridors may
intersect even if they belong to two different sets (i.e.,
one “above” and one “below”) and, as a result, a point
k1 may be inside of another point k2’s “corridor”.

This situation is illustrated in Figure 1 and Ta-
ble 1. We start with points p1 = (5.92, 4.92), p2 =
(5.92,−0.44), p3 = (2.25, 11.03), p4 = (12.64, 7.96),
and weights 0.598802, 0.241546, 0.3709, 0.176678, re-
spectively. Procedure 1 investigates 6 pairs and finds
that none of their weighted perpendicular bisectors
yield proper corridors. Procedure 2 then considers
each of the 6 pairs in turn on the same side of �
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Figure 1: Counterexample to algorithm in [3].

and each of the remaining two points on the other
side. This gives a total of 12 candidate separating
lines, which are then placed for each pair into either
the “above” or the “below” group. These results are
tabulated in Table 1 which exposes the flaw in the
algorithm: the last column shows the weighted dis-
tance fh from a point h to the line determined by
the other three. One can observe that sometimes ph

gets closer to the candidate separator than any of the
other three points. This violates the “emptiness” of
the candidate, yet if fk is large enough, it may be
picked by the algorithm while the true best separator
is skipped as inferior. In our example, the line deter-
mined by p1, p4 and p3 is reported as the final answer,
yet p2 is closer to it than the other three points. At
the same time, p2, p4 and p3 determine the line, whose
fk is only slightly smaller, but turns out to actually
be empty (since p1 is further away from it than any of
these three points) and thus is the true best separator.

Pair k sign of Sk(θ) fk(θ) fh(θ)
(1, 2) 3 negative 1.59954 0.878394

4 negative 1.00462 0.779681
(1, 3) 2 positive 0.534473 1.43659

4 negative 1.00579 0.904625
(1, 4) 2 positive 0.918379 2.69556

3 negative 1.29187 ‡ 0.991894
(2, 3) 1 negative 0.314024 1.39185

4 negative 0.979299 1.09746
(2, 4) 1 negative 0.521644 2.72721

3 negative 1.26881 † 1.62224
(3, 4) 1 positive 0.809943 1.45618

2 positive 1.09385 0.0468722

Table 1: Optimal (†) and Procedure 2 (‡) solutions.

2 An O(n3 log n) general algorithm

In this section we describe an algorithm for locating
the obnoxious line. It is simple to show that a maxi-
mal separating line (in the sense that any sufficiently
small perturbation, rotation or translation, leads to
worse solution) must be equidistant from at least two

points, one in each half-plane. We call these the “wit-
ness” points of the separating line. It is perhaps less
obvious that the best line, regardless of its orienta-
tion, must pass through the weighted midpoint of its
witnesses. This property, described in [3], is exploited
differently here to synthesize a different algorithm.

For each pair of candidate witnesses pi, pj , we find
the maximal separating line �ij as the line that passes
through the weighted midpoint of pi and pj making
the least angle with the weighted perpendicular bisec-
tor of the segment pipj (which, without loss of gener-
ality, we assume to coincide with the x-axis) and such
that there is no other point pk closer to �ij than pi or
pj. We look for a solution to the problem below.

Problem 1 MSTWP: Maximal Separator of Two
Weighted Points. Given a set of weighted points
P = {p1 = (x1, y1, w1), . . . , pn = (xn, yn, wn)} and
two witness points pi, pj aligned on a vertical line,
find the separator line �ij that maximizes the least
distance to P and passes through the weighted mid-
point of pi and pj .

Let φ be the counterclockwise angle measured from
the positive x-axis to a given candidate orientation
�ij(φ) of �ij . Clearly, unless emptiness is violated,
we would like to keep �ij as the weighted perpendic-
ular bisector itself. Otherwise, we have to exclude all
orientations from [0, π

2 ) ∪ (π
2 , π) that would result in

non-empty “corridors” (i.e., some point of P being
closer to �ij(φ) than the witnesses). We then have to
find the smallest angle 0 < φ1 < π

2 and the largest an-
gle π

2 < φ2 < π from those orientations that remained
available. The best separator line has the orientation
φ1 if φ1 < π − φ2 and φ2 otherwise.

ϕ2

�
II

lij(ϕ1)

III

I

IV

ϕ1

pj

pi
pk

lij(ϕ2)

Figure 2: Finding the orientation of the maximal separator.
For a pair of witness points pi, pj , the angle range [0, π

2
)∪ (π

2
, π)

of possible orientations φ is considered and all angles resulting in
�ij(φ) closer to some pk are excluded. Each pk results in at most
two subintervals of angle values removed from further inspection.
For pk in quadrants I and III, we have 0 < φs

k < φe
k < π

2
or

0 < φe
k < π

2
< φs

k < π, and for pk in quadrants II and IV, we
have π

2
< φs

k < φe
k < π or 0 < φe

k < π
2

< φs
k < π.

We solve this problem by converting each point
pk ∈ P, k �= i, j to at most two intervals of angles φk

that result in pk being closer to �ij(φk) than the two
witnesses. In many cases, there is only one interval
(φs

k, φe
k) of values of φ that correspond to such “bad”
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separators �ij(φ). However, in the case when �ij(0)
is closer to pk than to the witness points, we get two
intervals [0, φe

k), (φs
k, π) to be excluded from further

consideration. In either case, and for a fixed k, all of
these angle intervals lie entirely either in [0, π

2 ) or in
(π

2 , π), since �ij(π
2 ) passes through both pi and pj and

is not a separator line at all. The figure above illus-
trates the process of investigating various candidate
orientations φ.

Naturally, we have reduced MSTWP to the problem
below (since it is the same as finding the best φ =
min{φ1, π − φ2}).

Problem 2 LRE: Least Right Endpoint. Given in-
tervals (a1, b1), . . . , (an, bn) in [0, M), find the left-
most right endpoint bi such that bi /∈ (aj , bj)∀j.

We now argue that MSWTP can be solved opti-
mally in O(n log n) time. (This does not necessarily
mean that the original problem has a lower bound of
Ω(n3 log n) even though we can solve it with O(n2)
instances of MSWTP.)

Claim 1 MSWTP can be solved in Θ(n logn) time.
This is optimal.

Proof. (By reduction from Connected Union (CU)
[1]). Let (c1, . . . , cn, ε) be an instance of CU. We as-
sume that all ci’s and ε have already been shifted and
scaled to fit inside [0, π

2 ), i.e. that mini(ci− ε
2 = 0) and

maxi(ci + ε
2 ) < π

2 . Let p1 = (0, 1) and p2 = (0,−1) be
the two “witness” points for the separator line. We set
the weights of p1 and p2 to be 1 (we shall see that an
unweighted version of this problem has the same com-
plexity). Then, any separator line �12 passes through
the origin. Now, construct the points p3, . . . , pn+2

one by one based on c1, . . . , cn and ε as follows. Let
φs

i+2 = ci− ε
2 and φe

i+2 = ci+ ε
2 be two angles in [0, π

2 ).
Then, since both φs

i+2 < π
2 and φe

i+2 < π
2 , pi+2 is in

the first quadrant of Fig. 2 and above the separator
line with slope tan(φs

i+2) and below the separator line
with slope tan(φe

i+2). So, we can compute the coordi-
nates xi+2, yi+2 of pi+2 by solving the two equations
given by the latter equalities in each of the following

tan(φs
i+2) =

wi+2yi+2 − w1y1

wi+2xi+2 − w1x1
=

yi+2 − 1
xi+2

,

tan(φe
i+2) =

w1y1 + wi+2yi+2

wi+2xi+2 + w1x1
=

yi+2 + 1
xi+2

.

Since the choice of wi’s is immaterial, we fix wi = 1
for all 1 ≤ i ≤ n + 2. Then, we end up with two
equations in two unknowns (xi+2, yi+2) and can find
the coordinates of each pi, 3 ≤ i ≤ n + 2. We can
then find the best separator line �12 and if one exists
with non-horizontal orientation we know that its slope
is not properly inside of the slope ranges for any of
the points pi and, therefore, the union of the intervals

from which these points came must be disconnected.
Otherwise, we conclude that all angle ranges over-
lap and, therefore, the union of the open intervals is
connected. Hence, since the transformation of the in-
tervals into points takes linear time, we have shown
that the lower bound of Ω(n log n) carries over from
CU to MSWTP.

MSWTP can be solved in O(n log n) time using a
simple counting algorithm. First, sort the set of all
angle range endpoints {φs

k, φe
k|1 ≤ k ≤ n}. If φ = 0

is a proper solution (i.e., if no interval has the form
[0, φe

k)) this is the answer. Otherwise, we process the
endpoints, one at a time. Whenever we process a
starting (resp. ending) endpoint, we increment (resp.
decrement) a counter. (because of the way we have
created our intervals, we never encounter an ending
endpoint before the corresponding starting endpoint).
Now, the first time after processing some φe

k < π
2

that the counter became 0 we remember that angle
as φ1 and the last time that the counter became 0
after processing some π

2 < φe
k < π, we remember the

solution as φ2. Afterwards, we pick the smaller of φ1

and π − φ2 as the overall best solution. �

3 An O(kn log n) restricted orientation algorithm

We now turn to the problem of finding the furthest
separating line with a prespecified orientation, which
we assume to be horizontal. We begin by looking at
where in the vertical range of the point set S the best
separating line should be placed. Just as in the gen-
eral case, the goal of maximizing the width of the
“corridor” dictates that the line must be centered
with respect to the closest points on each side. This
means that only two input points (xi, yi), (xj , yj) with
weights wi, wj (the witnesses of the previous section)
are responsible for determining the location y = ys of
the best separating line s, which must satisfy

(yi − ys)wi = (ys − yj)wj ⇒ ys =
yiwi + yjwj

wi + wj
.

Therefore, the solution to the problem is the in-
tersection of the two lines dw = −wiys + yiwi and
dw = wjys − yjwj , where dw stands for the weighted
distance to the horizontal line at ys. This leads us
to consider a “distance-location” space composed of
such lines, each point in S giving rise to one upward
and one downward sloping line with the absolute val-
ues of the slopes equal to the weight of the point. Let
us suppose that all points in S are located in the first
quadrant, i.e., xi, yi > 0, ∀1 ≤ i ≤ n (we can, in linear
time, find the right translation to move the origin of
the coordinate system). We map each point pi with
the weight wi to the pair of lines in the “distance-
location” plane �i0 = wiyi−wiy and �i1 = −wiyi+wiy
and restrict the domain to the first quadrant. Thus,
for each point we have a linear transformation �i of the
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Figure 3: (a) A set of points pi = (xi, yi), sorted by y-
coordinate, having weights wi such that w2 > w4 > w1 > w3 >
w5, and the best fit segment. (b) The corresponding lines in the
distance-location plane with the slopes wi and the vertical axis
intercepts ci. The highest point on the lower boundary (envelope)
gives the y-coordinate of the furthest separating line.

absolute value metric function on the nonnegative do-
main. Each such wedge �i computes the distance from
pi to the separating line as we hypothetically sweep
it upward from y = 0, and consists of a finite down-
sloping segment (recording the distance for y < yi)
and an infinite up-sloping ray (for y > yi). In this ar-
rangement of 2n lines we are interested in the greatest
achievable minimum distance, i.e., in the point with
the highest vertical coordinate on the lower envelope
of the wedge lines in the distance-location plane. Note
that the optimal vertex cannot be found by solving a
linear program. Next, we need the following result.

Claim 2 The lower envelope of a set of n wedges in
the distance-location plane has complexity O(n).

Proof. If we relabel the wedges and consider them
sorted by slope, w1, . . . , wn, then the wedge with slope
wi, when added to the set of wedges with slopes
w1, . . . , wi−1, only modifies the envelope locally, be-
tween the two immediate neighbors of its vertex on
the x-axis. Thus, its branches contribute two new
edges and three new vertices to the envelope. When
the newly added wedge intersects a single edge of the
old envelope, it may split the old edge in two, creating
one more edge. Therefore, there can be at most 3n−1
edges (the first wedge adds only two) and 3n− 2 ver-
tices on the lower envelope of n wedges. This is some-
what more tight than what could be obtained from
the theory of Davenport-Schinzel sequences.

�

Finding the optimal vertex requires Ω(n log n) time.
This is true because any solution to the problem
of finding the best horizontal separating line takes
Ω(n log n) time, as can be easily seen by reduction
from Max-Gap (see [1]). The argument, of course,
carries over to arbitrary fixed orientations of the sep-
arating line.

In order to find the highest vertex on the lower en-
velope of the wedges we employ a simple divide-and-

conquer “skyline” merge algorithm. It is optimal since
it takes O(n log n) time. Consequently, given k pos-
sible orientations of the separating line, we can find
the best separator in O(kn log n) time.

4 An O(n3 log n) algorithm for general norms

The algorithm of Section 2 can be applied to a much
broader class of metrics. Provided the metric is de-
rived from a norm, and, as a practical matter, pro-
vided the boundaries of the excluded angle intervals
in MSTWP can be calculated in constant time, the al-
gorithm can be applied as written. Simply substitute
distances in the new metric for Euclidean distances.
Among others, the Lp norms, including L∞, satisfy
these conditions.

Below, we provide two claims demonstrating that
the properties of the Euclidean metric enabling the
algorithm to perform correctly are shared by this
broader class of metrics. First, we establish some no-
tation. Let d(p, q) denote the distance between the
points p and q in the norm-derived metric under con-
sideration. Denote the distance between a point p and
a line � in this metric, minx∈�{d(p, x)}, by d(p, �).

Claim 3 Let p1 and p2 be points in the plane with
positive weights w1 and w2. Denote by s the weighted
midpoint of the segment p1p2, i.e., the point satisfying
w1d(p1, s) = w2d(p2, s). A line � separating p1and p2

has equal weighted distance to p1 and p2, w1d(p1, �) =
w2d(p2, �), if and only if � passes through s.

Claim 4 Given a point p and a distance r, there is
an interval [θ1, θ2] such that the line �θ through (0, 0)
and (cos θ, sin θ) passes within r of p if and only if
θ + nπ is in [θ1, θ2] for some integer n.

These claims, together with the stipulation that the
θ1 and θ2 mentioned above be available in constant
time, allow the obnoxious line problem for d(·, ·) to
be reduced to MSTWP and then to LRE.
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On Widest Empty Wedges

R. Cardona ∗ M.A. Lopez † Y. Mayster ‡

Abstract

Let S be a set of points in the plane. We solve the
problem of finding the widest empty wedge through
the interior of the convex hull of S. We consider two
cases: when the apex is required to be an extreme
point of S and when it can lie anywhere (with some
minor restrictions to make the problem well-defined).
The first case is solved in O(n2) time and the second
in O(n2 log n) time. Both cases require linear space.

1 Introduction

The problem of locating an object of a certain type
so as to minimize the distance to a given set of points
has been widely studied in the literature. This prob-
lem is often called “facility location” or “facility rout-
ing,” for the cases when the target object is a point
or a path, respectively. The types of paths considered
for this “minimax” problem include lines, polygonal
paths with or without restriction on the number of
segments, and many others.

The problem of finding a point or a path that lies
as far away as possible from the given set of points
is the “maximin” alternative, and is often called the
“obnoxious” facility location/routing problem.

The obnoxious location problem has been tackled
in several papers [10, 14], with variants involving var-
ious error metrics [13] and constraints on the location
of the obnoxious facility ([9, 12]), such as restricting
it to lie in a given polygonal region [15]. In [11], Cap-
panera et al. tackle the problem of simultaneous facil-
ity location and routing. Different types of obnoxious
facilities such as planes [18] or annuli [8] have also
been considered. The first paper to solve the widest
empty corridor problem (when the obnoxious facility
is a line) was [3]. Using duality, Houle and Maciel
solved the problem in O(n2) time. Subsequent pa-
pers addressed other variants, such as allowing the
corridor to contain up to some k input points [5, 7],
weighted distances [2, 1, 4], L-shaped [6] and 1-corner
corridors [16, 17]. We take up the problem of finding
the widest (obnoxious) empty cone (wedge) through a
set S of points. Let S be a set of points and CH(S) its
convex hull. We shall describe an algorithm to com-
pute the widest empty wedge anchored anywhere on

∗Mathematics, University of Denver, rcardon3@du.edu
†Mathematics, University of Denver, mlopez@du.edu
‡Computer Science, University of Denver, ymayster@du.edu

Figure 1: An illustration of the widest empty cone problem.

the boundary of or outside CH(S) and analyze its run-
ning time. The wedge (or cone) W is a convex open
polygon, formed by the intersection of two-halfplanes.
Therefore, the boundary of the wedge is formed by
two rays that meet in a point q, the apex ofW. In our
problem, it always makes sense to widen the wedge
until each of its boundary rays comes to rest on one
or more input points. Hence, we shall refer to the
boundary rays ofW by the identities of the “support-
ing” points, the “supports” of the wedge. Further,
since the apex of W, for the reasons explained below,
is to be fixed on the boundary of CH(S), we shall
distinguish between the two supports of W based on
the order in which the two supported edges appear
when the wedge is encountered in the counterclock-
wise traversal of ∂CH(S).

2 Finding the widest wedge with an apex on the
boundary or outside of CH(S)

We first describe the algorithm to solve the general
problem with the location for the apex unrestricted.

Before we proceed, we observe that it suffices
to consider cones with apices on the boundary of
∂CH(S). If one assumes that the best wedge W rests
on an apex outside CH(S), then a quick argument
shows that there is a wedge W ′ that has a superior
width and an apex on ∂CH(S), namely rests on the
point q where an edge e of ∂CH(S) intersects the bi-
sector of W. This is shown in Figure 1. Even though
attempting to fix the supports ofW ′ on the same pair
of points that support W may not produce an empty
wedge, any wedge with an apex at q that is maximally
empty is wider than W (we can always find support
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points radially closest from q to the supports for W).
Alternatively, keeping the supports of W ′ parallel to
the supports of W preserves both the angular width
and the emptiness of the wedge. Finally, the case for
the apex ofW situated inside of CH(S) does not merit
consideration either, because it makes the problem
ill-defined. W can be made arbitrarily wide by mov-
ing the apex closer and closer to an edge of CH(S).
Hence, we can restrict our attention exclusively to the
wedges that have apices on ∂CH(S).

First, we tackle the purely geometric problem of
finding the widest wedge with supports on any two
points pi, pj of S with the anchor q allowed to slide
anywhere on a line `. We divide the analysis into two
cases.

Case 1: The line ` and the line that passes through
the segment pipj are parallel. In this case we claim
that the widest wedge is achieved at the intersection
Wij of the line ` and the perpendicular bisector of the
segment pipj . To show that this point produces the
widest wedge, let’s consider the circle Γ that passes
through pi, pj ,Wij . The line ` is tangent to Γ because
the perpendicular bisector of pipj passes through its
center and is perpendicular to `. Now consider any
point q on ` different from Wij . Let q′ be the inter-
section of the segment qpj and the circle Γ. Then
we have that ∠piqpj + ∠qpiq

′ = ∠piq
′pj = ∠piWijpj .

The last equation and the fact that ∠qpiq
′ ≥ 0 imply

that ∠piWijpj ≥ ∠piqpj for any q on `.
Case 2: The line that passes through pi and pj in-

tersects ` in the point mij . We claim that the points
on ` such that the circle defined by pi, pj and one of
these points is tangent to ` produce the widest pos-
sible wedges. The problem of finding these points is
known as one of the special cases of the problem of
Apollonius. The solution to this problem (refer to Fig-

mij WR
ijWL

ij

ΓR

ΓL

pj

pi

q

q′
α

α
`

Figure 2: An illustration of the problem of Apollonius.

ure 2) is well known and shows that there exist two
points that fulfill the conditions. One of the points
will be lexicographically to the left of mij and we will
refer to it as WL

ij (`), while the point lying to the right

of mij we shall call WR
ij (`) (we shall often drop ` from

these names for brevity when it is implied or irrele-
vant). Now we prove that for every q on ` that is to
the left of mij , WL

ij (`) produces the widest wedge.
Consider q to the left of mij . Let ΓL be the circle

that passes through pi, pj and WL
ij . Let q′ be the in-

tersection of the segment qpj and the circle ΓL. Then,
we have that ∠piqpj + ∠qpiq

′ = ∠piq
′pj = ∠piW

L
ijpj .

Again the result is that ∠piW
L
ijpj ≥ ∠piqpj for any q

on ` to the left of mij . The argument for WR
ij and q

being to the right of mij is similar.
To determine the position of points WL

ij and WR
ij

we use the notion of the power of a point. Let’s con-
sider ΓL as defined previously. The power of mij with
respect to ΓL can be calculated using points pi, pj or
using the point of tangency WL

ij . In this case the re-
lation obtained is mijpi · mijpj = (mijW

L
ij )2 which

results in mijW
L
ij = √mijpi ·mijpj . Since the coor-

dinates of mij and the product mijpi ·mijpj are easy
to calculate, so is the distance between mij and WL

ij .
The distance from mij to WR

ij has the same magni-
tude but opposite sign.

Now, let’s define the function Wij(q) =
∠piqpj ,∀q ∈ `. We will consider the point q as
it is moved from left to right. For the interval
q ∈ [−∞,WL

ij ] the function is increasing. Consider
the points q1, q2 both of them to the left of WL

ij

with q2 being the closer to it. Let ΓL1 be the circle
that passes through pi, pj and q2. ΓL1 intersects
the line ` in two points: q2 and another point to
the right of WL

ij . So, the point q1 is outside of ΓL1.
Repeating this geometrical argument, we conclude
that Wij(q1) = ∠piq1pj ≤ ∠piq2pj = Wij(q2).
Therefore, the function increases as we approach
WL

ij from the left. Similar analysis show that Wij(q)
decreases on [WL

ij ,mij ] ∪ [WR
ij ,∞] and increases on

[−∞,WL
ij ] ∪ [mij ,W

R
ij ], with WR

ij and WL
ij being the

local maxima and mij being the absolute minimum.
Now, that we have seen how the problem of finding

the widest wedge can be solved for a single pair of
points and a single line, we are ready to put forth
a description of an algorithm for S and restrict the
anchors to lie anywhere on ∂CH(S). First, we can
see that since ∂CH(S) can have O(n) edges in the
worst case, the number of points WL

ij (`),WR
ij (`) can

be O(n3) (or more precisely, O(kn2), if ∂CH(S) has
k edges). In this setting, we now define WL

ij (`) as
the local maximum of Wij(q), q ∈ ∂CH(S) that is
encountered first along the supporting line ` of an
edge e of ∂CH(S) in the counterclockwise traversal of
∂CH(S) (thus, WR

ij (`) is the relative maximum that
occurs later in such a traversal, and if any of the two
points WL

ij ,W
R
ij are outside of e, it is not considered,

yet the naming is still consistent since the direction
of traversal along ` is well defined).

We shall now see that we do not need to analyze
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more than O(n2) of these points. We are interested
only in those wedges that are empty and thus it makes
sense to start with a valid configuration ofO(n) empty
wedges that can be produced with a radial sort on S
at some vertex v1 of ∂CH(S). For pi, pj non-parallel
to `, we then compute the points WM

ij (`) = WL
ij (`) (or

WM
ij (`) = WR

ij (`) when WL
ij (`) is outside of e, or null

if both values are outside) for all pairs of points pi, pj

adjacent in the radial sort, which provide supports
to this initial set of wedges, for the line ` through
the edge e = (v1, v2). Hence, we retain only those
WM

ij (`)’s that lie on the edge e itself, giving initial
priority to WL

ij since it is the first to be encountered.
For pi, pj that are parallel to `, we simply set WM

ij (`)
to be the point where the perpendicular bisector of
pipj intersects e or if it falls on either side of e, the
vertex of e closest to that point. We further compute
the points mij(`) on e where the changes to the radial
order for currently adjacent pairs pi, pj take place (for
all pi, pj such that pipj is not parallel to `). Below we
shall describe where this information will be stored
for every adjacent pair pi, pj .

We observe that the radial order changes when the
moving apex q becomes collinear with K ≥ 2 input
points, thereby changing the identities of the supports
of the neighboring two wedges (the wedge supported
by pi, pj does not really change except that the order
of the supports is flipped). We make another observa-
tion that for each pair pi, pj , their relative order in the
radial sort as computed from points q along ∂CH(S)
can change exactly twice - when q becomes collinear
with pi, pj at q = mij(`), which happens for exactly
two edges er, es of ∂CH(S), with their supporting lines
`r, `s (q may become collinear with K > 2 points si-
multaneously with the outcome being the reversal of
the order in which the wedges appeared prior to this
event, which can be viewed as a sequence of pairwise
wedge order reversals). Hence, in total, there are no
more than O(n2) such points mij(`r),mij(`s). We,
therefore, for each adjacent pair of points in the radial
order compute when, if at all, they are “scheduled” to
flip along e and put that flip priority (we can repre-
sent mij(`) as a single parameter value along (v1, v2)
if it falls inside, ∞ for those wedges not scheduled to
flip along e) in a heap organized in counterclockwise
order from v1. The locations and values for WM

ij can
be stored in these nodes as additional data.

The crucial observation here is that the only points
where this structure needs to be updated are the
points where the radial order changes and the only
information that needs to be updated at those points
is the information for the flipped wedge and the
two neighboring wedges. Since their identities have
changed, we need to recompute their WM ’s, as well
as determine mij(`) for these newly adjacent pairs (or
put∞ as their flip priority if it is to the left of q) and
re-heapify on each of these two nodes (we also need to

set the flip priority of the wedge causing the change to
∞ and compute WM

ij = WR
ij , if WR

ij is inside of e). Fi-
nally, the way we keep track of the maximum widthW
is by investigating WM

ij (which we precomputed and
stored with each wedge as it comes into existence)
only those wedges that have been involved in an up-
date at a particular mi′j′(`) where the radial order
has changed. Since the wedge width function Wij(q)
is semi-monotone between any pair of points on the
same side of mij(`) (it contains the single extremum
WL or WR on such an interval), the wedges that did
not participate in the update need not be accounted
for at the point of update. Their widths are getting
either uniformly wider or narrower anywhere in the
vicinity of that point, or they could have achieved a
single relative maximum, which has been recorded for
these wedges and will be investigated either at some
point of update when such an edge is affected or at v2
if it survives till the end of e. Hence, at the point of
update we need to considerWM

ij ’s for the three wedges
in question, if these have been recorded for them, or
evaluate them at the point of update itself and main-
tain the best width so far and the identity of that
wedge. We then proceed to move along the edge un-
til v2, at which point we recompute WM

ij (`′) for each
wedge with respect to the new line `′ through the edge
(v2, v3) and produce a new structure. The cost of this
algorithm is O(kn log n) for the initial constructions
at each of the k vertices of ∂CH(S) and O(n2 log n)
amortized time for the O(n2) points of update that
occur along the entire boundary.

This algorithm always finds the optimal wedge.
This is a straightforward consequence of the fact that
every wedge that can exist with an apex on ∂CH(S)
(and we have already shown that only these wedges
need be examined) is, in fact, processed when it comes
into existence and no wedge is ever destroyed without
the algorithm performing the correct procedure for de-
termining the absolute maximum of Wij(q) by inves-
tigating its local maximum WM

ij and evaluting Wij(q)
at the endpoints of the interval of existence (which are
exactly the points of update to the structure). Hence,
the optimal wedge cannot evade detection.

3 Finding the widest wedge with an apex at an
extreme point of S

We now consider the case where the apex of the widest
empty cone is constrained to coincide with a vertex
of CH(S). For clarity, we assume that S is in gen-
eral position (no two input points share the same x
coordinate). We solve this case through recourse to
duality, where a point (a, b) becomes the line ax− b.
Of particular importance is the fact that duality pre-
serves incidence and topological relationships: point
P is below line ` in primal space iff the dual of `, the
point D(`), is below the line D(P ) in dual space.
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We, therefore, convert S to its dual representation,
and look at the resulting arrangement of lines A(S).
The key to the solution is to describe what an arbi-
trary empty cone in the primal space that is anchored
at a vertex v of CH(S) and with supports at pi and
pj looks like in the dual. The apex of the cone, v,
as well as pi and pj , become lines D(v), D(pi), and
D(pj), respectively. The two boundary rays (or really
lines through them) become two points on D(v), call
them D(`i) and D(`j). Hence, since the cone con-
tains all rays through v with slopes between those of
the rays through pi and pj , it becomes a segment on
D(v) in the dual, except in the case when it contains
a vertical ray (in that case, actually, it’s the comple-
ment of the interval of slopes between the supports).
In fact, since we assumed general position for S, the
dual of every point of S intersects D(v). Therefore,
what does it mean for the cone at v to be empty?
If there is a point p inside of the cone apexed at v,
then in the case of that cone not containing a vertical
ray (we shall look at that case later), p ends up being
above the ray through pi and below the one through
pj , or vice versa. That means that in the dual space
the points D(`i) and D(`j) lie on opposite sides of the
line D(p). Therefore, D(p) must intersect the segment
connecting D(`i) with D(`j), which we know lies on
D(v). Hence, an empty cone in primal space becomes
an edge of A(S) in the dual.

For the remaining case, when the empty cone con-
tains a vertical ray, a point inside of the cone is either
below or above both rays. Furthermore, because the
apex is on CH(S) there can only be either points that
are below both rays, or above both rays, but never
points of each kind simultaneously. Therefore, if such
a cone is empty, then all other points of S not lying on
the rays of that cone must be above D(pi) and below
D(pj) or vice versa. This means that the supports
of this cone correspond in the dual to the lines that
produce the intersections on D(v) that are furthest
apart, i.e. the “extreme pair” of points on D(v).

In order to compute all such empty cones, we build
A(S) in O(n2) time with a topological sweep (in order
to use O(n) memory). For every edge encountered,
we can go back to the primal space and in constant
time compare its angular width with the best found
so far. The time to examine the candidate cones is
O(n2), i.e., proportional to the size of the arrange-
ment. Finding the extreme pairs also takes at most
O(n2), since we can in linear time find the extreme
pair for each candidate apex. (This approach actu-
ally allows us to compute the widest empty cone with
an apex in S, which may or may not be extreme.)
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Certifying curve-reconstruction algorithms

Asish Mukhopadhyay Harshit Rathod Chong Wang Bryan St. Amour

Abstract

In this paper we propose a novel method for certify-
ing the quality of a curve-reconstruction algorithm.
We run any reconstruction algorithm, smoothen the
resulting polygonal graph, resample and compare the
“distance” betwen this sample and the input sample.
We compute this distance using the Hausdorff metric
as well as a point pattern-matching algorithm. Exper-
imental results included lend support to our approach.

1 Introduction

The curve reconstruction problem is to reconstruct an
unknown curve C in a given class (for example smooth
and closed, or smooth and open etc.) from a sample
S of n points {p1, p2, p3, . . . , pn} (Fig.1). Given the
practical importance of the problem, it has been thor-
oughly researched. The main thrust of some of the
recent work has been on reconstructing curves whose
correctness are guaranteed provided the sample S sat-
isfies some sampling conditions. We will briefly review
some of this work in the next section.

Figure 1: The original Curve, Sample Points and the
reconstructed Curve

Unfortunately, we cannot verify that a given sam-
ple is an ǫ-sample. In practice we are just given a
sample from some unknown curve on which we must
carry out a reconstruction. In this paper we propose a
novel approach to certifying curve-reconstruction al-
gorithms.

2 Prior work

Many of the ideas surrounding some of the recent De-
launay triangulation-based reconstruction algorithm
originate in the work by Brandt and Algazi [3], who
showed how to obtain the skeleton of an r-regular
shape from the Voronoi diagram of a set of points
sampled along the boundary of that shape. The
parameter r controls two aspects of such a shape:

the curvature at a boundary point never exceeds the
reciprocal of r, and the radius of a maximal disk con-
tained in this shape or its complement never exceeds
r. Moreover, they were able to show that for shapes
in this class the computed skeleton converges to the
exact skeleton as the sampling density increases.

Dominique Atali [2] borrowed this notion of an
r-regular shape and provided a correct reconstruction
for shapes in this class under some guarantee on the
sample. Her ideas were further refined by Amenta,
Bern and Epstein [1], Dey and Kumar [4], among
others.

Guha and Tran [6] proposed a non-Delaunay-based
technique that reconstructs a curve in 2 or 3 di-
mensions from a sample S. Their proposed method
determines monotone pieces of the curve, using the
idea of bounding curvature.

We are not aware of any work exploiting the ideas
we are about to outline.

3 Certification Algorithm

Let A be any curve-reconstruction algorithm. Our
certification algorithm has the following four steps.

Algorithm CERTIFICATION

1. Run a reconstruction algorithm A on the sample
S.

2. Smoothen the resulting polygonal reconstruction
into a set of curves C.

3. Resample the curves in C so that we have a sam-
ple point from each segment of a curve in C, that
corresponds to an edge of the polygonal recon-
struction.

Let S′ be the resampled point set.

4. Match the point sets S and S′.

The closeness of the match in the last step is an
indication of the accuracy of the curve-reconstruction
algorithm.
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3.1 Polygonal reconstruction

There are a number of reconstruction algorithms [4, 1]
that take an ǫ-sample as input and produce a provably
correct reconstruction under suitable restrictions on
the parameter ǫ. In this paper, we use our RNG-
based reconstruction algorithm as A [7].

3.2 Smooth the reconstruction

Let us assume that the polygonal reconstruction,
P , consists of chains and cycles of varying sizes and
isolated vertices. We smoothen P , based on ideas
suggested in [5].

The direction of the tangent to the smooth curve
that passes through a vertex, p, of degree 2 is set to
the direction of the tangent at p to the circumcir-
cle, defined by p and its two neighbours. We fix the
smooth curve piecewise for each edge pq thus.

1. If both p and q are of degree 1, we retain this
edge as part of our smooth curve

2. If p is of degree 1 and q is of degree 2, then the
piece of the smooth curve for this part is the part
of the circumcircle that is used to define the tan-
gent at q (see Fig 2).

p

q r

Figure 2: p is of degree 1 and q is of degree 2

3. If both p and q are of degree 2, we do this. Let up

and qv be incident on p and q respectively. Two
cases arise:

• If u and v are on opposite sides of the sup-
porting line of pq as in Fig. 3 below, the
smooth curve through pq consists of 4 sub-
pieces that are joined together to form a sin-
gle piece. In the subpiece px, the circle sec-
tion satisfies the tangent constraint at p and
the tangent at x (1/4 location of pq) is par-
allel to pq. Similarly, in the subpiece qy, the
circle section satisfies the tangent constraint
at q and the tangent at y (3/4 location of
pq) is parallel to pq. For the two middle
subpieces, w is the midpoint of xy. zc2 is
the perpendicular bisector of xw, while sc3
is the perpendicular bisector of wy.

• If u and v are on the same side of the sup-
porting line of pq as in Fig. 4 below, the

smooth curve through pq consists of 2 sub-
pieces that are joined together to form a sin-
gle piece. Kp is the angle bisector of ∠mpq

and Kq is the angle bisector of ∠nqp. The
tangent b at K is perpendicular to line d.
pc1 is perpendicular to um and qc2 is per-
pendicular to vn.

Figure 3: p and q are of degree 2 and the neighbors

are on opposite sides

Figure 4: p and q are of degree 2 and the neighbors

are on the same side

3.3 Sampling the smoothened curve

We sample the smooth curves in C constructed in the
last section by choosing a random point from each
section of a curve in C that corresponds to an edge in
the polygonal reconstruction.

In the experiments that we report in a subsequent
section, when we consider the output of our RNG-
reconstruction before removal of the non-curve ad-
jacent edges, we add to this set of sample points a
randomly chosen point from each non-curve adjacent
edge.

3.4 Matching the two samples

We discuss two measures for quantifying the “dis-
tance” between S and the sample obtained from C.
We contend that the accuracy of the reconstruction
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algorithm A is reflected by this “distance”.

The first measure is the Hausdorff distance between
the two samples; the second is obtained by using a
point matching algorithm due to Murtagh [8]. The
details are in the next two subsections.

3.5 Hausdorff distance

The Hausdorff distance between two non-empty sub-
sets X and Y of a metric space (M, d) is defined thus:

DH(X, Y ) = max {supx∈X infy∈Y d(x, y),
supy∈Y infx∈Xd(x, y)}

We measured DH(X, Y ) for 10 different samples,
in pixel units, to test our RNG-algorithm [7]. The
entries in the second and third columns of Table 1,
are respectively the values of DH(X, Y ) prior to and
after the removal of non-curve adjacent edges.

Sample without Remove-edges Remove-edges
S1 18.00 13.99
S2 32.38 11.24
S3 27.31 10.62
S4 42.30 11.06
S5 35.60 10.95
S6 20.30 13.97
S7 39.82 11.72
S8 39.61 12.32
S9 29.15 16.28
S10 119.05 13.09

Table 1: Comparing Hausdorff distances

Since the reconstruction can be construed as being
poor prior to the removal of the non curve-adjacent
edges the entries in the third column are smaller than
those in the second.

3.6 Point matching

Our second method of estimating the closeness of the
two samples is based on a a slightly modified version
of Murtagh’s algorithm [8].

We first compute the centroid (x0, y0) of S ∪ S′.
We then sort the two point sets about (x0, y0) by
increasing polar angle with respect to the x-axis.

Next, we join the points of S, consecutive in
sorted order to create a star-polygon and compute
the intersections of this star-polygon with 360 rays,
spaced 10 apart, anchored at the centroid. The dis-
tances of these intersection points from the centroid,
normalized with respect to the maximum distance,

are used to create a 360-element vector, call it V S.
We follow exactly the same steps on the set S′ to
obtain the vector V S′.

In the third step we compute the maximum
angle θmax between two points of S, successive in
sorted order and compute the Euclidean distance
between V S and θmax left and right rotations of V S′,
returning the minimum of these distances.

We ran the above algorithm on the same set of 10
samples we used for the Hausdorff metric. The results
are summarized in Table 2 below.

Sample without Remove-edges Remove-edges
S1 4.39 4.46
S2 0.69 0.30
S3 1.061 1.060
S4 2.92 3.03
S5 3.05 3.02
S6 2.25 2.23
S7 1.47 0.74
S8 0.94 0.86
S9 1.63 0.85
S10 0.76 0.17

Table 2: Comparing outputs of Murtagh’s Algorithm

4 Conclusions

The Hausdorff distance metric seems to work quite
well. However, the same can’t be said of the distance
metric based on Murtagh’s point matching algorithm.
We have not quite understood why the entries in the
third column of Table 2 are not consistently smaller
than the entries in the second column, unlike what we
had expected. We are looking into this problem.

Figure 5: Sample 1, without Remove-edges, with
Remove-edges

Figure 6: Sample 2, without Remove-edges, with
Remove-edges
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Figure 7: Sample 3, without Remove-edges, with
Remove-edges

Figure 8: Sample 4, without Remove-edges, with
Remove-edges

Figure 9: Sample 5, without Remove-edges, with
Remove-edges

Figure 10: Sample 6, without Remove-edges, with
Remove-edges

Figure 11: Sample 7, without Remove-edges, with
Remove-edges

Figure 12: Sample 8, without Remove-edges, with
Remove-edges

Figure 13: Sample 9, without Remove-edges, with
Remove-edges

Figure 14: Sample 10, without Remove-edges, with
Remove-edges
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Circles with Independent and Dependent Uncertainties

Yonatan Myers and Leo Joskowicz ∗

Abstract

Classical computational geometry algorithms handle
geometric constructs whose shapes and locations are
exact. However, many real-world applications require
modeling and computing with geometric uncertain-
ties, which are often coupled and mutually dependent.
We have developed the Linear Parametric Geomet-
ric Uncertainty Model (LPGUM), a general and com-
putationally efficient worst-case first-order linear ap-
proximation of geometric uncertainty that supports
dependencies among uncertainties. Previous papers
describe LPGUM models for points and lines, and
algorithms for efficiently solving relative positioning
and point distance problems. In this paper we present
two LPGUM models of a circle defined by an un-
certain center point and an uncertain vector, and
by three uncertain points. We describe the geomet-
ric properties of their uncertainty zone envelopes and
present efficient algorithms to compute them.

1 Introduction

Geometric uncertainty is ubiquitous in mechanical
CAD/CAM, robotics, and many other fields. Sens-
ing, measuring, and manufacturing processes are in-
trinsically imprecise, thereby introducing error and
uncertainty. In contrast, the corresponding geomet-
ric models are usually exact and do not account for
these inaccuracies. Modeling and computing geomet-
ric variability is thus of great practical importance.

Numerous frameworks have been proposed for mod-
eling and computing with geometric imprecision [1, 3,
8, 9]. A common approach is to use simple geometric
entities, such as rectangles [10, 11], circles [2, 5], or
convex polygons [4] to bound point coordinates varia-
tions. Efficient algorithms for common problems, such
as finding the smallest/largest enclosing circle/convex
hull of a set of independent uncertain points, have
been developed [9]. The key drawback of these mod-
els is that they cannot model mutually dependent un-
certainties, which are very common in practice [14].
Assuming independent variations or errors often over-
estimates the actual geometric uncertainty.

Geometric uncertainty has also been studied in an
algebraic framework. Interval arithmetic shows how

∗School of Engineering and Computer Science, The
Hebrew University of Jerusalem, ISRAEL. Emails:
yoni m@cs.huji.ac.il, josko@cs.huji.ac.il

to represent and propagate real-valued numbers un-
certainty intervals [15]. Since dependencies cannot be
modeled, this often yields overestimated uncertainty
intervals. Affine arithmetic [6] improves interval es-
timation by tracking round-off and truncation errors,
and allows for quantities interdependence. However,
it does not provide an explicit description of the geo-
metric uncertainty. Other techniques such as robust,
finite precision, and epsilon geometry are only appli-
cable for very small variations [7, 17].

We have introduced the Linear Parametric Geo-
metric Uncertainty Model (LPGUM) [8], a general,
expressive, and computationally efficient worst-case
first-order linear approximation of geometric uncer-
tainty that allows for coupling between uncertain-
ties. Geometric objects are defined by joint parame-
ters with uncertainty intervals. The uncertainty zones
around nominal objects are defined by uncertainty
sensitivity matrices whose entries indicate their sen-
sitivity to parameters variations. We have developed
efficient algorithms for computing uncertainty zones
of points and lines [8], for relative positioning queries
[12], and for point distance problems [13].

In this paper we introduce two LPGUM models of
a circle defined by an uncertain center point and an
uncertain vector, and by three uncertain points. We
describe the geometric properties of their uncertainty
zone envelopes and present efficient algorithms to
compute them for the independent/dependent cases.

2 The Linear Parametric Geometric Uncertainty
Model

A parametric uncertainty model (q, q̄, ∆) is defined
as follows. Let q = [q1, q2, ..., qk]T be a vector of k

parameters over an uncertainty domain ∆. Each pa-
rameter qj can take a value from an uncertainty in-
terval ∆j = [q−j , q+

j ], (∆j ⊂ R) and is associated with
a nominal value q̄i ∈ R. The parameters’ uncertainty
domain ∆ = ∆1×∆2 . . .×∆k is the product of the pa-
rameters uncertainty intervals. The nominal param-
eters vector q̄ = (q̄1, ..., q̄k) is the parameters vector
values with no uncertainty. WLOG, we assume that
the uncertainty intervals are zero-centered symmetric,
i.e., −q−j = q+

j (asymmetric domains are transformed
by adjusting the nominal parameter value and inter-
val).

An uncertain dimension d(q) is defined by a nomi-
nal value d̄ and a k-dimensional uncertainty sensitiv-
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ity vector Ad. Entry (Ad)i is a constant that quan-
tifies the sensitivity of the dimension to parameter
qi. It is zero when the dimension is independent
of parameter qi. The LPGUM of dimension d(q) is
d(q) = d̄ + Adq. Its uncertainty zone is the set of all
dimension values for instances of parameters vector
q, Z(d) =

{
d | d = d̄ + Adq, q ∈ ∆

}
. It is a closed

interval whose bounds are computed in optimal O(k).
An uncertain point v(q) is defined by a nominal lo-

cation v̄ and a 2×k uncertainty sensitivity matrix Av.
Entry (Av)i,j is a constant that quantifies the sensi-
tivity of coordinate i to parameter qj (i = 1 for x,
i = 2 for y). It is zero when coordinate i is indepen-
dent of parameter qj ; When the entire column (Av)j

is zero, the point v(q) is independent of parameter qj .
The LPGUM of point v(q) is v(q) = v̄ + Avq.

Its uncertainty zone is the set of all point loca-
tions for instances of parameters vector q, Z(v) =
{v | v = v̄ + Avq, q ∈ ∆}. It is a zonotope (a cen-
trally symmetric convex polygon) with at most 2k

vertices (e.g., the center point in Fig. 1) [14]. LPGUM
vectors are defined identically.

The uncertainty zone of point v(q) is the feasible
region of the linear programming problem:

maxq

〈
A⊤

v b, q
〉

subject to q ∈ ∆ (1)

where 〈·, ·〉 is the vector inner product. The k-
dimensional vector that maximizes Eq. (1) in direc-
tion b, called the sign vector, is formed by the maxi-
mum of each parameter qi: “+” for q+

i , “−” for q−i .
The point uncertainty envelope vertices are com-

puted from its cone diagram. Each sensitivity matrix
column vector induces a line normal to it. The lines
all intersect at the origin and are sorted in increasing
angle order. They form a planar subdivision whose
cells are cones, each bound by the two lines defined by
their corresponding column vectors. For every cone,
we find the parameter value that changes when cross-
ing the line to the adjacent cone, from q+

i to q−i or
vice-versa, and compute the corresponding envelope
vertex. The resulting zonotope is thus computed in
optimal O(k log k) time and O(k) space [14].

3 LPGUM circle definitions

A circle can be defined in one of four ways:

1. Center-radius: a center point o(q) and radius r(q)

2. Center-point: a center point o(q) and a circum-
ference point u(q)

3. Antipodal-points: two antipodal circumference
points u(q), v(q)

4. Three-points: three circumference points u(q),
v(q), w(q)

where r(q) is an LPGUM dimension and o(q),u(q),
v(q) and w(q) are LPGUM points over parametric un-
certainty model (q, q̄, ∆). Since they are defined with

circle uncertainty
zone

circle inner
envelope

circle outer
envelope

uncertain
center, o(q)

nominal
circle

circle
instances

center
uncertainty zone

center
envelope

nominal
center

nominal
radius r(q̄)

radius
instances

Figure 1: Illustration of an uncertain circle defined
by an uncertain center point and an uncertain radius.
Their uncertainty zones are shown in grey.

the same parametric uncertainty model, the parame-
ters uncertainties can be independent or dependent,
based on the sensitivity matrices entries.

In the nominal case (q = 0), all the above repre-
sentations are equivalent. In the LPGUM model, it
can be shown that the first three representations are
equivalent, while the last one is different.

Definition 1: An uncertain center-vector circle c(q)
is defined by a nominal center point ō, a nominal ra-
dius vector v̄, and their uncertainty sensitivity ma-
trices, Ao and Av over parametric uncertainty model
(q, q̄, ∆). The circle center is o(q) = v̄ + Aoq and the
radius vector is v(q) = v̄ + Avq. The center-vector
LPGUM circle is c(q) = o(q) + R(θ)v(q), where

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]

and θ is an auxiliary parameter. Its uncertainty zone
is the set of all circles c(q) for instances of q:

Z(c) = {c | c = ō + Aoq + R(θ)(v̄ + Avq),

q ∈ ∆, θ ∈ [0, 2π]} (2)

Definition 2: An uncertain three-point circle c(q) is
defined by three nominal points ū, v̄, w̄ and their re-
spective uncertainty sensitivity matrices Au, Av, Aw

over parametric uncertainty model (q, q̄, ∆). The
points are u(q) = ū + Auq, v(q) = v̄ + Avq, and
w(q) = w̄ + Awq. The three-point LPGUM circle
c(q) is computed by the well known three-point circle
method circle(u(q), v(q), w(q)) for a given instance of
parameter vector q. Its uncertainty zone is the set of
all circles c(q) for instances of parameter vector q:

Z(c) = {c | c = circle(u(q), v(q), w(q)), q ∈ ∆} (3)

4 Circle uncertainty zone computation

We distinguish four cases for the LPGUM circle un-
certainty zone computation: center-vector and three-
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point LPGUM circle, with independent or dependent
uncertainties. Fig. 1 shows a circle uncertainty zone.

4.1 Center-vector LPGUM circle

The center-vector LPGUM circle uncertainty zone is
an annulus-like area enclosed by an outer envelope
and a possibly empty inner envelope, each formed by
straight line segments and circular arcs. The outer
envelope is the union of all circle instances; the inner
envelope is the intersection of all circle instances, and
is thus convex. The inner and outer envelopes have
at most O(k2) segments (possibly not a tight bound).

1. Independent uncertainties

When the center point and vector uncertainties are
independent, the circle uncertainty zone is computed
from the center point zonotope and the annulus whose
center is the circle origin. The annulus a is de-
fined by the minimum and maximum circle radiuses,
rmin = minq‖v(q)‖ and rmax = maxq‖v(q)‖ for q ∈ ∆.
The outer and inner envelopes are the Minkowski sum
of the zonotope o(q), computed in O(k log k), and the
annulus a, computed in O(k). The outer envelope is
computed in O(k) time by offseting the edges of o(q)
outwards by rmax and connecting the resulting edge
segments with arcs of radius rmax centered at vertices
of o(q). The inner envelope is the boundary of the in-
tersection of k discs of radius rmin centered at the
vertices of o(q). When the diameter of o(q) is greater
than 2rmin the inner envelope is empty. Otherwise, it
contains ō and is computed by intersecting the circles
in O(k log2 k) [16], which dominates the computation
time complexity.

2. Dependent uncertainties

When the center point and vector are dependent, we
use a sweep algorithm similar to that of the LPGUM
line uncertainty envelope computation [12]. We per-
form an angular sweep of θ starting at θ = 0 in Eq. (2).
Each θ value yields a zonotope cθ(q). As θ changes,
cθ(q) traces out the circle envelope. The values of θ

for which the topology of the cone diagram of cθ(q)
changes correspond to events. Starting from the ini-
tial zonotope c0(q), we sweep the zonotope from its
previous location to the current one and compute new
events. When the event queue is empty, we sweep the
last zonotope to the initial one, c0(q). and combine
all the swept parts to obtain the envelope.

There are two types of events:

1. Switch events occur at values of θ where two lines
of the cone diagram of cθ(q) coincide. These events
correspond to the the values of θ where two columns
of cθ(q) are linearly dependent:∣∣∣∣

(Ao)ix + (R(θ)Av)ix (Ao)iy + (R(θ)Av)iy

(Ao)jx + (R(θ)Av)jx (Ao)jy + (R(θ)Av)jy

∣∣∣∣ = 0

that is, when a cos(θ) + b sin(θ) + c = 0 where

a =

∣∣∣∣
(Av)ix (Av)iy

(Ao)jx (Ao)jy

∣∣∣∣ +

∣∣∣∣
(Ao)ix (Ao)iy

(Av)jx (Av)jy

∣∣∣∣

b = (Ao)i · (Av)j − (Ao)j · (Av)i

c =

∣∣∣∣
(Ao)ix (Ao)iy

(Ao)jx (Ao)jy

∣∣∣∣ +

∣∣∣∣
(Av)ix (Av)iy

(Av)jx (Av)jy

∣∣∣∣

This trigonometric equation in one unknown can have
zero, one, or two solutions. When a = b = c = 0, there
are infinitely many solutions, but no event can occur,
as the is no change in the cone diagram topology.

2. Flip events occur at values of θ for which column
vector (Aθ)i is zero, that is, when ‖(Ao)i‖ = ‖(Av)i‖.
In this case, (θ = π − α) where α ∈ (−π, π) is the
angle between (Ao)i and (Av)i.

To move the zonotope from one event to the next,
we compute the circle c(q) for every point on the
boundary of the first zonotope and connect the re-
sulting zonotopes with arc segments on the circle be-
tween the event angles. To compute this zonotope
edge sweep, we compute the circle segments only for
edge vertices. When the tangent to the two circles in
the interval is valid, it is added.

Next, we define the inner and outer boundary of the
swept area. If the swept area contains a tangent to
the circular segments, the outer part consists of the
tangent segment and the two arcs leading from the
end of the tangent to the end of the zonotopes edges.
The rest of the boundary is the inner part. If there
is no tangent, the outer part is the arc that bounds
the area so that the swept area is on the inner side
of the arc and the inner part is the other arc. The
outer and inner parts of the swept areas are collected
in separate sets. When no more events are left, the
outer and inner envelopes are computed from their
corresponding sets.

We show that the circle uncertainty zone enve-
lope complexity is O(k2) as follows. The outer enve-
lope is the unbounded cell of an arrangement of arcs
and line segments (elements). Each event can add
at most three elements to the arrangement. Since
there are at most k flip events and 2k2 switch events,
the arrangement has O(k2) elements, and any pair
of elements can intersect at most twice. The cell
complexity in this arrangement can be shown to be
O(λ4(n)) = O(n · 2α(n)) where λs(n) is the length of
the Davenport-Schinzel sequence DS(n, s) [16]. Thus,

the envelopes complexity is O(k2 · 2α(k2
)) ≈ O(k2).

The algorithm time complexity is dominated by the
computation of the outer and inner cells of two ar-
rangements. As there are O(k2) events and every
zonotope edge is swept at every event, each of the
sets has at most O(k3) arcs. The arrangement can
be computed with a standard sweepline algorithm in
O(k6 log k). When a point in the interior of each
cell to be computed is known, the time is reduced to
O(λ4(n) log2(n)). Since n = k3, O(λ4(k

3) log2(k3)) ≈
O(k3 log2(k3)) = O(k3 log2 k).
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inner / outer
envelope

uncertainty
zone

Figure 2: Uncertainty zone of a three-point LPGUM
circle for independent uncertainties. Circles support-
ing the outer envelope are solid; circles supporting the
inner envelope are dashed. LPGUM points are dark
gray; the circle’s uncertainty zone is light gray.

4.2 Three-point LPGUM circle

The three-point LPGUM circle uncertainty zone has
the same annulus-like structure of the center-vector
circle: the outer envelope is the union of all circle
instances; the inner envelope is the intersection of all
circle instances, and is thus convex. However, they
are different, as the center point of the three-point
circle is not necessarily an LPGUM point.

We describe next the properties of the three-point
LPGUM circle uncertainty zone and its computation
for independent uncertainties. Let u(q), v(q), w(q) be
three independent LPGUM points such that for ev-
ery q ∈ ∆, w(q) lies to the right of the directed line
through u(q), v(q). The circle’s outer and inner en-
velopes each consist of three arcs (Figure 2). To com-
pute the envelopes, we find the circles supporting the
arcs. For the outer envelope, we find three circles each
tangent to the three LPGUM points. Every circle has
two of the points in its interior and one point to its
exterior. The outer envelope is the outer envelope
of the arrangement of the three circles. To compute
the inner envelope, we find three circles tangent to
the LPGUM points but, now two points are exterior
to the circle and one is interior. The inner envelope
is the boundary of the area at the intersection of the
three circles. Both envelopes can be computed in O(k)
optimal time.

The three-point LPGUM circle with dependent un-
certainties is currently an open problem.

5 Conclusion

We have presented a parametric, first-order model of
the geometric uncertainty of a circle defined by a point
and a vector, and by three points in the plane. We
derived the properties of the circle uncertainty zones
and developed efficient algorithms to compute them
for independent and dependent uncertainties. These
new circle results add to the expressiveness and gener-
ality of LPGUM and provide a model for the accurate
estimation of circle uncertainties.

Future work includes addressing the open problems

in this paper, tightening the time and geometric com-
plexity bounds, and exploring other problems such as
LPGUM convex hulls and Voronoi diagrams.
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Partial Visibility Polygon with Semi-Transparent Objects

Mostafa Nouri Baygi∗ Mohammad Ghodsi†

Abstract

In this paper, we study partial visibility (or p-
visibility) of a scene containing semi-transparent (con-
vex) obstacles through which the light can pass partly.
We define the p-visibility polygon and give algorithms
to compute it for any query point. Then, we use the
same technique to update the p-visibility polygon of
a moving point, and to compute the maximum num-
ber of intersected objects by a ray emanating from a
query point.

1 Introduction

We study the concept of partial visibility (or p-
visibility) and present an algorithm to compute p-
visibility polygon for a query point. Roughly speak-
ing, the p-visibility polygon is the set of visible re-
gions around a viewer when there are some semi-
transparent objects in the scene.

P-Visibility can be applicable in many areas. For
example, as Fulek et al. [2] mentioned, according to a
model of wireless positioning service patented by Liu
and Hung [3], the signal sent by a sensor can penetrate
only at most a certain number, k, of obstacles and
will not be received by the base station if there are
more than k obstacles between the sensor and the
base station.

Fulek et al. [2] studied a problem related to p-
visibility. For a set S of n objects in the plane, and
a point p, they defined τ(p, S) as the maximum num-
ber of objects that are intersected by all the rays em-
anated from p. Likewise, they defined τ(S) as the
minimum value of τ(p, S) over all points p. Their
problem is to provide an upper and lower bound for
the value of τ(n), which is the maximum of τ(S) over
all sets S of n objects. They also showed how τ(S)
can be computed in O(n4 log n).

In addition to algorithms for computing and updat-
ing the p-visibility polygon, we show how to compute
τ(q) for a query point q. Briefly, we give the following
results:

1. In the presence of some semi-transparent objects
with total complexity of n, we compute any de-
sired p-visibility polygon of a query point, in

∗Department of Computer Engineering, Sharif University of
Technology, nourybay@ce.sharif.edu

†Department of Computer Engineering, Sharif University of
Technology, ghodsi@sharif.edu

O(n2 log(
√

m/n)/
√

m + |PVP(q)|) query time,
using O(m) space. Here |PVP(q)| is the total
size of the p-visibility polygons.

2. For a moving point, we maintain the p-visibility
polygon of the point, in O(n2 log(

√
m/n)/

√
m)

time for each change, and detect the first place
that a change occurred in the same time.

3. For a query point q, we compute τ(q) in
O(n2 log(

√
m/n)/

√
m).

In the above formulae, n2 ≤ m ≤ n4

2 Preliminaries

Assume that a set S includes l disjoint semi-
transparent convex polygons, called objects, in the
plane with total complexity of n. We need to com-
pute the visible portion of the plane from an observer
point. This problem is similar to computing the visi-
bility polygon of a point.

Since the objects are semi-transparent, the light
can partially pass through them, i.e., its intensity de-
grades when the light passes through an object. As-
sume that the light intensity only decreases when it
enters an object. This way, we have different areas
in the plane, each is visible with a different intensity.
The problem is to compute these regions.

With the notion of p-visibility, for a point q and a
parameter k, we define k-PVP(q) as the set of points
in the plane whose connecting line segments to q in-
tersects at most k objects. Obviously, k-PVP(q) con-
tains j-PVP(q) for j < k. For k ≥ τ(S), k-PVP(q)
consists of all the plane and 0-PVP(q) is the well-
known visibility polygon of q. The main problem in
this paper is to compute k-PVP(q).

Let rq be a ray emanating from q and let τ(rq)
be the set of objects intersected by rq. For each q,
we define τ(q) = maxrq τ(rq). This is the same as
τ(q, S) proposed by Fulek et al. [2]. We can define
τ(q) in another way: τ(q) is the smallest k, such that
k-PVP(q) is all the plane.

3 P-visibility polygon computation

In this section, we present an algorithm that computes
k-PVP(q). In this problem, we have a set S of con-
vex polygons, with total complexity of O(n), called
objects, and a query point q. We can preprocess S so
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Figure 1: A tangent shows the place where the p-
visibility changes occurs.

that for a given q k-PVP(q) can be efficiently com-
puted for any desired value of k.

We first describe the algorithm that uses O(n4)
space, and then extend it to the general case with
the space–query-time tradeoff.

3.1 Logarithmic query time

In order to compute k-PVP(q) for a query point, we
partition the plane into regions that all the points in
each region have similar k-PVP(q). The similarity
is defined by the order of visibility of visible edges
of the objects in S from observer. We denote this or-
dered list of visible edges by k-PVP(q). The following
lemma helps identify the desired partition.

Lemma 1 For a point q in the plane, k-PVP(q) for
any k changes only if q moves across the tangent line
of a pair of edges.

Proof. Let q1, q2 be two points in the same cell in
the arrangement, A, of tangent lines of all pairs of
the edges of the objects and k-PVP(q1), k-PVP(q2)
differ, for some fixed value of k. Consider moving
point q from q1 towards q2. When q moves, k-PVP(q)
changes until it equals to k-PVP(q2). Let q0 be the
first point at which k-PVP(q) changes. This change is
in the form of removing a visible edge from or adding
a new previously invisible edge to the list. Assume
that it is in the latter form, so the object Z is added
between X, Y . This means that before we reach q0,
the number of objects between q and any point on C
was at least k + 1, but in q0, the number of objects
between q to a point on C is at most k. This event
happens only when a segment previously blocked C
and then, in q0, it becomes visible. As it can be seen in
Figure 1, q0 is on the tangent line of two segments (B,
C in this example), which contradicts the assumption
that q1, q2 are in the same cell. Similarly, the other
case leads to a contradiction. ¤

As above lemma shows, we need to construct the
arrangement A and compute k-PVP(p) for a point
p in each cell. By this approach we can prove the
following theorem.

Theorem 2 Given a point q, we can compute k-
PVP(q) for 0 ≤ k ≤ τ(q, S), in O(log n + |k-
PVP(q)| query time, while using O(τ(S)n4) space and
O(τ(S)n4 log n) preprocessing time.

Proof. We construct the arrangement A and obtain
a tour visiting all the cells of A, such that each edge of
A is visited at most twice, by a depth-first traversal
of the cells of A. Then, we select an arbitrary cell
and compute k-PVP for all 0 ≤ k ≤ τ(S) for an
arbitrary point in that cell and store them, in a set of
persistent red-black tree [5], each element of the set
for one value of k. Since k-PVP is an ordered list
of objects, it can be inserted in a binary search tree
without any ambiguity. Afterwards, we move to the
next cell in the tour and compute new lists of k-PVP
in that cell. k-PVP in adjacent cells of A differ in
1 position, so we can store the new k-PVP’s in the
persistent data structures easily in O(τ(S) log n).

In the query time, for a point q, we identify the
cell in A that q lies in, and search in the persistent
red-black tree for related k-PVP. We can report this
data structure as the ordered list of visible objects,
or compute k-PVP(q) precisely in the order of size of
k-PVP(q).

The construction of A, which consists of O(n2)
lines, takes O(n4) and in the same time we can cre-
ate a tour. Computing k-PVP for 0 ≤ k ≤ τ(S)
in the first cell and storing them in the data struc-
ture takes O(τ(S)n log n) time. Computing k-PVP
for other cells in A each takes O(τ(S) log n) and to-
tally O(τ(S)n4 log n). We should preprocess A for a
point location data structure [1] which can be done in
O(n4 log n). In the query time, a point location and a
search in the persistent data structure is required to
find the stored k-PVP(q), all of which takes O(log n).
We can construct the actual k-PVP(q) based on k-
PVP(q). ¤

In above theorem, we assume that k is a parameter
which is specified at query time, so we compute all the
different p-visibility polygons and stored them in the
persistent data structure. But if k is determined in the
preprocessing step, we can reduce the memory space
and preprocessing time considerably. In this case, we
only compute p-visibility polygon for that specified
k. This way the memory space (resp. preprocessing
time) is reduced to O(n4) (resp. to O(n4 log n)).

In the above result, we can compute k-PVP(q) for
several values of k, without any change in the query
time (except for reporting). This is because the search
in the persistent data structure should be done only
once and the associated lists can be returned easily.

Here, we provide two notes about how to optimize
the arrangement A. First, when we draw the line
through a1b1 as a tangent for segments A = (a1, a2)
and B = (b1, b2), the portion between a1 and b1 can be
removed without any problem. This is because when
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Figure 2: Optimization of the arrangement by reduc-
ing tangent lines. In this example, kmax = 3

q crosses from this part of the tangent, no changes oc-
curs in the p-visibility polygons. Second, if the max-
imum value of k is determined in the preprocessing
step, kmax, and we want to draw the tangent line
through a1b1 as before, we can continue the tangent
from b1 as long as the points on it see at most k ob-
jects before a1. The same is true for the other portion
of the tangent (see Figure 2).

3.2 Space–query-time tradeoff

In this section, we show how to modify the previous
method, and reduce the preprocessing space in the
expense of an increase in the query time. The follow-
ing lemma which is a modified version of the cutting
theorem, in [4] is the main tool that helps achieve this.

Lemma 3 Given a set of n lines in the plane, we can
partition the plane into O(r2) triangles, for 1 ≤ r ≤ n,
such that each triangle is intersected by O(n/r) lines
and any arbitrary new line intersects at most O(r)
triangles.

Theorem 4 For any query point q, we can com-
pute k-PVP(q) for all 0 ≤ k ≤ τ(S), in
O(n2 log(

√
m/n)/

√
m) query time, while using

O(τ(S)m) space and O(τ(S)m log(
√

m/n)) prepro-
cessing time, for an arbitrary n2 ≤ m ≤ n4.

Proof. The set, P , of the vertices of the objects con-
sists of O(n) points and in the dual plane, this cor-
responds to a set of O(n) lines, denoted by P ∗. We
start by constructing a cutting of size O(r2) for this
set, such that each triangle of the cutting intersects
O(n/r) lines of P ∗.

For a query point q in the primal plane, its dual
line q∗ intersects O(r) triangles, and the intersection
of q∗ with these triangles, in the primal plane, parti-
tions the plane into O(r) co-centered disjoint double
wedges, totally covering all the plane. Therefore, it
is enough to compute the k-PVP(q) in each double

Figure 3: (a) In the dual plane, the triangle t, dual
of t0, is intersected by q∗. The dual of some edges of
objects are also shown. (b) The arrangement of t0, q
and edges of objects in the primal plane.

wedge, or equivalently, in each triangle intersected by
q∗.

In Figure 3(a), the triangle t in the dual plane is
shown which is intersected by q∗. The triangle t is
also intersected by O(n/r) lines which are dual to the
end-points of O(n/r) edges of objects in S. We call
these segments the closed segments of t, denoted by
the set CSt. At least the dual of one end-point of
each segment in CSt intersects t. There are also some
segments in O which are not in CSt, but may appear
in k-PVP(q), for example s8 in Figure 3. We call
these segments the open segments of t, denoted by
the set OSt. OSt consists of all the segments whose
dual double wedge contains t completely.

The triangle t0, whose dual is t, as in Figure 3(b),
partitions the plane into three regions. A region,
which is brighter in the figure, is the region that q
and at least one end-point of each segment of CSt lie
(for example segments s6 and s7). In contrast, we
have two regions, which is shaded in the figure, and
contains at most one end-point of each segment of
CSt and both end-points of the other segments of O.
If an end-point of a segment oi lies in a shaded region
and the other end-point in the other shaded region,
oi belongs to OSt (for example segments s3 and s5).

It is not hard to see that the segments in OSt par-
tition the bright region, the region which contains q,
into |OSt|+1 subregions. Let Rt = {r1

t , . . . , r
|OSt|+1
t }

denote the set of subregions. In each subregion rk
t , a

set of segments CSk
t ⊂ CSt is contained.

Since the view around q is bounded to wt, we
can imagine each segment in OSt as an infinite
line. Therefore, to identify the cells with uniform k-
PVP(q), we only construct the arrangement of tan-
gents for each pair of segments in CSt and not OSt.
We only consider the objects of segments in OSt as
obstacles.

With this approach, we can use the previous
method with logarithmic time in each double wedge.
For each triangle t, we spend O(τ(S)(n/r)4) space
and O(τ(S)(n/r)4 log(n/r)) preprocessing time.
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To complete the argument, we should say how to
compute CSt and OSt. CSt of complexity O(n/r),
which is already computed during the construction of
the cuttingR, is the set of segments with an end-point
whose dual intersects t.

It is also notable that, we cannot compute OSt for
each triangle independently, since the size of OSt may
be large, compared to O((n/r)4), which we can spend
for each triangle. The elements of OSt for each t, is
very similar to OSt′ of an adjacent triangle t′. The
differences are in the elements of CSt′ and CSt, that
is some segments in CSt may be removed from OSt′

and some segments in CSt′ may be added to OSt′ to
produce OSt.

At query time, we find the cell in t∗ that con-
tains q by a point location and return the associ-
ated k-PVP in O(log(n/r)) time for each triangle t
that is intersected by q∗. We can easily compute k-
PVP(q) bounded by wt in the same time. Summing
up these amounts for O(r) triangles, we can compute
k-PVP(q) in O(r log(n/r)) time.

In summary, the total preprocessing time and space
are O(τ(S)n4 log(n/r)/r2) and O(τ(S)n4/r2) respec-
tively and the query time is O(r log(n/r)). If the used
space is denoted by m we can prove the claim.

¤

4 Applications

In this section, we apply the techniques used in the
previous section to two related problems and give so-
lutions for them.

4.1 Maximum intersecting objects

Theorem 5 For any query point q we can compute
τ(q) in O(n2 log(

√
m/n)/

√
m), using O(m) space and

O(O(m log(
√

m/n))) preprocessing time, for n2 ≤
m ≤ n4

Proof. Consider the cutting we used before in the
dual plane for the vertices of the objects. For each
point q, the intersection of q′ and triangle t, in the pri-
mal plane corresponds to the double wedge wt. Here
we should change the data structures, so that instead
of storing the actual k-PVP(q) in each cell of the ar-
rangements, we only store the maximum value of ob-
jects, that are intersected by any ray emanated from
any point inside wt, denoted by τt(q). To compute
τ(q), we should compute τt(q), for all triangles t that
are intersected by q′, and choose the maximum value
among them, which can be done in the same query
time as before. ¤

4.2 P-visibility polygon of a moving point

Theorem 6 For a moving point q in the plane, which
moves on a straight line, we can detect the first place

where k-PVP(q) changes for some k and update k-

PVP(q) in O( n2√
m

(log
√

m
n )). The preprocessing time

and space are respectively O(τ(S)m log(
√

m/n)) and
O(τ(S)m).

Proof. Assume we can use O(τ(S)n4) space for com-
puting k-PVP(q). In this case, q is a point which lies
in a cell c in the arrangement of tangent lines. c is a
convex polygon, therefore for a straight line, we can
identify in O(log n), from which edge of c, q leaves
it. Once q leaves c, k-PVP(q) may change for some
value of k. We can easily detect this event and update
k-PVP(q) based on the edge q crosses.

For the case that we use tradeoff, consider line q∗ in
the dual plane. When q moves on a straight line, q∗

rotates around a fixed center. In each triangle, we can
easily detect the first change in the visibility similar
to the previous case that was described. Here we need
to choose the first place from these O(r) places that
changes occurred. All of these, can be accomplished
in O(r log(n/r)). Substituting r with n2/

√
m proves

the theorem. ¤

5 Conclusion

In this paper, we introduced the p-visibility concept
and presented an algorithm that computes p-visibility
polygon of a query point in logarithmic time. We then
extended the algorithm to reduce the space usage, but
in the expense of an increase in the query time.

Finally, we used the method to solve two related
problems: updating p-visibility polygon of a moving
point and computing the maximum number of objects
that are intersected by a ray emanated from a query
point. For the future works, we intend to solve this
problem: for a set of objects S, find a point p such
that τ(S) = τ(p) in optimal time.

References

[1] B. Chazelle. Cutting hyperplanes for divide-and-
conquer. Discrete Comput. Geometry, 9:145–158,
1993.

[2] R. Fulek, A. F. Holmsen, and J. Pach. Intersect-
ing convex sets by rays. Discrete Comput. Geometry,
42(3):343–358, 2009.

[3] C.-T. Liu and T.-Y. Hung. Method of build-
ing a locating service for a wireless network en-
vironment. patent no. 7203504, April 2007.
www.freepatentsonline.com/7203504.html.

[4] M. Nouri and M. Ghodsi. Space–query-time trade-
off for computing the visibility polygon. In FAW ’09,
pages 120–131. Springer-Verlag, 2009.

[5] N. Sarnak and R. E. Tarjan. Planar point location us-
ing persistent search trees. Commun. ACM, 29(7):669–
679, 1986.

236



EuroCG 2010, Dortmund, Germany, March 22–24, 2010

Computing the visibility area between two simple polygons in linear time

Elmar Langetepe∗ Rainer Penninger∗ Jan Tulke†

Abstract

We consider a visibility problem for two non-
intersecting open or closed simple polygonal chains P
and Q in the plane. The visibility area between P
and Q is the union of all line segments pq where p
lies on the boundary of P and q on the boundary of
Q and pq does neither intersect with P nor with Q.
We present an optimal linear time algorithm for com-
puting this area. The given work generalizes known
visibility results and has an application in computer
aided construction management.

Keywords: Visibility in the plane, polygonal
chains, optimal algorithm

1 Introduction

Computing the visibility among geometric objects is
one of the most natural subjects in the field of com-
putational geometry. Furthermore, efficient solutions
of visibility problems have application in many fields
of computer science such as robotics [8], computer
graphics [3] and computer vision [4]. For an overview
of efficient solutions for visibility problems in the
plane one can consider the survey of Asano et al.[1]
or the textbook of Gosh[5].

The given result has two main benefits. On one
hand, we generalize a known visibility result inside
simple polygons. It was already shown how to com-
pute the inner visibility region of an edge e of a sim-
ple polygon P efficiently. Instead of e and P we al-
low more general polygonal objects P and Q while
maintaining optimal linear time. The visibility area
between P and Q is the union of all line segments
pq where p lies on the boundary of P and q on the
boundary of Q and pq does neither intersect with P
nor with Q, see Figure 1 for an example. Further-
more, with the same technique we can compute the
visibility region of a polygon P inside a polygon Q in
time proportional to |P | + |Q| which is a natural ex-
tension of visibility of a single point or egde. On the
other hand, the given problem arises in the context
of a digital three dimensional building construction
model. An efficient computation of the visibility area
between two wall axes A and B in the digital model
∗Department of Computer Science I, RFW Uni-

versity Bonn, Institut für Informatik, Abt. I,
elmar.langetepe@cs.uni-bonn.de
†HOCHTIEF ViCon GmbH, Alfredstrasse 236, D-45133 Es-

sen

of a building is an important question for computer
aided construction management.

VA(P, Q)

P

Q

Figure 1: The visibility area between two non-
intersecting polygonal chains P and Q.

In Section 2 we extend the algorithm of Guibas et
al. [6] and compute the visibility region of a polyg-
onal subchain CP along the boundary of a polygon
P in linear time. Afterwards, we make use of this
result and compute the visibility area between two
non-intersecting polygonal objects P and Q in time
O(|P | + |Q|). Note that due to lack of space some
proofs are omitted.

2 Visibility of a boundary subchain

We would like to compute the inner visibility region
of a connected subchain CP = (p1, . . . , pk) along the
boundary ∂P of a simple polygon P = (p1, . . . , pn, p1),
see Figure 2. A point q ∈ P is visible from p ∈ CP if
pq ∈ P holds.

Definition 1 (Visibility polygon) Given a polyon
P , and a connected point set X ∈ P , the visibility
polygon VisP (X) is the set of points inside P that
are visible from any point x ∈ X.

For computing VisP (CP ) we first compute the
shortest path πp1,pk

= (r1, . . . , rl) in P from p1 to pk

which can be done in linear time ([6], [2]). Replac-
ing (p1, . . . , pk) by πp1,pk

, we obtain a new polygon
R = (r1, . . . , rl, pk+1, . . . pn, r1). Since the number of
vertices of πp1,pk

is at most n, the number of ver-
tices of R is at most 2n ∈ O(n). For short, we define
Cr = (r1, . . . , rl) and Cl = (rl, pk+1, . . . , pn, r1).

It can be shown that for computing VisR(Cr) it
suffices to compute VisR(Cr).
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p2

R1

Cr = (r1, . . . , r8)

Cp = (p1, . . . , p12)

p18

p5

p13

p1 = r1 = v1

r8Cl = ( , p13, . . . , p18, r1)

= r8 = v3p12

= v2r4

p3 = r2

Figure 2: For computing the visibility polygon of a
subchain CP = (p1, . . . , pk) of P it suffices to compute
visibility polygons along the shortest path πp1,pk

.

Lemma 1 With the notation from above we have:

VisP (Cp) = VisR(Cr) ∪ (P \R).

The remaining task is how to compute VisR(Cr) of
the shorthest path Cr. Note that R need not be a sim-
ple polygon because the shortest path Cr may touch
Cl, compare r4 in Figure 2. We will make use of such
tangent points and subdivide the polygon R into sev-
eral simple polygons Ri. The aim is to show that the
union of the visibility polygons of the corresponding
parts of Cr is equal to VisR(Cr).

Formally, the division into subpolygons is defined
as follows: Because, originally, Cr is a shortest path
between two vertices of P , its set of vertices V [Cr]
also consists of the vertices of P . Let (v1, . . . , vt) =
(V [Cl] ∩ Cr) denote the vertices of Cl that lie on Cr.
The vertices vi lie consecutively on Cr. We have,
by definition, v1 = r1 and vt = rl. We denote
with Cr(i) := (vi, . . . , vi+1) the polygonal chain on Cr

between vi and vi+1. Since Cr is a shortest path we
conclude that Cr(i) has to be an outward bent chain,
i.e., while walking from vi to vi+1 on Cr(i) we al-
ways turn to the right at the vertices in between.
Now let Cl(i) denote the polygonal chain between vi

and vi+1 on Cl. We conclude that Ri := Cr(i)∪Cl(i)
is a simple polygon (unless V [Ri] consists of only the
two vertices vi, vi+1), see Figure 2. The following
Lemma states that we can obtain VisR(Cr) by com-
puting VisRi

(Cr(i)) for all Ri.

Lemma 2 With the notation from above we have:

VisR(Cr) =
t−1⋃
i=1

VisRi
(Cr(i)).

It remains to show how to compute the visi-
bility polygon of an outward bent chain Cr =
(r1, . . . , rl) of ∂Ri of a simple polygon Ri. Let Cl =
(rl, pk+1, . . . , pn, r1) denote the remaining boundary
of Ri, see Figure 3. The key idea of the algorithm

of Guibas et al. [6] is the following: Roughly speak-
ing, a point p ∈ Ri is visible from an edge e = (a, b)
iff the two shortest paths πa,p and πb,p are outward
convex1. The algorithm traverses two shortest path
trees rooted at a and b, and cuts off those points p of
which the two paths πb,p and πa,p are not outwards
convex. In our case the situation is slightly different.
The visibility condition is no longer correct if we re-
place e by a polygonal chain Cr that is bent outwards.
It is possible that the shortest paths begin with a part
of Cr, and that the resulting paths are not outward
convex, although p is visible from Cr. This is fixed
by ignoring the first vertices on the shortest paths
that belong to Cr, thus adapting the test for outward
convexity to the new situation. So the new algorithm
does the same as before but ignores the first edges be-
tween vertices of Cr on the shortest path trees when
testing for outward convexity of the shortest paths.
Figure 3 illustrates these observations. Point z is not
visible from Cr because the paths πr2,z and πr4,z are
not outwards convex. Point x is visible from Cr.

r1

x

z

r2

r4

r7

Cr = (r1, . . . , r7)
Cl

Figure 3: The shortest path tree rooted at r1 decom-
poses into subtrees rooted at the vertices ri.

Altogether we have:
Lemma 3 The visibility polygon of an outward bent
subchain Cr of the boundary of a polygon P can be
computed in linear time.

Finally, using the previous three lemmata we are
able to compute the visibility polygon of a boundary
subchain CP of a simple polygon P in linear time.

Theorem 4 Given a polygon P and a subchain CP =
(c1, . . . , ck) of ∂P , we can compute VisP (CP ) in time
O(|P |).

3 The visibility area of two boundary chains

The main tool for computing the visibility area be-
tween two polygons will be the computation of the

1A pair of paths πa,p and πb,p is outwards convex iff the
convex hull of each path lies outside the open region bounded
by πb,p ∪ πa,p ∪ |ab|, where |ab| denotes the line segment con-
necting a and b.
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visibility area between two chains of the boundary of
a common polygon. Before we describe how to com-
pute the visibility area of two chains we give a formal
definition:

Definition 2 (Segment type) A segment pq be-
tween two mutually visible points p and q is (of type)
PQ, iff p ∈ P and q ∈ Q, where P and Q are sets of
points.

Definition 3 (Visibility area) Given two polygo-
nal chains P and Q, then the visibility area VA(P,Q)
consists of all points that lie on a segment of type PQ.

If P and Q are subchains of the same closed polygonal
chain C, then we restrict VA(P,Q) to points in the
bounded region defined by C.

In a first step we would like to compute the visibility
area between two subchains A and C on the boundary
of a common polygon P . Here, the computation of
the visibility area between A and C can be reduced
in a natural way to the computation of constrained
visibility chains:

Definition 4 (Constrained visibility chain)
Given two subchains X,C of a closed polygonal
chain P , and the visibility polygon VisP (X) of X,
we define a polygonal chain VisP (X)|C as the union
of all points c ∈ C visible from X, and all visibility
cuts connecting points of C visible from X.

First, we compute the visibility polygon PA =
VisP (A). The boundary of PA contains the con-
strained visibility chain C ′ = VisP (A)|C of C w.r.t.
visibility from A. Then computing the visibility poly-
gon PAC of C ′ in PA we obtain all points of P that are
visible from both A and C. Note that PAC contains
A′ = VisP (C)|A on its boundary, as well as C ′. There
are two chains B,D connecting A′, C ′ on the bound-
ary of PAC . By replacing B and D with the shortest
paths between their endpoints, we subtract all points
from PAC that do not lie on a segment of type AC. A
formal proof of this observation is omitted due to lack
of space. Then we have finally obtained the visibility
area between A and C.

Lemma 5 The visibility area between two sub-
chains A,C of a polygon P can be computed in time
O(|P |).

Proof. The two visibility polygons can be computed
in linear time by Theorem 4. After triangulating the
resulting polygon PAC , the two shortest paths can
also be computed in linear time. �

4 Two arbitrary closed polygonal chains P and Q.

We now describe the most complex case where P lies
outside of Q, but lies completely inside the convex
hull ch(Q) of Q. Otherwise if P ⊂ Q we can imagine
that instead Q totally surrounds P , but P lies
outside of Q; if P * ch(Q), the visibility area can be
computed by a comparably simple algorithm, after
the two outer tangents have been computed [10].
Note that we can decide which case applies in linear
time.

Since P is contained in ch(Q), but is not con-
tained in Q, P is contained in a pocket of polygon Q.
We have to compute the visibility area between P
and this pocket. The pocket can be identified in
linear time by counting the intersections with a ray
starting from a vertex of P [7]. Let pocket(Q) denote
the part of Q’s boundary contributing to the pocket,
and e = (a, b) be the edge of ch(Q) defining the
pocket. From now on we denote with Q the closed
polygonal chain pocket(Q) ∪ e, so P lies inside the
bounded region defined by Q. In order to compute
VA(P,Q) we do the following:

1. Compute VA(P,Q).

2. Remove those points from VA(P,Q) that only lie
on segments of type Pe (but not on a segment of
type PQ).

4.1 Compute VA(P,Q)

We consider the polygon R = Q \ Int(P ). If R were a
simple polygon we knew, by Lemma 5, how to com-
pute VA(P,Q). But P defines a hole in R, so R is
no simple polygon. But there exist two edges el, er

of type PQ on the convex hull of Q relative2 to P ,
which can be identified in linear time and have a nice
property: No segment of type PQ intersects both el

and er.
Inserting two copies of ex into R, where x = l or

x = r, we obtain a simple polygon Rx, of which P
and Q are boundary chains, connected by the two
copies of ex. We compute VAex

= VA(P,Q) in Rx.
Now by the property of the edges el and er we have
VA(P,Q) = VAel

∪ VAer
. We unite VAel

and VAer

as follows: The boundary of VAex consists of parts of
the boundary of P , of Q, and of visibility cuts of type
PP or QQ. We compute the set of cuts for both VAex

and cut off parts of the boundary of P or Q only if the
part is cut off by a visibilty cut from VAel

and from
VAer . This is a matter of traversing the boundaries
of P and of Q once, which can be done in linear time.

2See Toussaint [9] for details.
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4.2 Remove points from VA(P,Q)

Our goal is, after computing VA(P,Q), to remove the
points of VA(P,Q) that do not belong to VA(P,Q).
Only some special points have to be removed: The
points p that see a point of r ∈ Int(e) are candidates
for subtraction. Suppose we look from p to r. Then p
has to be subtracted iff turning clockwise until seeing
r again

1. we have only seen points of P and of e, or

2. we have at some point seen a point of Q, then
a point of P , before then again seeing a point of
Q. Also, there is no segment of type PQ contain-
ing p.

The points of type 1 are not seen from Q – they lie
in some sort of pocket of P . Those of type 2 are the
points which lie close to edge e, and thus do not lie on
a segment of type PQ, but on segments of type Pe.

Lemma 6 The points of type 1 can be subtracted
from VA(P,Q) in linear time.

Proof. Two subchains of the boundary of the vis-
ibility region of e in VA(P,Q) stem from the poly-
gon Q. From those we can compute the cuts defining
the pockets containing the points of type 1 in linear
time. As above, we only cut off points that lie behind
cuts stemming from both subchains. �

Due to lack of space we state the following Lemma
without proof.

Lemma 7 The points of type 2 can be subtracted
from VA(P,Q) in linear time.

The above observations prove our main theomem:

Theorem 8 The visibility area VA(P,Q) between
two polygons P and Q can be computed in time
O(|P |+ |Q|).

5 Concluding remarks

An open polygonal chain C = (c1, . . . , cn)
can be treated as a closed polygonal chain
C ′ = (c1, . . . , cn, . . . , c1). The visibility of C
and C ′ is identical and we can apply our algorithms
on C ′.

Given a polygon P and an obstacle polygon Q
we can compute Vis(P ) w.r.t. Q – see Figure 4 –
analogously to V A(P,Q), with the following modi-
fications: First, points not visible from Q need not
be subtracted from the polygon R between P and Q.
Second, if Vis(P ) is unbounded, we need to replace
parts of the boundary of VA(P,Q) with adequate
visibility cuts of infinite length.

P

Q Vis(P )

P

Q

Figure 4: The visibility region of polygon P with ob-
stacle polygon Q.
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Triangulating a System of Disks

Daniel Peterseim∗⋆

Abstract

We introduce a generalization of Delaunay triangula-
tions applicable to a system of disks. In this sub-
division of the convex hull of the system of disks,
the classical role of vertices is assumed by the disks
while neighboring disks are connected by channel-like
objects which therefore assume the classical role of
edges. The generalized Delaunay triangulation is de-
rived by performing a limiting process of classical De-
launay triangulations with respect to a convergent se-
quence of polygonal approximations of the system of
disks. We comment on duality with respect to certain
Voronoi diagrams.

1 Introduction

Let B be a system (finite set) of closed disks in the
plane, i.e. for every B ∈ B there is a center cB ∈ R

2

and radius rB > 0 so that

B = {x ∈ R
2 | dist (x, cB) ≤ rB};

dist (·, ·) being the Euclidean distance in R
2. We as-

sume that the disks are pairwise disjoint, i.e. B1 ∩

B2 = ∅ for all B1, B2 ∈ B.
The restriction to the two dimensional setting con-

duces to keep the presentation of the underlying ba-
sic idea, which is simple, as clearly as possible. The
simple setting yet has an interesting practical appli-
cation. The disks in B can be considered as cross
sections of fibers in fiber-reinforced composite mate-
rials, e.g. fiber glass. It is an important task in com-
putational mechanics to derive insight about effective
material properties, e.g. transport, mechanical, and
electromagnetic properties, as well as properties as-
sociated with coupled phenomena, such as piezoelec-
tric and thermoelectric coefficients. If the considered
fiber composite is unidirectional, then effective mate-
rial properties can often be modeled by partial dif-
ferential equation on some cross section justifying the
usefulness of our geometric model.

The solution of such partial differential equations
is challenging due to the highly complicated geome-
try represented by the system of disks which either
forms a part of the domain boundary or a region with

∗Institut für Mathematik, Humboldt-Universität zu Berlin,
peterseim@math.hu-berlin.de

⋆The author is supported by the DFG Research Center
MATHEON, Berlin.

significantly different coefficient in the corresponding
differential operator. Using a standard finite element
method, the geometry, i.e. the system of disks, has to
be resolved by the underlying computational mesh.

The aim of this paper is to describe an efficient and
problem adapted subdivision of the convex hull of the
system of disks conv(∪B) to be used within special
finite element methods. The desired subdivision will
turn out to be a generalization of the classical Delau-
nay triangulation [3].

Given a set of points S ⊂ R
2, the classical Delau-

nay triangulation is a set of (closed) triangles D(S)
determined by the classical Delaunay criterion say-
ing that the open circumdisk of any triangle must not
contain any elements of S. The Delaunay triangula-
tion D(S) is not unique if S contains 4 points that
are cocircular. We cure this issue, known as geomet-
ric degeneracy, by considering D(S) as a subdivision
into (closed) cyclic polygons with 3 or more vertices
such that a strict Delaunay criterion is fulfilled: The
(unique) closed circumdisk of each cyclic polygon does
not contain any vertices of S excepts its own ones.

In this paper we describe a generalized concept of a
triangulation, in which the point set S is replaced by
the system of disks. More precisely, we introduce gen-
eralized Delaunay triangulations as the limit of cer-
tain classical Delaunay triangulations approximating
the system of disks (see Section 2). Finite element
spaces based on these new geometry subdivisions can
be derived similarly as indicated in Section 3. By du-
ality, generalized Delaunay triangulations are closely
related to certain (additively weighted) Voronoi dia-
grams (see Section 4).

Notation. We use capital letters A, B, C, . . . to indi-
cate sets, bold letters x,y, z, . . . indicate points in R

2.
Systems of sets are denoted by calligraphic capital let-
ters B,D, . . . with the only exception of the power set
of a set denoted by P. For systems of sets B we denote
the union of its elements by ∪B :=

⋃
B∈B B. We fur-

ther make use of basic topological notations: For any
X ⊂ R

2 we denote its closure by cl (X), its relative
interior by relint (X), and its boundary by bnd (X).

2 Derivation of the Generalized Delaunay Trian-

gulation

Consider polygonal approximations Bn, n ∈ N, of B in
which the disks are approximated by certain regular
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polygons. More precisely, Bn := {Bn | B ∈ B}, where
Bn is a regular, i.e. equiangular and equilateral, poly-
gon with 2n vertices V (Bn) located on bnd (B) (the
circumcircle of Bn). By

V (Bn) :=
⋃

Bn∈Bn

V (Bn)

we denote the set of vertices of Bn. We assume
the polygonal approximations Bn to be nested, i.e.
V (Bn) ⊂ V (Bn+1) for all n ∈ N. The classical Delau-
nay triangulation with respect to the point set V (Bn)
is denoted by Dn := D(V (Bn)). Figure 1(a,b,c) shows
some set of disks, the corresponding polygonal ap-
proximations, and triangulations for n being 3 and 5.
We observe that for n tending to infinity, new struc-
tures are evolving, namely channel-like connections
between neighboring disks.

In order to investigate this process let us fix some
vertex x ∈ V (Bn), where Bn ∈ Bn for some n ∈ N.
By construction, x ∈ V (Bm) for all m > n. Consider
the set

T m
x

:= {T ∈ Dm | x ∈ V (T )}

containing cyclic polygons that have x as a vertex. It
is obvious that Bm itself is an element of T m

x
. The

circumdisks of the remaining elements of T m
x

form the
set

Cm
x

:=
⋃

{conv(CT ) | T ∈ T m
x

\ {Bm}},

where CT denotes the circumcircle of the cyclic poly-
gon T . Due to the Delaunay property, Cm

x
con-

verges to the maximal (w.r.t. to the diameter) disk
Cx ⊂ R

2 \ (∪B) that is tangential to B in x. Note
that Cx is infinite (a shifted halfspace) if and only
if x ∈ bnd (conv(∪B)). The disk Cx tangentially in-
tersects other disks of B besides B. These (finitely
many) intersection points collected in

Cx ∩ (∪B) = {x} ∪ lim
m→∞

T m
x

\ {B} (1)

span a unique cyclic polygon Tx := conv(Cx ∩ (∪B)).
Considering disks as cyclic polygons with infinitely
many vertices, a subdivision of conv(∪B) into cyclic
polygons is given by

D∞ := B ∪ {Tx | x ∈ bnd (∪B)}. (2)

The above subdivision fulfills the (strict) Delaunay
criterion. However, D∞ has infinitely many elements
which is not desired from a practical point of view.

As it can be seen in Figure 1(d) and as indicated
earlier the elements of D∞ form new structures. The
desired (finite) subdivision is derived by grouping the
elements of D∞ according to the disks that contain
their vertices. For T ∈ D∞ we define

B(T ) := {B ∈ B | V (T ) ∩ B 6= ∅};

(a) Some system of disks B (detail).

(b) Approximation of the disks by octagons and the
corresponding Delaunay triangulation D3.

(c) Approximation of the disks by 32-gons and the
corresponding Delaunay triangulation D5.

(d) The infinite Delaunay triangulation D∞.

Fig. 1: Construction of the generalized Delaunay triangulation.
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we say that T ∈ D∞ connects a subset of disks A ⊂ B

if B(T ) = A. B(·) maps the cyclic polygons of D∞

into P(B), which is a finite set. The generalized Delau-
nay triangulation is closely related to the preimages
of ensembles of disks under B(·). In this context we
distinguish 3 characteristic classes of cyclic polygons:

1. Cyclic polygons that connect only a single disk,
i.e. either the disks itself or single points in
relint (bnd (∪B) ∩ conv(∪B)), which can be ne-
glected. We refer to the disks as generalized ver-
tices.

2. Cyclic polygons that connect exactly two disks.
The union of polygons that connect a certain pair
of disks is denoted as a generalized edge. More
precisely, a generalized edge connecting B1, B2 ∈

B is given by

EB1,B2
:=

⋃
{T ∈ D∞ | B(T ) = {B1, B2}}.

3. Cyclic polygons that connect 3 or more disks.

The generalized Delaunay triangulation is now
given as the set of generalized vertices, generalized
edges and triangles connecting 3 or more disks:

G := B ∪ E ∪ T ,

where B is the system of disks under consideration,

E := {EB1,B2
6= ∅ | B1 6= B2 ∈ B}

and

T :=

{
T ∈ D∞

∣∣∣∣
B(T ) = {B1, B2, . . . , Bk},

B1 6= . . . 6= Bk ∈ B, k ≥ 3

}
.

In contrast to classical triangulations, the considera-
tion of vertices and edges as genuine elements of the
subdivision is essential to ensure that the union of all
elements indeed covers conv(∪B). As in the classical
setting intersections of distinct elements are of lower
(at most 1) dimension.

3 Finite Element Methods

As currently worked out in [9] and already indicated
in [8] generalized Delaunay triangulations, as intro-
duced here, are suitable for the use within finite ele-
ment simulations of effective properties of composite

Fig. 2: A generalized nodal basis function taking value 1 in a
certain disk and 0 in all others.

materials. The according finite element spaces can be
derived in a similar manner as the triangulation itself,
i.e. by first taking the limit of classical spaces with
respect to the approximative triangulations Dn and
then choosing a finite subspace appropriate for the
problem to be solved. Considering, e.g., heat conduc-
tivity in a fiber composite with perfectly conducting
fibers, a suitable discrete space is derived by taking
the limit of classical continuous first order elements
and then requiring the shape functions to be constant
with respect to every disk (due to perfect conductiv-
ity). The latter space is spanned by the generalized
nodal basis; an element of this basis is depicted in
Figure 2.

4 Generalized Voronoi-Delaunay Duality

Consider again the circumcircles Cx, x ∈ bnd (∪B),
of the elements of the (infinite) Delaunay triangula-
tion D∞ (see (1) and (2)) and note that Cx = Cy

for all y ∈ Cx ∩ (∪B). Moreover, the center of Cx is
equidistant to all y ∈ Cx ∩ (∪B). Thus, the union
of all circumcircle centers cCx

, x ∈ bnd (∪B), de-
fines the Voronoi diagram with respect to the sys-
tem of disks B, i.e. the circumcircle centers form
curves that tessellate the plane into regions reflect-
ing proximity with respect to one of the disks in B.
The latter Voronoi tessellation is known as the ad-
ditively weighted Voronoi tessellation. We refer to
[1], [4, Section 4.5.3], and references therein; a visu-
alization is given in Figure 3(a,b). The relation be-
tween the generalized Delaunay triangulation and the
Voronoi diagram with respect to the system of disks
can be regarded as a generalization of the classical
straight line duality (see, e.g., in [10]) between the
Delaunay triangulation and the Voronoi tessellation
[11] with respect to a set of points.

Note that, if the disks in B are of equal size, then
the Voronoi tessellation with respect to B and the
Voronoi tessellation with respect to disk centers coin-
cide; see Figure 3(a). The generalized Delaunay trian-
gulation, also known as triangle-neck partition in the
special case of equally sized disks [2], and the classical
Delaunay triangulation of the disk centers are combi-
natorially equal, i.e. they connect the same vertices.
Moreover the cyclic polygons of the generalized trian-
gulation are simply scaled versions of their classical
counterparts. If the radii of the disks tend to zero we
recover the classical Delaunay triangulation.

If the disks are not of equal size, the generalized De-
launay triangulation is not induced by the Delaunay
triangulation of the disk centers since combinatorial
changes might appear as it can be observed in Figure
3(b). Similarly, the Voronoi tessellation with respect
to B and the Voronoi tessellation with respect to the
disk centers do not coincide. In addition, Figure 3(c)
illustrates that Voronoi edges, i.e. 1-dimensional in-
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(a) A system of equally sized disks: The generalized Delaunay
triangulation (left) coincides with Delaunay triangulation of

the disk centers (right, bold lines) with regard to
combinatorics. Weighted Voronoi (left, thin line segments)
and classical Voronoi (right, thin line segments) are equal.

(b) A system of non-equally sized disks: No combinatorial
equivalence relation between generalized Delaunay

triangulation (left) and Delaunay triangulation of the disk
centers (right, bold). Weighted Voronoi (left, thin line

segments) and classical Voronoi (right, thin line segments) do
not coincide either.

(c) Multiple connectivity of a Voronoi edge (bold line
segments) and the (dual) generalized Delaunay edge (black

shaded channels).

Fig. 3: Generalized and Classical Delaunay triangulation and
their dual Voronoi tessellations.

tersections of neighboring Voronoi cells, might not be
connected [7] which leads to multiple connectivity of
the corresponding dual generalized Delaunay edge.

There are fast algorithms available for Voronoi dia-
grams with respect to a system of disks [5, 7, 6]. These
algorithms, by duality, can also be employed for the
computation of generalized Delaunay triangulation.

5 Conclusion

We have introduced a subdivision of the convex hull of
a union of disks which contains the disks itself as ele-
ments. Further elements are simple geometric objects,
i.e. generalized edges and cyclic polygons. The num-

ber of elements of the subdivision is of order card (B)
which is minimal in comparison to the descriptional
complexity of B.

The new generalized triangulations further inspire
the design of new finite element methods perfectly
fitted to the difficulties and requirements originating
from the complicated geometries of random composite
materials.

Our approach is not restricted to systems of disks;
generalizations to multidimensional systems of convex
sets, and therefore to practically relevant materials,
are straight forward. In addition, the observations
from Section 4 motivate equivalent definitions of gen-
eralized Delaunay triangulations based on duality.
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One-Reporting Queries

Saladi Rahul∗ K.S.Rajan†

Abstract

We are given a set S of n points in a d-dimensional
space. Given a query orthogonal box q=Πd

i=1[ai, bi]
or a semi-infinite query box q=Πd

i=1[ai,∞), a One-
reporting query reports YES if S ∩ q 6=φ, else reports
NO. The data structures introduced in this paper do
not have their query time exponentially dependent
on the dimension size, d, if the points are assumed
to be randomly generated. Hence we partially break
the “curse of dimensionality” with which almost all
the data structures for range searching sufffer. The
model of computation assumed is word-RAM.

1 Introduction

In a typical orthogonal range reporting problem we
store a set of n d-dimensional points S in a data struc-
ture so that for an arbitrary d-dimensional query or-
thogonal box q= [a1, b1]× [a2, b2]×. . .[ad, bd], all the
points lying in S ∩ q need to be reported efficiently.
One-reporting or Emptiness queries are a special case
of range-searching problems where in for a query q we
report YES iff S ∩ q 6= φ, else we report NO. In other
words, given a query box q, we need to check if there
exist any point in S which lies inside q.

A typical orthognal range query would be to “Find
out all the employees in a company of age between 30
and 40 years with income being between $10, 000 and
$20, 000”. Range Searching problem has tremendous
applications and has been widely studied for the past
few decades [9]. Survery by Agarwal [2] and the book
by M. De Berg et. al [7] are good sources for survey.

Our model of computation is the RAM model as
modified by Fredman and Willard [12]. In this model
it is assumed that each word is of size w and that
the number of data elements n never exceeds 2w, that
is, w ≥ log2 n. In addition, arithmetic and bitwise
logical operations take constant time.

2 Comparision with previous results

There has been very little work done exclusively on
“One-reporting” problem except for [11]. Dube et.

∗Lab for Spatial Informatics, IIIT-Hyderabad, India,
saladi.rahul@gmail.com
†Lab for Spatial Informatics, IIIT-Hyderabad, India,

rajan@iiit.ac.in

al. [11] initiated the work on “One-reporting” prob-
lem for queries of the form Πd

i=1[ai,∞). The general
line of attack to solve this problem is to build a data
structure which does range reporting and for a given
query say “YES” once a point gets reported. If no
point gets reported, say “NO”. Due to lack of pre-
vious work on this problem, we compare our data
structures with previous structures which did range
searching for query orthogonal box. We breifly review
the existing range searching data structures.

Range Trees [6] take up O(n logd−1 n) space and
“One-emptiness” queries can be answered by it in
O(logd n) time. The query time can be reduced to
O(logd−1 n) by applying fractional cascading tech-
nique [10]. Chazelle et. al. [9] further improved
the space of range tree. Specifically, for word-RAM
model the following structures exist. Alstrup et. al.
[3] came up with a structure that answered queries in
O(logd−2 n/(log log n)d−3) time using O(n logd−2+ε n)
space, ε > 0. The query time was improved by
Nekrich [14] to O(logd−3 n/(log log n)d−5) but with
an increase in space to O(n logd+1+ε). Later, Af-
shani [1] reduced the space to O(n logd+ε n). Re-
cently, Karpinski et. al. [13] gave a structure
which uses O(n logd−2+ε) space and answers query in
O(logd−3 n/(log log n)d−6) time.

The primary focus in this paper was to come up
with structures which answer “One-reporting” queries
fast. The performance of the structures in this paper
are dependent on the distribution of the points. The
performance of a standard range searching data struc-
ture is unaffected by the distribution of the points as
can be seen in Table 1. In Table 1, “Best” refers
to those configurations of points which leads to the
best possible performance of our structure. “Aver-
age” refers to the case where the points are assumed
to be generated randomly. Finally, “Worst” refers to
those configurations which leads to the poorest possi-
ble performance of our structure.

As can be seen in the table, our structure clearly
outperforms the existing structures in the “best” and
“average” case scenario. Even in the “worst” case
our structure either performs better or far off from
some of the structures by only a small fraction. The
efficiency of our structures can be claimed from the
observation that a “worst” possible configuration of
the points will not happen frequently. Performance
of our structure is mentioned in Theorem 9.
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Source Best Average Worst

New O( logn
log logn ) O( logn

log logn ) O(( logn
log logn )d−1)

[13] O(logd−3 n/(log log n)d−6)
[1, 14] O(logd−3 n/(log log n)d−5)
[3] O(logd−2 n/(log log n)d−3)
[8] O(logd−2 n)
[10, 9] O(logd−1 n)
[6] O(logd n)

Table 1: The query time of the data structures in the
best, average and the worst case scenario for d>3 are
mentioned. Queries are of the form Πd

i=1[ai, bi].

3 Maximal Points

We start of by defining and discussing some interest-
ing properties of Maximal Points. Maximal Points
form the basis for solving the One-Reporting Prob-
lem in a d-dimensional space. A couple of definitions
follow next.

Definition 1 (Dominance). Let p1=(x1, . . . , xd)
and p2=(y1, . . . , yd) be two d-dimensional points. If
xi > yi, ∀1 ≤ i ≤ d, then we define that p1 dominates
p2 and that p2 is dominated by p1.

Definition 2 (Maximal Point). Let S be a set of
points. A point pi ∈ S is a maximal point if there is
no other point pj ∈ S, such that pj dominates pi.

For the given point set S, we denote M (⊆ S) to
be the set of maximal points.

Lemma 1 For a point set S and a query quadrant
q=Πd

i=1[ai,∞), S ∩ q 6=φ iff M ∩ q 6=φ. Therefore, it is
enough to consider only the maximal points (M ⊆ S)
for answering “One-reporting dominance problem”.

4 One-reporting dominance queries in IR2

We start building our solutions by considering domi-
nance queries in IR2. Specifically, for a point set S in
IR2 and a given query quadrant q=[a1,∞)×[a2,∞),
we need to report YES if S ∩ q 6= φ, else report NO.

Lemma 2 For a point set S, let M be the set of max-
imal points. Consider a point pi(ix, iy) ∈ M . Now all
the points pj(jx, jy) ∈ M , which satisfy the condition
jx > ix, will lie below the line y = iy.

Firstly, following Lemma 1 we find out the set of
maximal points M in S [7]. A Static Fusion Tree, T ,
[12] is built based on the x-coordinates of the maximal
points M . Given a query q=[a1,∞)×[a2,∞), we per-
form a successor query on T with a1. Let p(px, py) be
the point reported. Clearly, px ≥ a1. If py ≥ a2, then

we report YES. Else if py < a2, then from Lemma 2 it
can be inferred that the other points in M which have
x-coordinate ≥ a1, will also have their y-coordinate
values < a2. Hence, NO will be reported. Also, while
performing a successor query if no point is found, re-
port NO.

Theorem 3 A set S of n points in IR2 having m
maximal points can be preprocessed into a data struc-
ture of size O(m), such that given a query quadrant
q=[a1,∞)×[a2,∞), the “One-reporting dominance”
query can be answered in O(logm/ log log n) time.

If the points in S are assumed to be randomly gen-
erated on a plane, then expected (or average) number
of maximal points is O(log n) [5]. In the best case the
no. of maximal points will be O(1) and in the worst
case the no. of maximal points will be O(n). This
leads to the following corollary.

Corollary 4 Let S(n) and Q(n) denote the space
and the query time of the above data structure. Then
the following results can be inferred from the above
discussion :-

1. S(n)=O(1) and Q(n)=O(1), in the best case.

2. S(n)=O(log n) and Q(n)=O(1), in the average
(or expected) case.

3. S(n)=O(n) and Q(n)=O(log n/ log log n), in the
worst case.

5 One-reporting Dominance problem in IR3

In this section we provide a solution to the One-
reporting dominance problem on IR3 (referred to as
xyz-space in this section). First, we find out the
maximal points (M) of S, w.r.t., xyz-space [7]. The
primary structure will be a Static Fusion Tree, D,
built based on the z-coordinates of the points in M .
The points in D are stored in non-decreasing order
of their z-coordinate values. p(v) denotes the set of
points lying in the subtree rooted at an internal node
v ∈ D. For an arbitrary internal node v ∈ D, let
v1,v2,. . .,vk be its children from left to right. With
each child node vi, we associate a point set Pi as fol-
lows : Pi=

⋃k
j=i p(vj). Each point set Pi is projected

onto the xy plane and based on the xy-projections of
points in Pi, its maximal points Mi are found out (the
z-coordinates are ignored). At node vi, based on these
maximal points Mi we build a secondary structure
of Theorem 3 to handle “One-reporting” dominance
queries in the plane.

Given a query q = [a1,∞) ∗ [a2,∞) ∗ [a3,∞), we
first run a successor query on the primary struc-
ture of D with a3. Let v be the leaf node selected.
Now we choose some cannonical nodes in D and on
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each of them a secondary query is performed. Let
C=v1,v2,. . .,vl, where vi is the immediate right sib-
ling of the ith node on the path from v to the root,
excluding v and root. vi will not exist if this ith

node turns out to be the rightmost child. Then C ∪ v
form our cannonical nodes. We query the secondary
structures at each of the cannonical nodes with q′ =
[a1,∞) ∗ [a2,∞). If any of the secondary structures
reports the presence of a point in q′, then we say YES,
else we say NO.

Theorem 5 A set S of n points in IR3 having m
maximal points can be preprocessed into a data
structure of size O(m × logm

log logn × log1/5 n), such

that given a query q=[a1,∞)×[a2,∞)×[a3,∞), the
“One-reporting dominance” query can be answered
in O((logm/ log log n)2) time.

If the points in S are assumed to be randomly gen-
erated on a xyz-space,then the expected (or average)
number of maximal points is O(log2 n) [5]. In the best
case the no. of maximal points will be O(1) and in
the worst case the no. of maximal points will be O(n).
This leads to the following corollary.

Corollary 6 Let S(n) and Q(n) denote the space
and the query time of the above data structure. The
following results can be inferred:-

1. S(n)=O(1) and Q(n)=O(1), in the best case.

2. S(n)=O(log11/5 n) and Q(n)=O(1), in the aver-
age (or expected) case.

3. S(n)=O(n(log6/5 n/ log log n)),
Q(n)=O((log n/ log log n)2), in the worst
case.

6 One-reporting dominance problem in IRd, d > 3

In this section we shall generalize the the solution
built for d = 3 to higher dimensional points as well.
Assume that we already have a data structure for this
problem in IRd−1. The construction is shown in an
inductive manner. Let x1, x2, . . .,xd be the individual
coordinates of our d-dimensional space. First, we find
out the maximal points (M) of S, w.r.t., IRd [7]. The
primary structure will be a Static Fusion Tree, D,
built based on the xd-coordinates of the points in M .
Then as done for d = 3, at each internal node an
instance of the “One-reporting dominace” problem for
IRd−1 is built. The query algorithm is similar to the
one described in the previous section.

If the points in S are assumed to be randomly gen-
erated in IRd, then expected (or average) number of
maximal points is O(logd−1 n) [5]. In the best case
the no. of maximal points will be O(1) and in the
worst case the no. of maximal points will be O(n).
This leads to the following corollary.

Corollary 7 A set S of n points in IRd having m
maximal points can be preprocessed into a data struc-
ture of size O(S(n)), such that given a query region
Πd
i=1[ai,∞), the “One-reporting dominance” query

can be answered in O(Q(n)) time, where

1. S(n)=O(1) and Q(n)=O(1), in the best case.

2. S(n)=O(logd−4/5 n) and Q(n)=O(1), in the av-
erage (or expected) case.

3. S(n)=O(n(log6/5 n/ log log n)d−2),
Q(n)=O((log n/ log log n)d−1), in the worst
case.

7 One-reporting for bounded orthogonal rectangle
queries on IR2

Now, we generalize our queries to orthogonal bounded
rectangles on IR2. First we consider queries of the
form q′=[a1, b1] × [a2,∞). The solution is based on
the structure built in Theorem 3.

Based on the x-coordinates of the points in S we
build a static fusion tree SFT . We store the points of
S sorted by x-coordinate at the leaves of a complete
balanced binary tree T ′. At each internal node v, we
store an instance of the structure of Theorem 3 for
handling queries of the form [a1,∞)× [a2,∞) (resp.,
(−∞, b1]×[a2,∞)) built on the points in v’s left (resp.,
right) subtree. Let X(v) denote the average of the
x-coordinate in the rightmost leaf in v’s left subtree
and the x-coordinate in the leftmost leaf in v’s right
subtree; for a leaf we take X(v) to the x-coordinate of
the point stored at v. The root of T ′ holds a pointer
to SFT .

Given a query q′, we first find out the successor
of a1 (say a′1) and the predecessor of b1 (say b′1) in
SFT . Leaf nodes of points a′1 and b′1 are found out in
the primary structure of T . This identification can be
done in O(1) time if we maintain appropriate pointers.
Since T is a complete balanced binary tree, the LCA
(least common ancestor) of a′1 and b′1 can found out
in O(1) time. Let the LCA be v. Then we query the
structures at v using the NE-quadrant and the NW -
quadrant derived from q′ (i.e. the quadrants with
corners at (a1, a2) and (b1, a2), respectively). If any
of the structure reports YES, then the overall answer
will be YES. If both the structures report NO, then
the overall answer will be NO.

To solve the problem for general bounded orthog-
onal rectangles q=[a1, b1]× [a2, b2], we use the above
approach again, but now the points in the tree T are
stored by sorted y-coordinates. At each internal node
v of T , we store an instance of the data structure
above to answer queries of the form [a1, b1]× [a2,∞)
(resp. [a1, b1] × (−∞, b2]) on the points in v’s left
(resp. right) subtree. Also, a static fusion tree is built
based on the y-coordinates of the points in S and a
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pointer from the root of T to this structure is main-
tained. The query strategy is similar to the previous
one, but now we use the interval [a2, b2] to search in
T .

Theorem 8 A set S of n points on IR2 can be prepro-
cessed into a data structure of size O(S(n)) such that
given a query orthogonal box q=[a1, b1]×[a2, b2], the
“One-reporting problem” can be solved in O(Q(n))
time, where

1. S(n)=O(n log n) and Q(n)=O(log n/ log log n),
in the best case.

2. S(n)=O(n log n) and Q(n)=O(log n/ log log n),
in the average (or expected) case.

3. S(n)=O(n log2 n) and Q(n)=O(log n/ log log n),
in the worst case.

8 One-reporting queries for bounded orthogonal
boxes in IRd

Here we generalize our queries to orthogonal
bounded boxes in IRd, i.e., the query box
q=[a1, b1]×[a2, b2]× . . .×[ad, bd]. The solution built
here is an extention of the structure built in The-
orem 8 for d=2. First we build a structure for
handling queries of the form q′=[a1, b1]×Πd

i=2[ai,∞)
by the same technique that was used in the pre-
vious section. In the same manner, we next
build a structure for handling queries of the form
q′′=[a1, b1]×[a2, b2]×Πd

i=3[ai,∞). In this way we it-
eratively build a structure D which finally handles
queries q=Πd

i=1[ai, bi]. The space occupied by D will
increase by a factor of O(logd−2 n) compared to the
structure built for d=2 in Theorem 8.

Theorem 9 A set S of n points on IRd can be pre-
processed into a data structure of size O(S(n)) such
that given a query orthogonal box q=[a1, b1]×[a2, b2]×
. . .[ad, bd], the “One-reporting problem” can be solved
in O(Q(n)) time, where

1. S(n)=O(n logd−1 n),Q(n)=O(log n/ log log n), in
the best case.

2. S(n)=O(n logd−1 n),Q(n)=O(log n/ log log n), in
the average (or expected) case.

3. S(n)=O(n logd n), Q(n)=O((log n/ log log n)d−1),
in the worst case.
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Partial Least-Squares Point Matching under Translations

Günter Rote∗

Abstract

We consider the problem of translating a given pat-
tern set B of size m, and matching every point of B
to some point of a larger ground set A of size n in an
injective way, minimizing the sum of the squared dis-
tances between matched points. We show that when
B can only be translated along a line, there can be at
most m(n − m) + 1 different matchings as B moves
along the line, and hence the optimal translation can
be found in polynomial time.

1 Introduction

In the partial pattern matching problem we are look-
ing for an occurrence of some pattern B as part of
a larger structure A. In this paper, we consider the
case when A and B are finite points sets in the plane
of size n and m respectively. (The results extend to
higher dimensions, but for simplicity, we remain in
the plane.)

Thus, we are looking for a subset A′ ⊂ A of size
m that is as similar to B as possible. In this paper
we measure similarity by the sum of the squared dis-
tances between corresponding points in some bijective
mapping between B and A′. In other words, we insist
that every point of B is matched with a distinct point
of A.

In addition we allow B to be translated by some
vector t. Thus, we are trying to solve the following
problem:

minimize f(π, t) :=
m∑
i=1

‖(bi + t)− aπ(i)‖2 (1)

subject to π : B → A, injective,

t ∈ R2.

Related Work. This is a rich area of research. See
for example [7, 8] for the case of least-squares match-
ing between two equal sets. See [1, 4, 5] for other
distance measures.

∗Freie Universität Berlin, Institut für Informatik, Taku-
straße 9, 14195 Berlin, Germany. rote@inf.fu-berlin.de

2 Basic Observations. The Partial Matching Sub-
division

For a fixed assignment π, the objective function f can
be rewritten in the form

f(π, t) =
m∑
i=1

‖(bi + t)− aπ(i)‖2

=
m∑
i=1

‖bi − aπ(i)‖2

+
〈
t,

m∑
i=1

(bi − aπ(i))
〉

+m‖t‖2

= cπ + 〈t, dπ〉+m‖t‖2, (2)

for a constant cπ ∈ R and a vector dπ ∈ R2.
We can thus rewrite the objective function (1) as

min
t
F (t) +m‖t‖2,

where
F (t) = min

π : B→A
π injective

(cπ + 〈t, dπ〉)

For a given translation t, minimizing f(π, t) over all π
is equivalent to determining the minimum in the ex-
pression for F (t), since the difference is the constant
term m‖t‖2. The function F (t) is the minimum of a
finite number of linear functions. The regions where
the minimum is attained by a particular linear func-
tion is hence a convex polygonal region. We call the
subdivions of the plane into these regions the partial
matching subdivision DB,A:

Theorem 1 The space of parameters t ∈ R2 is sub-
divided into finitely many polygonal regions Rπ, π ∈
Π0. For all values t in one region Rπ the same op-
timum assignment π optimizes (1) (or the expression
in F (t)).

When B consists of a single point, the partial
matching subdivision DB,A is just the Voronoi dia-
gram of A. When A is a large dense point set and B
consists of few points that are relatively spread out
the subdivision looks like an overlay of several trans-
lated copies of the Voronoi diagram of A, since each
point of B is just independently matched to its near-
est neighbor in A. At least, this is true as long as the
points of B lie “within” the set A; when they move
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far away, several points of B will have the same clos-
est point, and they have to compete for the point to
which they are matched. Unfortunately, I could not
produce interesting illustrations of partial matching
subdivisions so far.

3 Exploring the Parameter Space

Inside each region Rπ, the function f(π, t) is a convex
quadratic function of t, and hence it can be optimized
easily. Thus, the straightforward approach to solving
(1) is to search all regions Rπ and compute the opti-
mum in each region.

For a fixed vector t, the problem (1) is a minimum-
cost bipartite matching problem and can be solved in
polynomial time, for example by using network flow
techniques. In this way, one can find the region Rπ
to which a parameter t belongs. By parametric lin-
ear programming techniques, one can then find the
boundaries of this region, and one can also determine
the adjacent regions across the boundary edges.

The running time of this approach is, up to a poly-
nomial factor, determined by the number of regions
that are to be explored. The crucial question is there-
fore, how many regions Rπ there are.

We know a polynomial bound only for a very re-
stricted case: namely when the translations t are re-
stricted to a line only. In other words, we consider the
intersection of the partial matching subdivision with
a line.

Theorem 2 A line can intersect the interior of at
most 1 + m(n − m) different regions of the partial
matching subdivision DB,A, for |A| = n and |B| = m.
�

For the special case m = n, this means that there
is only one region, and we get the well-known fact
that the least-squares assignment between two sets of
equal size is independent of t [7], which is also obvious
from the calculation leading to (2).

Proof. The problem of finding an optimal matching
in (1) (for a fixed t) can be formulated as a network
flow problem.

We are given an m×n cost matrix (cij) with cij =
‖(bi + t)− aj‖2

minimize
m∑
i=1

n∑
j=1

cijxij

subject to
∑n

j=1
xij = 1, for i = 1, . . . ,m∑m

i=1
xij ≤ 1, for j = 1, . . . , n

0 ≤ xij ≤ 1

By network flow theory, there is an optimal solution
with xij ∈ {0, 1}, and it represents an assignment

where each row i is assigned to exactly one column j
and each column j is assigned to at most one row i.
(The special case wherem = n is the usual assignment
problem.) Among the n points of A, there will be m
matched and n −m unmatched vertices. We denote
the set of matched vertices by M(x).

Now, if we change t continuously, the solution (xij)
will at some point change to a different solution (x̄ij).
Some vertices will become matched and others will
become unmatched.

Lemma 3 Let (xij) and (x̄ij) be optimal solutions
for parameter values t and t̄, respectively. Then there
is a one-to-one matching σ between the points in
M(x) \ M(x̄) and the points in M(x̄) \ M(x) such
that

〈aσ(j) − aj , t̄− t〉 ≥ 0,

for all j ∈M(x) \M(x̄) As a consequence, we have〈 ∑
j∈M(x̄)

aj −
∑

j∈M(x)

aj , t̄− t
〉
≥ 0 (3)

Proof. The difference x̄−x between two assignments
can be decomposed into an edge-disjoint union of
(a) alternating even-length cycles and (b) alternat-
ing paths of even length starting at a matched vertex
a− of (xij) and ending at an unmatched vertex a+

of (xij). For each such path of type (b), the vertex
a+ will be matched in the new assignment, and the
vertex a− will become unmatched.

Now let a− = a0, b1, a1, b2, . . . , ak−1, bk, ak = a+ be
such an alternating path or cycle (for a− = a+).

The cost difference ∆c = c(x̄)−c(x) between the old
matching x and the new matching x̄ can be expressed
as follows. In order to simplify notation, we have first
written the formulas without translation (t = 0).

∆c =
k∑
i=1

‖bi − ai‖2 −
k∑
i=1

‖bi − ai−1‖2

=
k∑
i=1

(‖bi‖ − 2〈bi, ai〉+ ‖ai‖2)

−
k∑
i=1

(‖bi‖ − 2〈bi, ai−1〉+ ‖ai−1‖2)

= ‖a+‖2 − ‖a−‖2 − 2
k∑
i=1

〈bi, ai〉+ 2
k∑
i=1

〈bi, ai−1〉

= ‖a+‖2 − ‖a−‖2 − 2
k∑
i=1

〈bi, ai − ai−1〉

Now let us bring in the dependence on t and replace
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bi by bi + t:

∆c(t) = ‖a+‖2 − ‖a−‖2 − 2
k∑
i=1

〈bi + t, ai − ai−1〉

= ‖a+‖2 − ‖a−‖2 − 2
k∑
i=1

〈bi, ai − ai−1〉

− 2
k∑
i=1

〈t, ai − ai−1〉

= ‖a+‖2 − ‖a−‖2 − 2
k∑
i=1

〈bi, ai − ai−1〉

− 2〈t, a+ − a−〉

The only term that depends on t is the last term
−2〈t, a+ − a−〉. Now if x is optimal at t, then
∆c(t) must be nonnegative; otherwise we could use
the alternating path or cycle to obtain a better solu-
tion. Similarly, since x̄ is optimal at t̄, we must have
∆c(t̄) ≤ 0. Thus we get ∆c(t)−∆c(t̄) ≥ 0, or

〈t̄− t, a+ − a−〉 ≥ 0

If we add this relation for all alternating paths and
cycles the form the difference x̄ − x, we obtain (3).
(The alternating cycles give no contribution.) �

Now we can conclude the proof of the theorem. Let
us vary t along a line in direction s. Lemma 3 tells
us that, whenever the assignment changes, a matched
point a− can only be replaced by a new matched point
a+ with 〈t̄ − t, a+ − a−〉 > 0, or in other words,
〈a+, s〉 > 〈a−, s〉. If we sort the points a by 〈a, s〉, and
classify the subsets M(x) of matched points of A by
the sum of the ranks in this order, this means that the
sum of the ranks can only go up. The minimum sum of
ranks is

∑m
i=1 i = m(m+1)/2, and the maximum sum

of ranks is
∑m
i=1(n+ 1− i) = (n+ 1)m−m(m+ 1)/2.

Between these two extreme values, there can be only
(n−m)m changes. �

An example showing that the bound is tight can be
easily constructed in one dimension already: the set A
consists of n uniformly spaced points, and B consists
of m points very close together (much closer than the
spacing between the points of A).

4 Conclusion

Still, the most important question is open: is the
complexity of the partial matching subdivision DB,A
bounded by a polynomial? It is possible that a bound
can already be derived from Theorem 2.

Another question arises if we allow rotations. Even
if A and B have the same size and we consider only
the one-parameter family of rotations about a fixed

point, there can be many different optimal assign-
ments, No polynomial bound is known. This prob-
lem can be formulated as a special parametric assign-
ment problem where the costs depend linearly on a
parameter x. For this more general problem, a super-
polynomial lower bound of the form 2

√
n on the num-

ber of optimal assignments has been proved by Pa-
tricia Carstensen [3, 2], based on a construction of
Zadeh [6].

References

[1] A. Bishnu, S. Das, S. C. Nandy, and B. B. Bhat-
tacharya. Simple algorithms for partial point set pat-
tern matching under rigid motion. Pattern Recogni-
tion, 39(9):1662–1671, 2006.

[2] P. J. Carstensen. Complexity of some parametric inte-
ger and network programming problems. Mathemati-
cal Programming, 26(1):64–75, 1983.

[3] P. J. Carstensen. The Complexity of Some Problems in
Parametric Linear and Combinatorial Programming.
PhD thesis, University of Michigan, 1983.

[4] A. Efrat, A. Itai, and M. Katz. Geometry helps in bot-
tleneck matching and related problems. Algorithmica,
31:1–29, 2001.

[5] M. T. Goodrich, J. B. Mitchell, and M. W. Orletsky.
Approximate geometric pattern matching under rigid
motions. IEEE Trans. Pattern Anal. Mach. Intell.,
21:371–379, 1999.

[6] N. Zadeh. A bad network problem for the sim-
plex method and other minimum cost flow algorithms.
Mathematical Programming, 5(1):255–266, 1973.

[7] K. Zikan. The Frobenius metric in image registration.
ORSA Journal on Computing, 3:169–172, 1991.

[8] K. Zikan and T. M. Silberberg. The Frobenius metric
in image registration. In L. Shapiro and A. Rosenfeld,
editors, Computer Vision and Image Processing, pages
385–420. Elsevier, 1992.

251



26th European Workshop on Computational Geometry, 2010

252



EuroCG 2010, Dortmund, Germany, March 22–24, 2010

A new separation theorem with geometric applications

Farhad Shahrokhi
Department of Computer Science and Engineering, UNT

P.O.Box 13886, Denton, TX 76203-3886, USA farhad@cs.unt.edu

Abstract

Let G = (V (G), E(G)) be an undirected graph with

a measure function µ assigning non-negative values

to subgraphs H so that µ(H) does not exceed the

clique cover number of H. When µ satisfies some ad-

ditional natural conditions, we study the problem of

separating G into two subgraphs, each with a mea-

sure of at most 2µ(G)/3 by removing a set of ver-

tices that can be covered with a small number of

cliques G. When E(G) = E(G1) ∩ E(G2), where

G1 = (V (G1), E(G1)) is a graph with V (G1) = V (G),

and G2 = (V (G2), E(G2)) is a chordal graph with

V (G2) = V (G), we prove that there is a separator

S that can be covered with O(
√

lµ(G)) cliques in

G, where l = l(G, G1) is a parameter similar to the

bandwidth, which arises from the linear orderings of

cliques covers in G1. The results and the methods are

then used to obtain exact and approximate algorithms

which significantly improve some of the past results

for several well known NP-hard geometric problems.

In addition, the methods involve introducing new con-

cepts and hence may be of an indepandant interest.

1 Introduction and Summary

Separation theorems have shown to play a key role

in the design of the divide and conquer algorithms,

as well as solving extremal problems in combinato-

rial topology and geometry. The earliest result in this

area is a result of Lipton and Tarjan [10] that asserts

any n vertex planar graph can be separated into two

subgraphs with at most 2n
3 vertices by removing only

O(
√

n) vertices. This result is extended by many au-

thors including Miller et al [11], Fox and Pach [6], [7],

and Chan [3].

Clearly if a graph contain a large clique, then it can

not have a separation property that resembles the pla-

nar case. Fox and Pach [6, 7] have recently studied the

string graphs which contain the class of planar graphs,

and have shown that when these graphs do not con-

tain a Kt,t, of fixed size t, as a subgraph, then a suit-

able separator exits. Although this powerful result is

extremely effective in solving extremal problems, its

computational power is limited to graphs that do not

contain a ”large” complete bipartite subgraph. Chan

[3] studied the problem of computing the packing and

piercing numbers of fat objects in Rd, where the di-

mension d is fixed. He drastically improved the run-

ning time of the first polynomial time approximation

scheme (PTAS) for packing of fat objects due to Er-

lebach et al [5], and also provided the first PTAS for

the piercing problem of fat objects. Parts of Chan’s

[3] work involved proving a separation theorem with

respect to the abstract concept of a measure on fat

objects. Motivated by his work we have defined the

notation of a measure in a more combinatorial fashion

on graphs. Furthermore, we have proven a combina-

torial separation theorem. It should however be noted

that the results in [3] do not imply ours, and our re-

sults do not apply to the general fat objects.

Let µ be a function that assigns non-negative values

to subgraphs of G. µ is called a measure function if

the following hold.

(i) µ(H1) ≤ µ(H2), if H1 ⊆ H2 ⊆ G, (ii) µ(H1 ∪
H2) ≤ µ(H1) + µ(H2), if H1,H2 ⊆ G, (iii) µ(H1 ∪
H2) = µ(H1) + µ(H2), if there are no edges between

H1 and H2, and (iv) µ(H) does not exceed the clique
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cover number of any H ⊆ G.

Central to our result is a length concept similar to

the bandwidth. Let H be a graph with V (G) = V (H)

and E(G) ⊆ E(H) and let C = {C1, C2, ..., Ck} be a

clique cover in H. For any e = xy ∈ E(G), x ∈ Cl, y ∈
Ct, define l(e,G, H,C) to be |t− l|. Let l(G, H,C) de-

note maxe∈E(G) l(e,G, H,C), and let l(G, H) denote

minC∈C l(G, H,C), where C denotes the set of all or-

dered clique covers in H. We refer to l(G, H) as the

length of G in H. It is important to note that when

l(G, H) is small, then G exhibits some nice separation

properties. For instance, one can partition V (G) into

blocks of l(G, H) consecutive cliques of H, and argue

that removal of any block separates G. Particularly,

when l(G, H) = 1, then one can separate G by remov-

ing one clique form H. Similar important concepts

such as treewidth, pathwidth, and bandwidth have

been introduced in the past [2], but none is identi-

cal to the concept of length introduced here. Clearly

l(G, G) ≤ BW (G), where BW (G) is the bandwidth

of G. Moreover as we will see, there is a simple but

important connection between L(G, G) and the di-

mension of interval orders.

Recall that a chordal graph does not have a chord-

less cycle of length at least 4. Our main result which

is Theorem 1 is a generalization of the result stated

earlier in the abstract, to p ≥ 2 graphs, where Gp is

a chordal graph.

Theorem 1 Let µ be a measure on G =

(V (G), E(G)), and let G1, G2, ..., Gp be graphs with

V (G1) = V (G2) =, ..., V (Gp) = V (G), p ≥ 2 and

E(G) = ∩p
i=1E(Gi) so that Gp is chordal. Then

there is a vertex separator S in G whose removal sep-

arates G into two subgraph so that each subgraph

has a measure of at most 2µ(G)/3. In addition, the

induced graph of G on S can be covered with at

most 2pl∗
p−1

p µ(G)
p−1

p many cliques from G, where

l∗ = max1≤i≤p−1l(G, Gi).

Proof of Theorem 1 combines the clique separation

properties of chordal graphs and perfect elimination

trees, together with the properties associated with the

length of a graph. The theorem either finds a suitable

clique separator in the chordal graph Gp, or identifies

a graph Gj , for which the cardinality of the clique

cover is large, and the separates G using length prop-

erties. The application of Theorem 1 to a specific

problem normally requires to define µ(G) to be the

size of a clique cover C in G, and µ(H) is defined to

be the size of C restricted to H, where H is subgraph

of G.

The time complexity of finding the separator de-

pends on the structure of the measure and how fast

we can compute the measure on any subgraph. In

typical applications of interest with p = 2, the sep-

aration algorithm can be implemented to run better

than O(|V (G)|2).

2 Applications

Proper applications of Theorem 1 gives rise to the

following.

Theorem 2 Let G = (V (G), E(G)) be the intersec-

tion graph of a set of axis parallel unit height rect-

angles in the plane. Then, a maximum independent

set in G can be computed in |(V (G)|O(
√

α(G))
, where

α(G) is the independence number of G. Moreover,

there is a PTAS that gives a (1 − ε)−approximate

solution to α(G) in |V (G)|O( 1
ε )

time and requires

O(|V (G)|)2 storage.

Proof sketch. For R1, R2 ∈ V (G), define R1 ≺1

R2, if there is a horizontal line L so that R1 is above L

and R2 is below L. Likewise, define R1 ≺2 R2, if there

is a vertical line L so that R1 is to the left of L and

R2 is to the right of L. Observe that Gi, the incom-

parability graphs for ≺i is an interval graph, i = 1, 2,

and hence is chordal. It is further easy to verify that

l(G, G1) = 1. Finally, let C be a 2−approximate so-

lution for the clique cover number of G that also pro-

vides for a 1/2−approximate solution to independence
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number of G, and for any induced subgraph F , define

µ(F ) to be the restriction of C to F . (Note that µ(G)

can be computed in O(|V (G)| log(|V (G)|)) time [4].)

For obtaining the sub-exponential time algorithm

one can adopt the method in [10] proposed for pla-

nar graphs, by enumerating independent sets inside

of separator and then recursively applying Theorem

1 to G. For the PTAS, one can also use the original

approach in [10] adopted by Chan [3], by recursively

separating G, but terminating the recursion when for

a subgraph F , µ(F ) = O( 1
ε

2) and then applying the

sub-exponential algorithm to F . �

Similarly, one can prove the following.

Theorem 3 Let S be a set of axis parallel unit height

rectangles in the plane. Then, the piercing number of

S can be computed in |S|O(
√

P (S))
, where P (S) is the

piecing number of of S. Moreover, there is a PTAS

that gives a (1 + ε)−approximate solution to P (S) in

|S|O( 1
ε )

time and requires O(|S|)2 storage.

Our sub-exponential time algorithms in Theorems

2 and 3 are the first ones for the unit hight rectangles,

and we are not aware of any previous sub-exponential

algorithms for these problem. Moreover, the storage

requirement for the PTAS in Theorem 2 drastically

improves upon |V (G)|O( 1
ε ) storage requirement of the

best known previous algorithm in [1], due to Agar-

wal et al, that was combining dynamic programming

with the shifting method. Finally the time complex-

ity of PTAS in Theorem 3 drastically improves upon

|S|O( 1
ε
2) in [4].

Theorem 4 Let P, |P | = n be a set of points in the

plane. There is an algorithm for computing the mini-

mum number of discs of unit diameter needed to cover

all points in P that gives an answer in nO(
√

opt(P ) )

time, and O(n2) storage where opt(P ) is the value of

an optimal solution. Furthermore, there is a PTAS

that gives a (1 + ε)−approximate solution in nO( 1
ε )

time, and O(n2) storage.

Proof sketch. For graph G, let V (G) = P , and

for any x, y ∈ P , if they of distance at most 1, then

place xy ∈ E(G). Next, as suggested in [9] consider

a square n by n grid in the plane containing all the

points, so that each cell in the grid is a unit square.

Note that the grid can be placed so that no two points

appear in the boundary of a cell. Define two interval

orders ≺1 and ≺2 on V (G) as follows. x ≺1 y, if

xy /∈ E(G) and x and y are in different vertical strips

of the grid so that x is to the left of y. x ≺2 y, if

xy /∈ E(G) and there is horizontal line L in the plane

so that x is above L and y is below L. Let Gi, i = 1, 2

be the incomparability interval graph associated with

≺i, and note that points in any vertical strip of the

grid constitute a clique of G1 and hence l(G, G1) = 1.

For any xy ∈ E(G), x, y ∈ E(G), place two discs

in the plane that has x and y in its boundary and

call the resulting multi-set of discs C, and note that

|C| = O(n2). If G is disconnected, then we would solve

the problem for each component, and take the union

of the solutions, so we will assume that G is connected.

Thus, we can assume with no loss of generality that

any feasible solution C ′ for any P ′ ⊆ P is a subset of

C, for otherwise we can replace any D ∈ C−C by one

disc from C. Furthermore, it is easy to construct a

feasible solution C so that |C| ≤ cβ(G), where β(G)

is the clique cover number of G and c is a constant

no more than 16, in about O(n2) time. Thus β(G) ≤
opt(P ) ≤ |C| ≤ 16β(G) ≤ 16opt(P ). For any induced

subgraph F in G, define µ(F ) to be |CF |, or, the

cardinality of the restriction of C to F , and note that

β(F ) ≤ µ(F ) and consequently Theorem 1 applies.

Finally follow the details in [10] and the previous

theorems by noting that we will always select our

disc cover solutions from C. (Note that the time

complexity of enumeration inside of the separator

nO(
√

opt(P )).) �

Our sub-exponential time algorithm in Theorem 4

is the first one for the covering problem of Hochbaum

and Mass [9]. In addition the time complexity of
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our PTAS drastically improves time complexity of the

original algorithm that was nO( 1
ε
2) in [9].

Let ≺ be a partial order on a finite set S. The

dimension of ≺, denoted by dim(≺), is the minimum

number of total orders on S whose intersection is ≺
[12].

We finish this section by stating a simple theorem

that establishes some connections between partial or-

ders, the dimension of interval orders and the concept

of length introduced here.

Theorem 5 Let G be a graph.

(i) If l(G, G) = 1, then G is an incomparability

graph.

(ii) If G is an interval graph whose underlying

interval order is ≺, then dim(≺) ≤ l(G, G) + 2.

Justification. For (i), let (C1, C2, ..., Ck) be a

clique cover of G so that for x ∈ Ci and y ∈ Cj ,

we have xy ∈ E(G) only if |i − j| ≤ 1. Now for any

x, y ∈ V (G) with x ∈ Ci, y ∈ Cj with j > i, define

x ≺ y, if and only, if xy /∈ E(G). It is easily seen that

≺ is partial order on V (G) so that Ḡ or the comple-

ment of G is a comparability graph, and hence G is

an incomparability graph. We omit the proof (ii). �
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Abstract

Geometric matching problems are a well studied topic
in computational geometry: Given two geometric ob-
jects P (the pattern) and Q (the model) and a trans-
formation class T , find a transformation t ∈ T that
minimizes the distance between t(P ) and Q with re-
spect to a given distance measure (e.g., the Fréchet
distance or the Hausdorff distance).

In this abstract we introduce a generalization of this
problem to so-called non-uniform geometric match-
ings, where a set of transformations is computed in-
stead of a single transformation. The principal idea
is to decompose the space containing the pattern into
disjoint cells and to compute locally valid transfor-
mations for each cell, in order to make the whole
matching less dependent on local deformations. The
transformations of the resulting set are mutually in-
terdependent to control the degree of continuity of the
whole mapping.

We present constant factor approximations and
an approximation scheme for point sequences under
translations.

1 Introduction

In a geometric matching problem, one asks for a trans-
formation t that minimizes the distance (value of on
objective function) of a geometric object P (called
pattern) transformed by t to a geometric object Q
(called model). Geometric matching problems are
among the most intensely studied fields in computa-
tional geometry, see [1] for a survey of this topic.

Geometric matchings are often used to align spaces
e.g., in medical navigation systems. Here, the task is
to find a mapping from a pattern space (the operation
theatre) into a model space (containing a 3D-model
of the relevant anatomic area of the patient). Such
a mapping, in this context also called registration, is
often computed by matching geometric features that
are measured from both spaces. Using a single trans-
formation of a usual transformation class to register
the two spaces has the drawback that local deforma-
tions and non-uniform disturbances of the measured
features influence the entire mapping.

∗supported by the German Research Foundation (DFG),
grant KN 591/2-2
†Institut für Informatik, Freie Universität Berlin,

{knauer|kriegel|stehn}@inf.fu-berlin.de

In this abstract we introduce a generalization of the
geometric matching concept to so-called non-uniform
geometric matchings that address the stated problems
by computing a set of transformations. The basic
strategy is to partition the pattern space into regions
of interest and to compute one transformation for each
cell. A registration process then consists of two steps,
first determining the cell that contains the point that
is to be mapped and then applying the transformation
associated with this cell. Non-uniform registrations
have to optimize two competing objectives: to match
the pattern features close to the model features while
simultaneously assuring conformity of the mapping
by demanding that transformations of two neighbored
cells are “similar” (with respect to their effect).

1.1 Problem Definition

The input for an usual geometric matching problem
is a class G of geometric objects, a pattern P ∈ G, a
model Q ∈ G, a distance measure ε : G ×G → R+ and
a transformation class T admissible on G. For non-
uniform geometric matchings we additionally have a
partition C = {C1, . . . , Ck} of the pattern space so
that for all i ∈ [k] : Ci ∩P ∈ G ∪ {∅} and a similarity
measure δ : T k → R+ in transformation space.

The task of a non-uniform geometric matching is
to compute a set T = {t1, . . . , tk} ⊂ T of transforma-
tions minimizing

f(P,Q, T, C) = max
(

max
i∈[k]

ε(ti(Ci ∩ P ), Q), δ(T )
)
.

The objective f consists of a distance measure ε in
object space and a a similarity measure δ in transfor-
mation space. The measure δ depends on the consid-
ered transformation class and measures the degree of
continuity of a set of transformations is with respect
to the image of the registration.

2 Non-Uniform Matchings for Point Sequences

In this abstract we consider first variants of the non-
uniform matching problem where the transformation
class T is restricted to translations. We further as-
sume the geometric features to be point sequences of
equal size (|P | = |Q| = n) measured in the pattern
space and defined in the model space. We also as-
sume that the correspondence between the point se-
quences is known, that is, point pi is mapped to qi
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for all i ∈ [n]. As the distance measure ε we con-
sider the maximum Euclidean 1-to-1 distance, that is
ε(A,B) := maxi∈[n] ‖ai−bi‖, for A = (a1, . . . , an) and
B = (b1, . . . , bn). We consider decompositions of the
pattern space into n cells so that each cell contains
exactly one point of P (as it is the case e.g., for a
Voronoi diagram of P ). To bound the degree of con-
tinuity of the combined mapping, we want that two
translations whose corresponding cells share parts of
their boundary are similar with respect to the distance
of their image points. To a measure of similarity of
two translations ta and tb we consider the Euclidean
distance ‖ta(x) − tb(x)‖ of their images of a point
x ∈ Rd. From now on, we don’t distinguish between
a translation and its translation vector and measure
the similarity two translations by the Euclidean norm
of their translation vector difference ‖ta − tb‖.

To make the similarity measure of the transla-
tion set independent from the actual partition C we
introduce a graph G = (T,E) called neighborhood
graph. The vertex set of G are the translations T and
{ti, tj} ∈ E, if the cells corresponding to translations
ti and tj are adjoining. Note, that the edges of the
neighborhood graph could also be selected by crite-
ria other than by the adjacency of cells (i.e., could be
manually chosen). The algorithms presented in this
abstract do not require that the neighborhood graph
resembles the partition of the pattern space.

To simplify notation, we introduce the symbol dij
for ti, tj ∈ T and set dij = 1 if {ti, tj} ∈ E(G) and
dij = 0 otherwise. As the measure δ for the similarity
of the translation set T we take the maximum of the
similarity of any two translations that are connected
in G, i.e., δ(T,G) := maxi,j∈[n] dij‖ti − tj‖.

With this specifications we get the following non-
uniform matching problem which we discuss in the
remainder of this paper:

Problem 1 Given P , Q and G as above, compute a
sequence T of translations (t1, . . . , tn) minimizing

f(P,Q,G, T ) =

max
(

max
i∈[n]
‖ti(pi)− qi‖, max

i,j∈[n]
dij‖ti − tj‖

)
, (1)

where ‖ · ‖ denotes the Euclidean norm. The first
term accounts for the distance of the matched point
set P to Q by considering the L∞ norm of the vector
ti(pi)− qi.

One advantage of considering translations is that
the distance of a matched point pi to its corresponding
point qi and also the similarity of two translations
can be measured in translation space. Consider the
translations si = qi − pi for 1 ≤ i ≤ n and let S :=
(s1, . . . , sn). The distance ‖ti(pi)− qi‖ for a point pi
matched with translation ti to qi can be expressed as

the distance ‖si − ti‖, as

‖ti(pi)−qi‖ = ‖ti+pi−qi‖ = ‖qi−pi−ti‖ = ‖si−ti‖.
The problem of computing a non-uniform matching
for point sequences under translations can also be
formulated in the following way: Consider a straight
line embedding of the graph G′ = (S ∪ T,E′) with
E′ = {{si, ti} | i ∈ [n]} ∪ {{ti, tj} | dij = 1}. As the
vertices of G′ represent translations, we call G′ the
translation graph of S. The edge set E′ consists of two
sorts of edges: (1) edges connecting two translations
ti and tj indicating that they have to be similar, (2)
n edges {si, ti} whose lengths measure the Euclidean
distance of ti(pi) to qi. Note, that the positions of
all s ∈ S are already determined by the input. The
problem of computing a non-uniform registration for
point sequences can hence be formulated as:

Problem 2 Find a placement for all t ∈ T such that
the length of the longest edge in the induced straight
line embedding of G′ is minimal.

Convex Programming Formulation The problem
of computing a non-uniform registration optimizing
Equation 1 can be phrased as a convex optimization
problem:

minimize ε
subject to ‖si − ti‖ ≤ ε, i = 1, . . . , n,

dij ‖ti − tj‖ ≤ ε 1 ≤ i < j ≤ n.
As any metric norm is convex and the maximum of
two convex functions is also convex. Convex optimiza-
tion problems (such as Problem 2) can be solved in
polynomial time e.g., by using the interior-point or
the ellipsoid method [2].

Due to space limitations, we present in this ab-
stract only non-uniform matching problems that have
a convex optimization formulation. In the full version
of this paper we also discuss other variants, some of
which being not convex. The geometric insights and
approximation techniques presented here however can
be adapted to this problems.

3 Constant Factor Approximations

Let Topt be an optimal solution to Problem 2 and let
opt := f(P,Q,G, Topt).

Theorem 1 Choosing ti = qi − pi for 1 ≤ i ≤ n
results in a 3-approximation of opt.

Proof. Assume T to be in optimal position. For any
i and j with dij = 1 we have that ‖ti − tj‖ ≤ opt as
well as ‖ti−si‖ ≤ opt and ‖tj−sj‖ ≤ opt. Moving ti
upon si and tj upon sj increases the distance ‖ti−tj‖
by at most 2 ·opt while setting the distances ‖ti−si‖
and ‖tj − sj‖ to zero, hence ‖ti − tj‖ ≤ 3 ·opt for all
i, j with dij = 1, see Figure 1. �
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si

tj sj

≤ opt

≤ 3 opt

ti ≤ opt ≤ opt

Fig. 1: Illustration of the 3-approximation of Theo-
rem 1

3.1 Complete Graphs in the Plane

Assume P and Q to be point sequences in the plane
and G to be complete, that is, any two translations
have to be compared.

Lemma 2 Let Topt be an optimal choice of transla-
tions. The center copt of the smallest disc enclosing
Topt provides a 1 + 1/

√
3 approximation for points in

the plane and complete neighborhood graphs, if copt
is chosen for all t ∈ T :

f(P,Q,G, (t1 = copt, . . . , tn = copt)) ≤ (1+1/
√

3) opt.

Proof. In optimal position, the distance ‖si− ti‖ for
any 1 ≤ i ≤ n is bounded by opt. All translations of
Topt lie within the smallest disc enclosing Topt whose
radius is bounded by opt/

√
3, as stated in the following

lemma (whose proof is omitted due to space limita-
tions).

Lemma 3 The radius of the smallest disc enclosing a
point set of width µ in the plane is bounded by µ/

√
3.

The distance of each point s ∈ S to copt is bounded
by opt + 1/

√
3 opt. Therefore, the center copt implies

a 1 + 1/
√

3 approximation as stated in Lemma 2. �

But as Topt is unknown, the center copt of its small-
est enclosing disc is unknown as well. On the other
hand, the translation that minimizes the largest dis-
tance to any point of S can be computed in linear time
[3]. It is easy to see, that the center c of the smallest
disc enclosing S is the translation that minimizes the
distance to any translation in S. We have determined
the approximation factor for choosing ti = copt for
i ∈ [n] and know that c is the best possible choice of
a single translation.

Theorem 4 The center c of the smallest disc enclos-
ing the point sequence S results in a (1 + 1/

√
3) ap-

proximation:

f(P,Q,G, (t1 = c, . . . , tn = c)) ≤ (1 + 1/
√

3) opt.

The approximation factor can be improved to 2/3 (1 +
1/
√

3) ≈ 1.05157 by choosing n different translations
in the following way: Let app be the value of the
approximation as presented in Theorem 4. Choose
ti to be the intersection oi of the straight line si c for

i ≤ 1 ≤ n with the circle δapp centered in c with radius
app/3. If δapp does not intersect the line segment si c,
then ti is chosen to be si. For this choice of ti, the
distance ‖si− ti‖ is bounded by 2/3 (1 + 1/

√
3)opt for

each i ∈ [n] which is also the diameter of the circle
δapp, implying that the distances ‖ti−tj‖ for i, j ∈ [n]
are also bounded by 2/3 (1 + 1/

√
3)opt, see Figure 2.

c

δapp

s1

s2

s3

s4

s5

o1

o2

o3

o4

o5

t6 = s6

Fig. 2: The outer circle is the smallest circle enclosing
S (radius app), the inner circle δapp has a radius of
app/3 with the same center.

Theorem 5 Choosing the translations t1, . . . , tn in
the described manner results in a 2/3 (1 + 1/

√
3) ap-

proximation that can be computed in linear time.

4 A FPTAS for trees in the plane

In this section we present an approximation scheme
for neighborhood graphs that are trees and point se-
quences in the plane. This approximation is based on
a relaxed decision problem formulation. The decision
variant of Problem 2 can be stated as:

Problem 3 For a given µ ≥ 0 and a translation
graph G′ = (S ∪ T,E′) that is a tree with S, T ⊂ R2,
is there a placement of T s.t. the length of the longest
edge in the induced straight line embedding of G′ is
at most µ?

Let us first introduce some notation: we impose the
structure of the neighborhood graphG(T,E) on S and
hence call si and sj neighbored if {ti, tj} ∈ E. Let
δ(c, r) be a disc of radius r centered in c and define
δµ := δ((0, 0), µ). The Minkowski sum X ⊕ Y of two
sets X and Y is defined as X⊕Y := {x+y |x ∈ X, y ∈
Y }. For X being a geometric figure and Y = δµ the
set X ⊕ δµ is the set of all points z so that there is a
point x ∈ X with ‖z − x‖ ≤ µ.

The following geometric observations hold for em-
beddings that meet the edge length constraint:

1. for all ti ∈ T we have that ti ∈ δ(si, µ)
2. if {ti, tj} ∈ E(G) then ti ∈ δ(sj , 2µ) and tj ∈
δ(si, 2µ)
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3. if c1, . . . , ck are the children of si then ti ∈⋂
j∈[k] δ(cj , 2µ) ∩ δ(si, µ)

These observations lead to the definition of the ad-
missible region regµ (s) for a point s ∈ S, which is the
set of all translations t for which a straight line em-
bedding of the subtree rooted in s exists that satisfies
the edge length constraint. The region regµ (s) for a
given µ is convex and can be described inductively:
if s is a leaf in G then regµ (s) = δ(s, µ). If s is an
internal node with children c1, . . . , ck, then

regµ (s) =
⋂
i∈[k]

(
regµ (ci)⊕ δµ

)
∩ δ(s, µ). (2)

Let r ∈ S be an arbitrarily chosen root of G. By
construction we have that the answer to Problem 3 is
“yes” exactly if regµ (r) 6= ∅.

Solving the decision problem exactly involves com-
puting Minkowski sums of all admissible regions and
their intersections. The boundary of an admissible
region of a point s can in the worst case be de-
fined by all “µ inflated” admissible regions of the
children of s. Fortunately, it is not necessary to
maintain the exact shape of the admissible regions
to compute a (1 + λ) approximation. Instead, we ap-
proximate these regions by convex polygons r̃egµ (s)
so that ~h

(
r̃egµ (s) , regµ (s)

)
≤ ε and additionally

regµ (s) ⊂ r̃egµ (s), where ~h (A,B) is the directed
Hausdorff distance from A to B. We also approximate
the inflated admissible regions regµ (s)⊕δµ by convex
polygons inflµ (s) so that regµ (s)⊕ δµ ⊂ inflµ (s) and
~h
(
inflµ (s) , regµ (s)⊕ δµ

)
≤ ε.

Relaxing the decision problem An algorithm A
that uses the described inductive strategy implied by
Equation 2 to decide Problem 3 for given µ ≥ 0 and
ε > 0 while maintaining the approximated instead of
the exact regions returns

• false for any µ < opt− ε,
• true for any µ > opt,
• either true or false if µ ∈ [opt− ε,opt).

Note, that two inflated approximative admissible re-
gions inflµ (s) and inflµ (s′) might intersect, even
though regµ (s)⊕ δµ∩ regµ (s′)⊕ δµ = ∅. Let s ∈ S be
an internal node of G and let c1, . . . , ck be the children
of s. For any t ∈ r̃egµ (s) we have that ‖t− s‖ ≤ µ+ ε
and ∀i ∈ [k] ∃t′ ∈ r̃egµ (ci) : ‖ci−t′‖ ≤ µ+ε∧‖t−t′‖ ≤
µ+ ε.

Let app′ be the value of the 3-approximation as de-
scribed in Theorem 1, which gives us app′/3 ≤ opt ≤
app′. Set ε to λ · app′

/3. Consider an uniform sam-
pling of the interval [app′/3,app′] with sample width
ε (i.e., the distance of two consecutive samples is ε).
The smallest sample µ′ of the sample set for which
the approximated admissible region of r is not empty

satisfies that |µ− opt| ≤ λ · app′/3 < λ · opt, hence
the embedding computed for the value µ′ realizes a
(1 + λ) approximation.

Theorem 6 For G,P,Q given as before and a λ >
0, a sequence of translations T can be computed in
O ((n 1/

√
λ) log 1/λ) time so that

f(P,Q,G, T ) ≤ (1 + λ) opt.

Proof. Using binary search, it takes O (log 1/λ) time
to find the smallest value µ′ for which the approxi-
mated admissible region of r is not empty. A single
relaxed decision problem for a µ ∈ [app′/3,app′] can
be decided in O

(
n
√

1/λ
)

time: as shown by Rote
[4], any convex planar figure can be approximated by
a convex polygon that surrounds the figure and has
O
(√

B/ε
)

points on its boundary and is in ε Haus-
dorff distance to the figure, where B is the length of
the boundary of the figure. Any admissible region
is defined as – or intersected by – a disc of radius µ
and is inflated (by taking the Minkowski sum) by a
disc of radius µ. Hence any admissible convex region
can be covered by a disc of radius 2µ which bounds
the length of the boundary of an admissible region to
4πµ. By choosing ε = λ · app′/3 we have that any
inflated admissible region can be approximated by a
convex polygon using O

(√
4πµ/λ·app′/3

)
= O (1/√λ)

vertices, as µ ≤ app′. Each region inflµ (s) for all
nodes s ∈ S \ {r} is intersected exactly once to gain
the (approximated) admissible region of the parent of
s. As shown by Toussaint [5], two convex polygons
can be intersected in linear time, which leads to a to-
tal runtime of O (n/√λ) to compute a single relaxed
decision problem instance. �
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Geometric realization of a triangulation on the Klein bottle

with one face removed

Atsuhiro Nakamoto∗ Shoichi Tsuchiya†

Abstract

LetM be a map on a surface F 2. A geometric realiza-

tion of M is an embedding of F 2 into a Euclidian 3-
space R3 with no self-intersection such that each face
of M is a flat polygon. In earlier researches, it has
been proved that every triangulation on the sphere
and on the torus has a geometric realization. More-
over, it has been proved that every triangulation G
on the projective plane has a face f such that the tri-
angulation G− f on the Möbius band obtained from
G by removing the interior of f has a geometric re-
alization. In this paper, we shall prove that every
5-connected triangulation G on the Klein bottle has
a face f such that G− f has a geometric realization.

1 Introduction

A map on the surface F 2 is a fixed embedding of a
graph on F 2. A triangulation on a surface F 2 is a
map on F 2 such that each face is bounded by a 3-
cycle, where a k-cycle means a cycle of length k. A
link of a vertex v of a graph G is the boundary walk
of the union of the faces incident to v. We suppose
that the graph of a map is always simple, i.e., with
no multiple edges and no loops. Let M be a map
on a surface F 2. A geometric realization of M is an
embedding of F 2 into a Euclidian 3-space R3 with
no self-intersection such that each face of M is a flat
polygon.

Steinitz has proved that a spherical map G has a
geometric realization if its graph is 3-connected [10].
(He actually proved that G has a geometric realization
such that no two adjacent faces lie on the same plane
in R3 if and only if G is 3-connected.) His theorem
claims that every spherical triangulation has a geo-
metric realization since a triangulation is 3-connected.
Moreover, Archdeacon et al. have proved that every
toroidal triangulation has a geometric realization [1].
In general, Grünbaum conjectured that every triangu-
lation on any orientable closed surface has a geomet-
ric realization [6], but Bokowski et al. showed that a
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triangulation by the complete graph K12 with twelve
vertices on the orientable closed surface of genus 6 has
no geometric realization [3]. Hence Grünbaum’s con-
jecture is no longer true now but it is still open for
the orientable closed surface of genus from 2 to 5.

Let us consider nonorientable surfaces. It is known
that any nonorientable closed surface is not embed-
dable in R3. So, no map on nonorientable closed sur-
faces has a geometric realization. However, a nonori-
entable surface with one open disk removed is known
to be embeddable in R3. Hence a map G on a nonori-
entable closed surface might have a face f such that
G− f has a geometric realization.

Let G be a triangulation on the projective plane and
let f be a face of G. For simple notations, we call a
triangulation on the projective plane and that on the
Möbius band a projective triangulation and a Möbius
triangulation, respectively, throughout the paper. For
projective triangulations, Bonnington and Nakamoto
have proved the following [2].

Theorem 1 (Bonnington and Nakamoto [2])
Every projective triangulation G has a face f such
that G− f has a geometric realization.

Although Theorem 1 asserts that every projective
triangulation G has a face f such that G−f has a ge-
ometric realization, a projective triangulation might
have a face f such that G−f has no geometric realiza-
tion. We obtain such a triangulation from Brehm’s ex-
ample. Brehm [4] found a Möbius triangulation with
no geometric realization shown in Figure 1. (In Fig-
ure 1, identify vertices with the same label.)

Brehm’s counterexample implicitly assures that a
projective triangulation G has no geometric realiza-
tion if G has a face f and a 3-cycle C such that the
boundary cycle of f and C are disjoint and bound an
annular region. In this case, we say that C is a nesting
3-cycle of f . (In Figure 1, if 123 is the boundary of f ,
then 456 is a nesting 3-cycle of f .) Recently, we have
characterized a face f of a projective triangulation G
such that G−f has a geometric realization, as follows.

Theorem 2 (Nakamoto and Tsuchiya [8]) Let
G be a projective triangulation and let f be a face
of G. Then G − f has a geometric realization if and
only if there is no nesting 3-cycle of f in G.
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Figure 1: A Möbius triangulation with no geometric
realization constructed by Brehm

Theorem 2 asserts that only the structure of
Brehm’s example with a boundary 3-cycle and its
nesting 3-cycle breaks the geometric realizability of
Möbius triangulations.

In the current work, we consider the case of the
Klein bottle. For a simple notation, we call a tri-
angulation on the Klein bottle a Klein triangulation.
Although every projective triangulation G has a face
f such that G−f has a geometric realization by The-
orem 1, there exists a Klein triangulation with no
such face. We can construct such a triangulation from
two Brehm’s counterexamples by pasting along their
boundaries since the Klein bottle is obtained from two
Möbius bands by pasting along their boundaries. (See
Figure 2.) The Klein triangulation G shown in Fig-
ure 2 has three disjoint 3-cycles each of which divides
the Klein bottle into two Möbius bands. (The 3-cycles
123, 456, 4′5′6′.) Hence G has no face f such that
G − f has a geometric realization, since G − f must
have a Brehm’s counterexample as a submap.

1

2

3

5′

4′

7′

8′

9′

6′

4

5

6

7
8

9

Figure 2: A Klein triangulation G with no face f such
that G− f has a geometric realization.

Proposition 3 There exists a Klein triangulation G
with no face f such that G− f has a geometric real-
ization.

Which Klein triangulations G have a face f such
that G−f has a geometric realization? In this paper,
we shall prove the following.

Theorem 4 Every 5-connected Klein triangulation
G has a face f such that G− f has a geometric real-
ization.

Observe that if G is 5-connected, G contains no 3-
cycle which divides the Klein bottle into two Möbius
triangulation.

2 Decomposition of Klein triangulation into two

Möbius triangulations

To prove Theorem 4, we shall construct a geometric
realization of G − f . To do so that, we devide G
into two Möbius triangulations with good property
for making a geometric realization of G− f .

First, we shall prove that G has a cycle C sepa-
rating G into two Möbius triangulations M1 and M2.
Choosing C carefully, we can take C in G so that the
following is satisfied.

Lemma 5 A 5-connected Klein triangulation G con-
tains a cycle C dividing G into two Möbius triangu-
lations M1, M2 such that:

(i) M2 contains a cycle D homotopic to the center
line of M2 and D is disjoint from C and

(ii) any vertex of C is neighboring to vertices on D.

Let ∂M1 (resp., ∂M2) denote the boundary cycle of
M1 (resp., M2). Note that C = ∂M1 = ∂M2.

Let G be a map on a surface and let xy be an edge
of G. Contraction of xy is to remove xy and identify
x and y. (If the resulting map has a face bounded by
a 2-cycle, then we replace the multiple edge with a
single edge.) Its inverse operation is called a splitting
of a vertex.

A K5-triangulation is a triangulation on a Möbius
band whose graph is isomorphic to a complete graph
K5 with five vertices. A K5-triangulation plays an
essential role for a geometric realization of a Möbius
triangulation [2, 5].

Let H0 be a K5-triangulation with vertices vi, for
i = 1, 2, 3, 4, 5, where ∂H0 = v1v2v3v4v5 is the bound-
ary. Let H be a map obtained from H0 by a sequence
of a splitting of each vertex vi into two vertices vi and
v′
i

of degree 3 or no splitting of vertex of H0. Then
we call H a split-K5. We call a vertex of H whose de-
gree greater than 2 a node and a path in H containing
only two nodes as its two endpoints a segment. There
are two ways of a splitting vi whether v′

i
lies on the

boundary or not. A node v of H is called a boundary
node if it lies on the boundary of H . Otherwise it is
called an inner node. (In Figure 3, v′

3
is a boundary

node and v′
2

is an inner node.) By the lemmas proved
in [2, 5], we can prove the following.
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Lemma 6 The Möbius triangulation M1 contains a
split-K5 with five or six boundary nodes as a subdi-
vision.

v1 v2 v3 v4

v4 v1v5 v4 v1v5

v1 v2 v3 v4v′
3

v′
2

Figure 3: A K5-triangulation (left) and a split-K5

(right).

Now we consider a structure of M2. We prove that
M2 contains an inner vertex v (i.e., v /∈ V (∂M2))
which satisfies the following lemma.

Lemma 7 The Möbius triangulationM2 contains an
inner vertex v whose link contains at least three ver-
tices of ∂M2.

v1 v2 v3 v4

v1v5v4

v

Figure 4: A link of v inM2. (The shaded region shows
the interior of L.)

3 Construction of geometric realization

In this section, we would like to show that a 5-
connected Klein triangulation G has a face f such
that G − f has a geometric realization. Let us put
an example of a geometric realization of G − f . By
Lemmas 5, 6 and 7, G has a cycle C dividing G into
two Möbius triangulations M1 and M2 such that:

(i) M1 contains a split-K5 with five or six boundary
nodes as a subdivision and

(ii) M2 contains an inner vertex v such that the link
of v contains at least three vertices of ∂M2.

Let H be a Möbius triangulation which contains a
split-K5 with five or six boundary nodes as a subdi-
vision. It has been proved that H has a geometric

realization each segment of ∂H is a straight segment
[2, 5]. Let Ĥ denote such a geometric realization of H .
Figure 5 shows an example of Ĥ with five boundary
nodes and no inner node. The boundary of Ĥ is said
to satisfy an s-condition if there exists a view point s
such that the segment of ∂Ĥ can be seen from s except
for only one segment. Observe that ∂Ĥ = v1v2v3v4v5
shown in Figure 5 satisfies an s-condition since we can
see all the segments of ∂Ĥ except for v1v2. In this
case, we can easily see that we can put four triangu-
lar disks v2v3s, v3v4s, v4v5s and v5v1s to the body of
Ĥ without collisions.

v1

v3

v2

v4

v5

Figure 5: A geometric realization of H with five
boundary nodes and no inner node.

SinceM1 contains a split-K5 with five or six bound-
ary nodes as a subdivision, we obtain a geometric real-
ization ofM1, denoted by M̂1, such that ∂M̂1 satisfies
an s-condition. Let L be the link of an inner vertex v
in M2 such that |V (L) ∩ V (∂M2)| ≥ 3. We would like
to put faces of M2 in the exterior of L into the body
of M̂1 so that the boundary of the resulting geometric
realization satisfies an s-condition. So we proved the
following.

Lemma 8 Let L be the link of an inner vertex v in
M2 such that |V (L) ∩ V (∂M2)| ≥ 3. The triangula-
tion obtained from G by removing the interior of L
has a geometric realization ĜL such that ∂ĜL satisfies
an s-condition.

It is not difficult to see that all faces in the interior
of L except one can be added to ĜL without collisions
since ∂ĜL satisfies an s-condition. Therefore G has
a face f such that G − f has a geometric realization
and hence we can prove Theorem 4.

4 Conjecture

In this paper, we have considered 5-connected Klein
triangulations. However, if we want to avoid the three
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disjoint 3-cycles each of which separates a Klein trian-
gulation into two Möbius triangulations, then the 4-
connectivity of G suffices. So we do not know whether
the 5-connectivity of Klein triangulations in Theo-
rem 4, and hence we have the following.

Conjecture 1 Every 4-connected Klein triangula-
tion G has a face f such that G − f has a geometric
realization.

5 Conclusion

To deal with geometric realizations of the nonori-
entable maps, we consider the geometric realizability
of a triangulation on a nonorientable closed surface
with one face removed.

For a projective triangulation G, Theorem 1 claims
that G has a face f allowing a geometric realization
of G− f , and Theorem 2 characterizes such a face f .

For a Klein triangulation G, we have been able to
prove that G has a face f allowing a geometric real-
ization of G− f , if G is 5-connected. However, every
G does not necessarily have such a face. We want to
know a geometric realizability of a Klein triangula-
tion with one face removed, but the problem does not
seem to be easy, since the topology of the Klein bottle
is not so simple as that of the projective plane.
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Real-Time Offset Surfaces

A. von Dziegielewski ∗ R. Erbes† E. Schömer ‡

Abstract

We present a novel technique for the direct render-
ing of offset surfaces for polygonal meshes. The visi-
ble part of the offset surface of each triangle, defined
as the union of three spheres, three cylinders and a
prism, is constructed in a shader program utilizing
the geometry shader. Our method creates exact off-
set surfaces, up to pixel resolution. Possible appli-
cations are real-time visualization of offset surfaces,
e.g. for GPU-based collision detection or conserva-
tive voxelization and rasterization of complex triangle
meshes.

1 Introduction

When passing geometry to a graphics card, whether
for rendering-related reasons or for general purpose
processing, one always has to deal with the problem
that hardware rasterization in general is not conser-
vative [11], i.e. the fragments produced do not form a
superset of the geometry projected onto the viewing
plane.

A common approach to achieve conservativeness is
not to render the geometry itself but an adequate off-
set surface. For a given geometry A ⊂ R3 and δ > 0
we define the offset Oδ(A) of A to be the Minkowski
sum of A and the solid ball Bδ(0) centered at the ori-
gin,

Oδ(A) = A⊕ Bδ(0) =
{
x
∣∣∃a ∈ A : ‖x− a‖ ≤ δ

}
and the offset surface of A to be its boundary:
Sδ(A) = ∂Oδ(A). We call δ the offset radius.

Given a N × N -viewport, the rasterization of the
offset surface can be shown to be a conservative ras-
terization of the initial geometry if δ >

√
3

2N [6].
We present a novel technique for generating offset

surfaces for polygonal meshes as a rendering process.
Besides conservative rasterization, our method can

be directly used for GPU-based collision detection as
described in [2]. The authors point out accuracy prob-
lems with overlap tests, inherent to image-based inter-
section techniques. Applying the technique presented
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here will overcome these issues, making the collision
detection conservative (reliable) and easily extendable
to distance testing with an arbitrary safety clearance.

Another possible application is hardware voxeliza-
tion [7, 1]. Applying an adequate offset to a geometry
with our method yields a conservative voxelization of
the initial geometry with a given error bound.

2 Previous work

Attempts to overcome the problem of nonconserva-
tive rasterization have been made [4]. Similar to our
work a combination of a geometry and a fragment
shader are used to achieve conservativeness, but their
method only applies rather coarse depth values, and
their computation highly overestimates depth values
for triangles with normals perpendicular to the view-
ing plane. Further their method cannot render ar-
bitrary offsets. We overcome this inaccurate depth
value estimation and therefore can give proper bounds
on the deviation from each produced fragment to the
original geometry.

Previous work on offset surfaces [9, 3, 8] mainly
deals with the computation and extraction of offset
geometry, therefore these existing methods are not
applicable for real-time offset rendering. In one of
the few publications on offset visualization [5], the
authors propose to generate an adaptive distance field
around the mesh and to extract the offset boundary
as an isosurface at interactive rates using splatting. In
contrast to our approach, a time consuming process
of creating a distance field is needed.

Our approach follows the general idea of [9, 3].
They use the fact that an offset surface of a trian-
gle equals the union of the surfaces of three spheres,
three cylinders and a prism, trimmed at their intersec-
tion points. Our method circumvents this challenging
process of trimming. As we are only interested in ren-
dering the offset surface, it is implicitly done by the
depth buffer.

A method for extracting offset geometry is pre-
sented in the recent work of [8]. The authors compute
an adaptive distance field around the input geome-
try, storing the minimum and an approximated maxi-
mum distance to each triangle using special distance-
functions (ball, cylinder prism). They generate the
offset in an isosurface extraction process followed by
feature reconstruction and mesh simplification.
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3 Rendering Offsets on the Fly

Given a, b, c ∈ R3 we denote T(a,b,c) to be the trian-
gle with its vertices a, b, c and edges eab, ebc, eac.
For an edge eab and δ > 0 we define the solid cylin-
der Cδ(eab) with axis eab and radius δ to be the set

Cδ(eab) =
{
x ∈ R3

∣∣∣ ∥∥(x− a)× b−a
‖b−a‖

∥∥2 ≤ δ2)

∧ 0 ≤ (x−a)·(b−a)
‖b−a‖2 ≤ 1

}
.

For a given triangle T(a,b,c) with normal
n = (b−a)×(c−a)

‖(b−a)×(c−a)‖ we define a (δ-) offset-prism
of T(a,b,c) to be the convex hull of the two shifted
triangles T(a+δn,b+δn,c+δn) and T(a−δn,b−δn,c−δn):

Pδ(T(a,b,c)) = CH
{

a+ δn, b+ δn, c+ δn,

a− δn, b− δn, c− δn
}
.

The offset to a triangle T(a,b,c) equals the union of
three spheres, three cylinders and a prism:

Oδ(T(a,b,c)) = Pδ(T(a,b,c)) ∪ Cδ(eab) ∪ Cδ(ebc)
∪Cδ(eac) ∪ Bδ(a) ∪ Bδ(b) ∪ Bδ(c).

The straightforward method, to compute and tessel-
late this geometry for every triangle, is not practical
in the case of a high triangle count. In our appli-
cations we use meshes consisting of up to one million
triangles. Let us assume the tessellation process yields
roughly 100 triangles per sphere or cylinder, then the
resulting storage would be around 10 gigabytes. This
by far exceeds the memory of even modern graphics
cards, and hence the resulting triangles could not be
stored in a display list [12]. The usage of display lists
is absolutely essential when we think of visualizing the
offsets of a mesh at interactive rates.

We therefore present a new approach to efficiently
compute and render the exact offset geometry up
to pixel resolution. The original mesh can easily be
compiled in a display list and resides in graphics
memory. A combination of a geometry shader [11]
and fragment shader [10] computes the depth-values
of fragments of the offset boundary on the fly, hence
no extra storage is needed.

In our new method, every triangle is processed
by the following rendering pipeline: First the vertex
shader passes on the vertices of the triangle to the
geometry shader stage without changing anything.
The geometry shader creates a patch for each edge
of the triangle in the xy-plane and also emits the
two triangles of the offset prism in 3d. The latter
get rasterized with the correct depth value and the
fragments can be written to the depth buffer directly.
The rectangular patches of the edges however still
have a depth value according to z = 0, hence we

calculate the correct depth value for each patch-
fragment with a ray casting method, as shown in
Figure 1.

Figure 1: For each edge of the triangle projected to
the xy-plane, a patch is constructed in the geome-
try shader stage and the appropriate depth values are
computed in the fragment shader (blue, red). To-
gether with the shifted triangle (green), the final offset
surface is rendered, and dispensable fragments (black)
are clipped.

We now give a detailed description of the shaders.
We used the OpenGL Shading Language (GLSL) [10].

3.1 Vertex stage

In the rendering pipeline, the vertex shader is respon-
sible to apply any kind of transformations on the ver-
tex data. In our case the vertex shader simply passes
on the position values for each vertex to the geometry
shader.

3.2 Geometry stage

The geometry shader [11] is able to create new primi-
tives (in our case triangles) that are passed on to the
rasterization stage just as primitives directly rendered
by OpenGL. In contrast to the previous stage, where
each vertex was treated independently, now informa-
tion on vertex-connectivity is provided, i.e. we can
work on the input triangles. In the general case we
emit eight triangles per input triangle: two for each
edge-patch and two triangles for the offset prism.
For each edge eab of the triangle we compute a rectan-
gular patch that is a bounding box of the projection
of the δ-balls Bδ(a), Bδ(b) and the δ-cylinder Cδ(eab)
on the viewing plane. The geometry shader computes
and emits the triangles of the tessellated patch{

s, t, v, u
}

= T(s,t,u) ∪ T(t,v,u),

as shown in Figure 2. The dimensions of the patch
are given as

d1 =
δh

‖h‖
, d2 =

 −(d1)y
(d1)x

0

 , h =

 (pz(b− a))x
(pz(b− a))y

0

 ,

where pz(·) is the orthogonal projection onto the view-
ing plane.
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t

v

u

s pz(a)

pz(b)
d2

d1

Figure 2: the patch for the edge eab

The offset triangles of the δ-offset prism can be com-
puted by shifting the vertices a, b, c by δ once in nor-
mal direction and once in the opposite direction. The
rectangular faces of the prism are not needed, since
they are completely occluded by the cylinders.
All emitted triangles are now rasterized and cut into
loose fragments. To be able to relate the fragments
to their edges or offset triangles, we pass on two 4-
vectors (to the fragment shader) holding all informa-
tion needed. The coordinates of the vertices of the
edge are passed as color values and the information,
whether the fragment belongs to an offset triangle or
a patch, is encoded in the alpha channels.

3.3 Fragment stage

The fragment shader now has to cope with the follow-
ing three tasks: It must decide whether the fragment
f belongs to an offset triangle or an edge-patch, it
must discard the fragments that are outside the offset
and finally adjust the correct depth values.

The first one can be done easily by checking
the alpha value of the variables received from the
geometry shader. In the case of an offset triangle,
the z coordinate of the built-in fragment coordinates
can be mapped directly to the output depth value
just like in the fixed function pipeline.

For the computation of the correct depth value
for a patch-fragment we define the line ẽab as the
edge eab extended to infinity and the endless cylin-
der Cδ(ẽab) = Sδ(ẽab), given in the implicit form:

Cδ(ẽab) =
{
p ∈ R

∣∣∣ ∥∥(p−a)×(b−a)
∥∥2 ≤ δ2‖b−a‖2

}
.

The intersection of the ray

r(λ) =

 fx
fy
0

+ λ

 0
0
−1

 , λ > 0

with ∂Cδ(ẽab) yields the quadratic equation∥∥∥(f − a− λez)× (b− a)
∥∥∥2

= δ2‖b− a‖2

⇔
∥∥∥ (f − a)× (b− a)

‖b− a‖︸ ︷︷ ︸
=:c

−λ
(
ez ×

(b− a)
‖b− a‖︸ ︷︷ ︸
=:d

)∥∥∥2

= δ2

that we can solve for λ :

λ1,2 = c·d
d·d ±

√(
c·d
d·d
)2 − c·c−δ2

d·d .

Of the two possible values we choose the greater one
(λ1) and set fz = −λ1, since we are interested in the
intersection closer to the viewing plane.

So far we have only considered an endless cylinder
with axis eab. To get the correct offset Sδ(eab), we
need to clip the cylinder at a and b, i.e. all fragments
not fulfilling

0 ≤ (f − a) · (b− a) ≤ (b− a) · (b− a)

have to be either projected on

• the ball Bδ(a) for (f − a) · (b− a) < 0 or

• the ball Bδ(b) for (f−a)·(b−a) > (b−a)·(b−a).

Both tasks are easy as we just have to intersect r(λ)
with the respective ball to get the correct depth value.
In the case of no intersection, we discard the fragment.
This only happens in the corners of the patch, where
it is outside the projected balls around a and b, as
shown in Figure 1.
For example, in the case of Bδ(a), the intersection
yields

fz = −λ = az −
√
δ2 − (fx − ax)2 − (fy − ay)2.

4 Results

For benchmarking we used a GeForce GTX 280 with 1
GB of memory and a 3.0 GHz CPU. The models were
rendered to a N × N = 800 × 800 viewport under
orthographic projection and scaled by 0.75/∆, with
∆ being half the diameter of the bounding box of
the model. The offset radius δ was chosen to be a
multiple of the length of a voxel diagonal: δ = n

√
3
N .

The resulting FPS for different choices of n can be
found in Figure 3.

5 Conclusions

With our new approach we are able to render offset
surfaces for highly complex meshes at interactive rates
on a GeForce GTX 280 graphics card.

A comparable non-GPU-approach, to calculate and
tessellate offset spheres, cylinders and prisms at a pre-
processing stage for the later rendering, is not only
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model FPS
name # triangles n = 0.5 (conservative rasterization) n = 1 n = 5 n = 10 n = 20 n = 40
X-Wing 6,073 1363.0 993.4 271.2 141.0 76.9 29.4
Buddha 26,999 505.1 463.0 113.6 43.5 21.7 7.6
Gargoyle 40,348 263.0 169.0 34.5 16.4 11.8 4.5
Steering gear 261,807 51.3 28.9 5.3 2.4 1.9 6.9
Dragon 871,414 18.2 14.7 3.5 1.4 0.9 0.3

Figure 3: Frame rates for different input models with different offset radii.

Figure 4: Original dragon model and offset surface (n = 10).

significantly slower and less accurate (due to tessella-
tion errors) but would produce an exorbitant number
of triangles and therefore exceed the rendering capac-
ity even of modern graphics hardware.

Our method is lightweight and, due to the uti-
lization of the geometry shader, no preprocessing is
needed. Since the algorithm works on every trian-
gle independently, and does not use any information
on the mesh connectivity, we do not need the input
meshes to meet any topological requirements and can
even process scattered triangles or triangle soups.
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A fast and easy-to-implement algorithm for the Minimal Translational
Distance (MTD) of boxes

Kai Werth∗ Elmar Schömer†

Abstract

Several methods for penetration depth and Euclidean dis-
tance calculation exist for convex bodies. They mostly are
uneasy to describe and complex in implementation. Due
to their general specification they also are not practical in
the case of primitive bodies like boxes or triangles. In this
work we present an easy-to-implement algorithm to com-
pute the MTD of two convex polyhedra that is runtime op-
timized for primitive shapes. We describe a detailed im-
plementation for boxes that runs faster than existing ap-
proaches and give the theory to use the scheme for general
convex polyhedra.

1 Introduction

The minimal translational distance (MTD) of two objects
is the shortest translation vector ”that results in the objects
being in contact” [1]. In the case of intersecting objects,
we call its length the penetration depth and Euclidean dis-
tance otherwise.

Little is published on penetration depth methods. But
there exist many implementations for penetration depth of
convex objects as it is of relevance for applications like
physics simulation where illegal situations of penetrating
objects have to be legalized (c.f. [12] or [4]). In broad-and-
narrow-phase based algorithms it is used to detect bound-
ing volume collisions like [7] or [5].

Only few implementations exist to compute the distance
of convex objects like [3] and [13], and they are often hard
to implement. The majority of implementations is based
one of these three concepts: GJK-algorithm from [2], ex-
ternal Voronoi regions ([11] and [10]) or Minkowski sums
([1]). One remarkable box/box distance test exists in [3].
It reduces the problem two 6 ∗ 6 rectangle tests of which
each one needs 81 case distinctions, which makes it very
uneasy to implement. Further it only provides the squared
distance and no real MDT for intersecting boxes.

The algorithm described in this work provides a solution
for both, penetration and distance. It concentrates on box
pairs, but works in the same way for triangles, rectangles
or pyramids. Further, the pair partners do not have to be of
the same type which is applicable for common operations

∗Department of Computer Science, Johannes-Gutenberg-University,
werth@informatik.uni-mainz.de

†Department of Computer Science, Johannes-Gutenberg-University,
schoemer@informatik.uni-mainz.de

such as box/triangle tests. In general the method works
for any two polytopes, but the complexity is quadratic in
numbers of edges. The method is based on the separat-
ing axis theorem (SAT) for convex polyhedra which was
introduced in [6].

Unlike other approaches for primitive shapes like [9]
our approach does not provide an early-out strategy. It
always tests all eligible separating axes to find the maxi-
mal separation. On the other hand this makes our approach
suitable for parallel implementations for GPGPU or other
SIMD architectures in which every thread should have the
same number of operations.

2 About this document

The document is structured as follows: section (3) gives an
introduction on SAT. In section (4) we describe the pene-
tration depth computation for two intersecting boxes. This
will be followed in section (5) by the pairwise distance
algorithm on boxes. The MTD algorithm then is a conclu-
sion from section (4) and section (5) and will be presented
in section (6). Section (7) will give a constructive proof
and a conclusion in section (9) .

3 SAT

Theorem 1 (Separating Axis Theorem (SAT)) Given
two convex objects A and B

A∩B = /0 ⇐⇒ ∃ a plane that separates A from B

A proof for SAT can be found in ([7]). There we also learn,
that for two convex polyhedra P1 and P2 it suffices to test
a finite number of planes, namely those that are either

• parallel to one face f with f ∈ P1 or f ∈ P2 or

• parallel to two edges e1,e2 with e1 ∈ P1 and e2 ∈ P2.

If no such separating plane can be found, P1 and P2
have a non-empty intersection. The normal of a separating
plane, if it exists, is called the separating axis. The sepa-
rating axis test itself is done as follows: Project P1 and P2
on each eligible separating axis n. If any two projections
correspond to two disjoint line segments then n is a sepa-
rating axis and P1 and P2 are disjoint. The separating axis
theorem tells us that we only have to test a finite number
of eligible axes namely the normals of all faces of P1 and
P2 and the pairwise cross products of the edge directions
(c.f. fig. (1)).
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P1

P2

n

Figure 1: Two polygons in R2 and a separating axis.

4 Penetration depth

Definition 1 (Penetration depth of two objects) The
penetration depth of two (non-disjoint) objects P1 and P2
is the minimal distance that one object has to be moved in
order to nullify the intersection.

For convex polyhedra the separating axis theorem can be
used as follows: If P1 and P2 intersect we will not find
any separating axis as all projections correspond to pair-
wise overlapping line segments. Then the minimum of all
overlaps is the penetration (c.f. fig (2)).

P1

P2

Figure 2: Two penetrating polygons in R2. We see 3 of the
9 possible projections including the one that gives us the
penetration depth.

To compute the overlap we simply compare interval
pairs and δ (I1, I2) gives us the penetration of two intervals
I1 and I2:

Definition 2 Let I1 = [i0, i1] and I2 = [ j0, j1] be two
(closed) intervals in R. The penetration of I1 and I2 is
given as

δ (I1, I2) =
i1− i0

2
+

j1− j0
2
−
∣∣∣∣ i1 + i0

2
− j1 + j0

2

∣∣∣∣
The penetration of two intervals indicates the minimal
shift to glue two intervals together. If δ (I1, I2) < 0 the
intervals are disjoint and −δ (I1, I2) equals to the distance
of I1 and I2.

For boxes, the number of axes to-be-tested is small, and
hence they are applicable to this method. Only 15 axes are
possible (2 · 3 for the faces of the boxes + 3 · 3 pairwise
cross products). We give a pseudo code for the penetration
computation of two boxes here:

(1) N = {ai,b j,
ai×b j

|ai×b j|
|1≤ i, j ≤ 3}

(2) d = min
v∈N
{δ ([i0, i1], [ j0, j1]) |

i0 = min{vT x |x ∈ A}, i1 = max{vT x |x ∈ A},
j0 = min{vT y |y ∈ B}, j1 = max{vT y |y ∈ B}}

(3) if (d < 0) d = 0

In (1) we number all possible axis directions. Every box
gets projected on every axis in (2) and the minimal overlap
of two projection intervals defines the penetration. Step
(3) is only needed if A and B do not intersect. In this case
d would be negative. We may stop the computation and
return 0 as soon as two intervals with negative penetration
are found.

5 Pairwise distance

A modified version of the penetration depth algorithm can
be used to find the minimum distance of two boxes A and
B. Compared to other approaches like [3] this algorithm is
easy to implement and ever easier to describe. The running
time of this calculation increases slightly compared to the
penetration method as we need to identify all separating
axes to get the one with the maximal separation.

Given two disjoint boxes A and B with axis directions ai
and b j for 1 ≤ i, j ≤ 3. In order to compute the minimal
distance d(A,B) =min{|y−x| | x∈A,y∈B}we apply the
following steps:

(1) N = {ai,b j,
ai×b j

|ai×b j|
|1≤ i, j ≤ 3}

(2) n = argmax
v∈N

min{|vT (y−x)| |x ∈ A, y ∈ B}

(3) w.l.o.g. let nT x≤ nT y for x ∈ A, y ∈ B

(4) A′ = argmax
x∈A

nT x

(5) B′ = argmin
y∈B

nT y

(6) d(A,B) = d(A′,B′)

The algorithm again uses SAT. As the two boxes are dis-
joint there must be at least one separating axis. As there
may be more than one we calculate the direction of max-
imal separation n. The separation itself usually is not the
distance; but it leads us to the two feature points A′ and B′

that are the closest extremal points of A and B in direction
n. Their distance defines the minimal distance of A and B.

An intuition why this method works correctly on boxes
is given in the following figures: If n is the direction of one
axis (e.G. A in fig. (3)) the extremal feature B′ always is a
vertex of B whereas A′ is a point of the face with normal n.
Depending on the perpendicular dropped on the support-
ing plane of this face, A′ either lies on the boundary of this
face (vertex/edge or vertex/vertex) or in the inner part of
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B′
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B′ B′

n

A′

Figure 3: vertex-vertex, vertex-face and vertex-edge dis-
tance

A′

B′

A′
B′

n
n

Figure 4: edge-edge and vertex-edge distance

the face (vertex/face). If n is the cross product of two edge
directions (figure (4)) we are in the edge/edge case and the
extremal features A′ and B′ are points on these edges. This
case degenerates to a edge/vertex case if the perpendicular
of the two carrier lines lies outside of one edge.

6 MTD

The close relationship between the penetration calculation
and the distance computation is obvious; if the boxes are
disjoint, compute the axis of maximal separation, if they
intersect, compute the axis of minimal overlap, which is
the maximal separation, this time with negative sign.

Having the maximal separation axis n on hand, we com-
pute the maximal separation as

d = min{nT (y−x) |x ∈ A, y ∈ B}.

For negative d we are in the intersection case, and the pen-
etration is−d. Otherwise we have to compute the minimal
features of A and B along n as described in the last section
to obtain the distance. If we are looking for the MTD,
which we defined as a direction vector, then it is simply
given by d ∗n.

7 Correctness

We gave an intuition for the correctness of the computa-
tion on boxes. SAT includes the correctness of the pene-
tration computation for arbitrarily convex polygons. But
is it correct that, if the object are disjoint, the two extremal
features of A and B in direction of the maximal separation
n define the Euclidean distance? In the following we give
a proof for this. Note that this proof only relies on SAT

and hence shows the correctness of the algorithm for any
pair of convex polygons.

Lemma 2 Given two polygons A and B. Assume that the
minimal translational distance MT D(A,B) is the distance
of two points a ∈ A and b ∈ B. Further let the axis of the
maximal separation be nm. Then the maximal separation
sm = min{nT

m(y− x) |x ∈ A,y ∈ B} equals the projection
of (b−a) onto nm.

We will proof lemma (2) by use of some minor lemmas
and helper functions. We assume that B is moving towards
A along the shortest way, which of course is (b−a). Let T
be the time when B reaches A. To simplify matters we will
say that the time t is a scaled value in [0,1] (or t = ∆t

T ).
Hence t = 1 is the time when B collides with A. As we
demand that B moves only translational, we can d fine a
linear moving function for the location of point b(t) :=
b+ t(a−b) which also defines the distance vector of A
and B as

r(t) := (1− t)(a−b) = (1− t)r(0)

It is obvious hat r(0) = b and r(1) = a. We can also define
a linear function for the separation si of any separating axis
ni ∈ N as

si(t) := nT
i r(t)−hi

At this point, we do not precise the offset hi, but we can
show that it is constant over t. We also know, that the
change of separation is linear in t (or rather in (−t)). We
can further show that hi is a non-negative value because
the separation is bounded by nT

i r(t). Let us take a look at
the maximal separation sm(t).

Lemma 3 For all t ∈ [0,1] the separation sm(t) is maxi-
mal.

Proof. We pick any separation s j(t), j 6= m and ask: At
what time t ′ is s j(t ′) = sm(t ′)? A special case is s j(t) =
sm(t)∀t which occurs when the (normalized and non par-
allel) vectors n j and nm lie on the same cone surface with
height vector r(0). In the general case, the separation
is a linear function over t and we know, there can be at
most one t ′ such that s j(t ′) equals sm(t ′) which is given by
means of the definition of s j as

t ′ = 1− hi−hm

nT
j r(0)−nT

mr(0)

A division by zero can be excluded for the general case.
The nominator is always positive, because h j > hm under
the assumption that sm(0) > s j(0). Then the denominator
can be written as (si(0)− sm(0) + hi − hm) and because
si(0)< sm(0) , or (si(0)− sm(0)) =−ε with ε > 0 we get

t ′ = 1− hi−hm

hi−hm− ε
< 0
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This means, we have equality only for a negative t ′. But
we defined 0 ≤ t ′ ≤ 1. We know that si(t) is continuous
over t (and so is sm(t)). Together with sm(0) > si(0) we
can conclude sm(t)> si(t) for all 0≤ t ≤ t0. �

Lemma 4 A and B collide at time t0 iff the maximal sepa-
ration at time t0 is zero.

Proof. We show two directions.

”⇒” Assume that A and B collide at time t0 and that the
maximal separation is non-zero. This is a contradic-
tion to the SAT. Therefore, sm(t0) must be zero.

”⇐” Assume sm(t0) = 0 but A and B are disjoint. From
SAT we know that there must be another non-zero
separation. Let sk(t0) > 0 be this separation. From
lemma (3) we know that that sk(t0) < sm(t0). This
is a contradiction to the assumption that A and B are
disjoint. Hence A and B collide.

�

The proof of Lemma (2) now is just a conclusion of the
last Lemma:

Lemma 5 The maximal separation is given as sm(t) =
nT

mr(t).

Proof. We only have to show that hm = 0. But this is ob-
vious as sm must have common roots with r(t). �

And with this conclusion, the proof of Lemma (2) is obvi-
ous.

8 Experimental results

No MTD methods specialized for boxes exist that we
could compete against. Known distance algorithms for
rectangles in R3 (c.f. [3]) already need 81 distinct tests and
hence are hard to implement. Other implementation for
convex polyhedra like [8] usually use costly Minkowski
sums computation inspired by one of the major works on
MTD for convex polyhedra ([1]). In [14] we find an ef-
ficient penetration depth and distance algorithm for poly-
topes and simple quadric objects like spheres, cones and
cylinders using a variant of the Gilbert-Johnson-Keerthi
(GJK) algorithm. Compared to the author’s implementa-
tion of the GJK algorithm that is part of the SOLID library
([13]), our code runs 2.5 times faster for disjoint boxes and
5 times faster for intersecting boxes.

9 Conclusion

We gave a description for a fast and easy-to-implement
MTD algorithm for boxes. It works for all convex poly-
hedra, whereas the complexity is linear in the number of
faces and quadratic in the number of edges. But it is
eligible for primitive objects and also works for mixed

MTD computation, like box/triangle or other. The method
presented is faster than other implementations and unlike
most other implementation easy-to-implement.
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The Tidy Set: A Minimal Simplicial Set for

Computing Homology of Clique Complexes∗

Afra Zomorodian†

Abstract

In this paper, we introduce the tidy set, a minimal
simplicial set that captures the topology of a simpli-
cial complex. The tidy set is particularly effective for
computing the homology of clique complexes, such as
the Vietoris-Rips and weak witness complexes. Our
preliminary results show that tidy sets are orders of
magnitude smaller than clique complexes, giving us a
homology engine with small memory requirements.

1 Introduction

In this paper, we introduce the tidy set, a minimal
simplicial set that captures the topology of a sim-
plicial complex. Our method is effective in comput-
ing the homology of clique complexes without first
constructing them. To inspire the reader, Figure 1
compares computing homology of a point set with a
clique complex, the Vietoris-Rips complex, versus the
tidy set. At the highest scale ǫ, the standard method
constructs a simplicial complex with 46M simplices.
Our method produces a simplicial set that has the
same homology but is nearly three orders of magni-
tude smaller. With only 51K simplices, this tidy set
is even smaller than the input point set. Our method
is also five times faster than the standard method.

We are motivated by topological data analysis,
where the goal is recovering the lost topology of sam-
pled data [12]. The standard recovery process begins
by approximating the underlying space of data us-
ing a combinatorial structure. For high-dimensional
data, there are two methods popular in practice: the
Vietoris-Rips complex [6] and the weak witness com-
plex [4]. Both of these complexes are clique complexes
of certain graphs, motivating our work.

Our approach is to avoid constructing the full com-
plex by reducing it during its construction. We make
reduction techniques effective by applying them to
high-dimensional simplices only as simplices have ex-
ponential complexity. We maintain a compact rep-
resentation of the structure throughout computation
and postpone enumerating the structure and comput-

∗Research was partially supported by DARPA HR 0011-06-

1-0038, ONR N 00014-08-1-0908, and NSF CAREER CCF-

0845716.
†Department of Computer Science, Dartmouth College,
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Figure 1: Size of the Vietoris-Rips complex versus our
method, the tidy set, for set of 88,571 points in R

3 at
scale ǫ. Note: y-axis is log scale.

ing its homology as long as possible. Our methods in
this paper are analogous to those by Mrozek et al. [9].
Our work was done independently from this group
and applies to arbitrary-dimensional simplicial com-
plexes, not three-dimensional cubical complexes. The
implementation of our algorithms can process large
datasets in arbitrary dimensions, datasets that are
currently not handled by any existing software. It
is also fast, takes less memory, and produces tidy sets
that are orders of magnitude smaller, often sublinear
in input size.

2 Background

A simplicial complex is a set K of finite sets, closed
under the subset relation: If σ ∈ K and τ ⊆ σ, then
τ ∈ K. We then say that τ is a face of σ, its coface.
A simplex is maximal if it has no proper coface in
K. If σ ∈ K has cardinality |σ| = k + 1, we call σ a
k-simplex of dimension k, denoted dimσ = k. K is
d-dimensional if d = dimK = maxσ∈K dimσ.

A simplicial set generalizes a simplicial complex to
model a well-behaved topological space [3, 5, 8]. In-
formally, a simplicial set is like a simplicial complex
where simplices may be collapsed to a point, and ver-
tices may be identified. Simplicial sets allow these
operations through degenerate simplices, such as an
edge aa on vertex a. Figure 2 displays the seven pos-
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a

b c

a

d

c (3, 3, 1) (2, 2, 1) (1, 1, 1) (1, 0, 1)
β (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 1)

c (2, 3, 1) (1, 2, 1) (1, 3, 1)
β (1, 1, 0) (1, 1, 0) (1, 2, 0)

Figure 2: The 7 possible 2-simplices in a simplicial
set. The triangle is the only one allowed in a simplicial
complex. The rest have collapsed edges (top row) as
well as identified vertices (bottom row). The vector c

counts the non-degenerate simplices and the vector β

holds the Betti numbers.

sible 2-simplices in a simplicial set. Simplicial sets
may be constructed directly, but we are interested in
sets that are derived from complexes by collapses only.
Given a simplicial set X and σ ∈ X, the collapse of
σ identifies it to a single point, giving us a new sim-
plicial set X ′ = X/σ. Generally, we may also identify
vertices in constructing simplicial sets. While we do
not use vertex identifications in this paper, vertices
may be identified by collapsed neighbors.

Simplicial homology extends naturally to simpli-
cial sets. The nth homology group is Hn(X) =
ker ∂n/ im ∂n+1, where ∂n is the nth boundary opera-
tor defined appropriately for simplicial sets. Given
a subset A ⊆ X that is a simplicial set, we may
also define the relative homology groups Hn(X,A),
where we view the subset A as collapsed onto a single
point. A contractible space has the homotopy type of
a point, and it is often convenient for it to have triv-
ial homology in all dimensions, including zero. For
this, we define reduced homology groups H̃n(X), so
that H0(X) ∼= H̃0(X) ⊕ Z and Hn(X) ∼= H̃n(X) for
n > 0. We say that a space X is acyclic if it has
trivial reduced homology, i.e. H̃n(X) = 0 for all n.
Contractible spaces, such as simplices in a simplicial
complex, are acyclic.

Suppose we are given a graph G = (V,E). A clique
is a set of vertices Q ⊆ V that induces a complete sub-
graph in G. A clique is maximal if it cannot be made
any larger. The clique complex C(G) has the maxi-
mal cliques of G as its maximal simplices [7]. Since
subsets of cliques are also cliques, the clique complex
is a simplicial complex. Both the Vietoris-Rips com-
plex [6] and the weak witness complex [4], popular
methods in topological data analysis, are clique com-
plexes and motivate our work.

3 Tidy Set

In this section, we define the tidy set, a minimal sim-
plicial complex. We begin by describing two reduc-
tions that we use in deriving the tidy set. We then
describe a minimal representation for simplicial sets.
We end by showing that the tidy set is minimal with
respect to both reductions.

Our first reduction technique is trimming leaves.
Intuitively, a leaf in a simplicial complex has an
acyclic intersection with the rest of the complex, the
intersection being its “stem”. We generalize this no-
tion for simplicial sets.

Definition 1 (leaf) Let X be a simplicial set. A
simplex σ ∈ X is a leaf if for all n,

Hn(Clσ,Clσ ∩ Cl (X − Clσ)) = 0.

Here, Cl σ is σ the closure of σ, or equivalently, σ as
a simplicial complex, and Cl (X − Cl σ) is the rest of
the complex. In a simplicial complex, the definition
simplifies to our earlier intuition.

Theorem 1 (complex leaf) Let K be a simplicial

complex and σ ∈ K be a leaf. Then for all n,

H̃n(Cl σ ∩ Cl (X − Cl σ)) = 0.

Leaves may be deleted without change in homology.

Theorem 2 Let X be a simplicial set and σ ∈ X be

a leaf. Then for all n, Hn(X) ∼= Hn(Cl (X − Cl σ)).

The idea of removing leaves is not new. For instance,
it is called shaving for full-dimensional cubes within
cubical complexes [10].

Our second reduction technique is collapsing as de-
fined earlier. Collapsing changes the category of the
structure, from a simplicial complex to a simplicial
set, but sometimes, does not change its homology.

Theorem 3 (collapse) Let X be a simplicial set

and σ ∈ X. If Cl σ is acyclic, then for all n,

Hn(X) ∼= Hn(X/σ).

A key feature of our approach is that we use a min-
imal description for representing simplicial sets. We
narrow our focus to sets that are complexes with col-
lapsed maximal simplices.

Definition 2 (X) Let Q and C be disjoint sets of
maximal sets. Then X(Q,C) is the simplicial set hav-
ing the sets in Q as maximal simplices and the sets in
C as collapsed maximal simplices. We use the tuple
(Q,C) to denote X(Q,C).

Our representation is a natural extension of a mini-
mum representation for simplicial complexes, with X

extending closure as the face enumeration operator.
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Definition 3 (Q) Let K be a simplicial complex. We
define Q(K) to be the set of maximal simplices.

Theorem 4 (representation) Q(K) is a unique

representation of minimum size for K.

For general simplicial sets, the representation is not
unique or minimum sized, but makes reduction very
easy.

Definition 4 (trim & thin) Let (Q,C) denote a
simplicial set. For σ ∈ Q, we have two homology-
preserving reductions:

trim: (Q,C) 7→ (Q− {σ}, C) σ, a leaf
thin: (Q,C) 7→ (Q− {σ}, C ∪ {σ}) σ, acyclic

Note that both reductions maintain the invariant that
Q and C are disjoint. Our representation also enables
us to postpone enumeration of simplicial sets until we
require it for computing homology.

Definition 5 (tidy set) A tidy set is a trimmed,
then thinned simplicial complex.

That is, we first delete all maximal leaves in the input
simplicial complex, then collapse all maximal acyclic
simplices to get a simplicial set, as shown in Figure 3.

(a) Complex (b) Trimmed

(c) Tidy Set

Figure 3: 1-skeletons of homologous complexes: Com-
plex (a), trimmed complex (b), and tidy set (c).

The order in which we do reduction is important.
Indeed, it may seem reasonable to try trimming a tidy
set again, as we currently trim complex leaves only.
The following theorem states, however, that collapses
do not grow new leaves.

Theorem 5 (minimal) A tidy set has no leaves.

That is, it is minimal with respect to trimming and

thinning.

That is, a tidy set is a minimal model for representing
a simplicial complex.

4 Algorithms

In this section, we describe algorithms for comput-
ing the tidy set. Below, we assume that the proce-
dure Betti(X) returns the reduced Betti numbers
of a given simplicial set X in a vector by first com-
puting homology over Z2 coefficients using the gen-
eralized persistence algorithm [13]. We use the same
generic implementation of the algorithm for comput-
ing homology of both simplicial complexes and sets.
We define Maximal-Sets(K) to be the function that
returns the set of maximal simplices in K using a vari-
ant of an algorithm for maximal sets [11]. For clique
complexes, we may compute our representation di-
rectly from the input graph G as maximal simplices
are maximal cliques [1].

We define Greedy(Q,C, Is-Reducible,Reduce) to
be the procedure that reduces the simplicial set de-
noted (Q,C) by the reduction technique specified by
predicate Is-Reducible and action Reduce. The algo-
rithm maintains a set of potentially reducible sim-
plices, initializing it to Q. In each round, the al-
gorithm collects reduced simplices in set and uses
their neighbors in Q as candidates for the next round.
We use this scheme, along with another greedy thin-
ning algorithm, DFS-Thin, to define the procedure
Tidy-Set(Q), which reduces a simplicial complex
with maximal simplices Q and returns the tidy set
as a tuple (Q,C).

To trim using the greedy scheme, we define the
predicate Is-Leaf and action Trim. By Theorem 5,
we only need to trim leaves in the simplicial com-
plex, so we use the definition of complex leaves in
Theorem 1. For this reason, Trim is exactly as in
Definition 4, and C = ∅ is not used below.

Is-Leaf(σ,Q,C)

1 I ←
⋃

τ∈Q−{σ}(σ ∩ τ) � Intersection

2 M ←Maximal-Sets(I)
3 if |M | = 1 � Single set
4 then return true

5 elseif (maxτ∈M dim τ) > max-dim

6 then (QM , CM )← Tidy-Set(M) � Recurse
7 XM = X(QM , CM )
8 if χ(XM ) 6= 1
9 then return false

10 else return Betti(XM ) = 0
11 else KM ← Cl M � Direct
12 if χ(KM ) 6= 1
13 then return false

14 else return Betti(KM ) = 0

To determine if σ is a leaf in the simplicial complex,
the predicate Is-Leaf needs to check if the intersec-
tion I of σ and the rest of the complex is acyclic. The
procedure computes I and represents it with maximal
simplices M by using Maximal-Sets. If the intersec-
tion has only one maximal set, it immediately return
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true as a maximal set corresponds to a simplex which
is acyclic in a complex. If the intersection has high
dimension, it recurses by using the procedure Tidy-

Set as it now has a smaller instance of the original
problem. It then enumerate the resulting simplicial
set and checks if its reduced Betti numbers are all
zero. Otherwise, when the intersection has low di-
mension, it directly computes homology by enumer-
ating the simplicial complex. In both cases, it uses
the Euler characteristic to skip homology computa-
tion whenever possible. Based on our experiments,
we currently set max-dim to 5.

We thin the trimmed complex in two phases, cor-
responding to complex and set thinning, respectively.
Within a complex, all simplices are acyclic, but col-
lapsing any simplex may cause a neighboring simplex
to have non-trivial homology. For this reason, we at-
tempt to find a large set of non-neighboring simplices
that we may collapse at once. This idea may remind
the reader of an independent set, a set of vertices in a
graph that are pairwise non-adjacent. Indeed, vertices
in an independent set of the dual graph correspond to
non-intersecting maximal simplices. We may collect
a larger set, however.

Theorem 6 A simplex with one collapsed neighbor

remains acyclic.

Given this observation, we search the dual graph using
depth-first-search (DFS) [2] to collect a set of acyclic
simplices.

Having thinned the complex, we move into the cat-
egory of simplicial sets. To thin using the greedy
scheme, we define the predicate Is-Acyclic and ac-
tion Thin, the latter of which is directly from Defi-
nition 4. The procedure now needs to enumerate the
full simplicial set. As with trimming, we attempt to
avoid computing homology by using the Euler char-
acteristic.

Is-Acyclic(σ,Q,C)

1 Xσ ← X({σ}, C)
2 if χ(Xσ) 6= 1
3 then return false

4 else return Betti(Xσ) = 0

5 Conclusion

In this paper, we define the tidy set, a minimal simpli-
cial set, for computing homology of clique complexes,
and give algorithms for computing it. There are a
number of rich avenues for research. While we focus
on clique complexes in this paper, our work applies
to arbitrary simplicial complexes, provided we com-
pute maximal simplices efficiently. We also have not
applied our methods toward computing witness com-
plexes: We may now use large sets of landmarks for
massive datasets. We plan to extend our methods

to filtered complexes to enable computation of per-
sistence barcodes. Finally, almost every step of our
method is parallelizable by design. Having reduced
the memory requirement, parallelization is the next
key step for topological analysis of massive datasets
in high dimensions.
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