
EWCG 2005, Eindhoven, March 9–11, 2005

Delineating Boundaries for Imprecise Regions∗

Iris Reinbacher† Marc Benkert‡ Marc van Kreveld† Alexander Wolff‡

Abstract

In geographic information retrieval users use names
of geographic regions that do not have a well-defined
boundary, like Southern France. We present two ap-
proaches to compute reasonable boundaries of such
regions, based on evidence of points that are likely to
lie inside or outside this region.

1 Introduction

Geographic information retrieval is concerned with in-
formation retrieval for spatially related data, includ-
ing Web searching. Certain specialized search engines
allow queries that ask for things (hotels, museums) in
the (geographic) neighborhood of some named loca-
tion. Another typical query could specify locations
such as Central Mexico or the British Midlands. The
latter is an example of a named region for which no
exact boundaries exist. The extent of such a region is
in a sense in the minds of the people.
Since geographic queries may ask for Web pages on

castles in the British Midlands, it is still useful to have
a reasonable boundary for this imprecise region. We
would then be able to find Web pages for locations
in the British Midlands that mention castles, even if
they do not contain the words British Midlands. We
would need to store a reasonable boundary for the
British Midlands in the ontology (that stores all ge-
ographic information, including coordinates and geo-
graphic concepts) during preprocessing, and use query
time for searching in the spatial part of the combined
spatial and term index.

To determine a reasonable boundary for an impre-
cise region we can use the Web once again. The enor-
mous amount of text on all Web pages can be used
as a source of data; the idea of using the Web as a
geo-spatial database appeared before in [9, 11]. A
possible approach is using so-called trigger phrases.
For any reasonable size city in the British Midlands,
like Nottingham, it is quite likely that some Web page
contains a sentence fragment like “. . . Nottingham, a
city in the British Midlands, . . . ”, or “Nottingham is

∗This research is supported by the EU-IST Project No. IST-
2001-35047 (SPIRIT) and by the grant WO 758/4-1 of the Ger-
man Science Foundation (DFG).

†Institute of Information and Computing Sciences, Utrecht
University, { iris, marc }@cs.uu.nl

‡Fakultät für Informatik, Universität Karlsruhe,
http://i11www.ira.uka.de/people.

located in the British Midlands. . . ”. Such fragments
give a location that is most likely in the British Mid-
lands, while other cities like London or Cardiff, that
do not appear in similar sentence fragments, give loca-
tions that are not in the British Midlands. Details of
using trigger phrases to determine locations inside or
outside a region to be delineated can be found in [2].
Obviously, the process is not too reliable and false pos-
itives and false negatives are likely to occur. In the
reliable case, Alani et al. [1] give a Voronoi Diagram
based method to delineate regions.

We have arrived at the following computational
problem: given a set of “inside” points (red) and a
set of “outside” points (blue), determine a reasonable
polygon that separates the two sets well. Possible
criteria for a reasonable polygon are that it is simply-
connected and has small perimeter (but as it must still
contain most red points, it is fat and almost convex).
In computational geometry, red-blue separation al-

gorithms exist of various sorts. Red-blue separation
by a line is simply linear programming and takes
O(n) time for n points. Red-blue separation by a
line with the minimum number of misclassified points
takes O((n+ k2) log k) expected time, where k is the
number of misclassified points [4]. Other fixed separa-
tion shapes like strips, wedges, and sectors can also be
considered [3]. When polygons are the separator, then
the most natural problem is the minimum perimeter
polygon that separates the bichromatic point set. Eu-
clidean travelling salesperson can be reduced to this
problem, which makes it intractable [5]. Gudmunds-
son and Levcopoulos [7] give an O(n log n)-time al-
gorithm that finds a polygon whose perimeter is at
most O(log n) times as long as the minimum perime-
ter one. Separation by minimum link shapes received
attention as well (e.g., [10]).
In this paper we present two approaches to deter-

mine a reasonable polygon for a set of red and blue
points. The first approach, described in Section 2,
starts with a red polygon with blue points inside,
and we try to change the shape of the polygon to
get more blue points outside. The second approach,
which changes the color of points to obtain a better
shape of the polygon is presented in Section 3.

2 Adaptation Method

Let R be the set of red points, B the set of blue points,
and let n be the total number of points. In the adap-

127



21st European Workshop on Computational Geometry, 2005

tation method, we start with some simply-connected
polygon P and adapt it until all blue points inside P
are no longer inside, or the shape has to be changed
too dramatically.
For an appropriate value of α, we choose our initial

polygon P to be the largest simply-connected com-
ponent of the α-hull of the red points. This way, we
can determine a suitable initial shape and possibly
remove red outliers (the red points outside P ) in the
same step. Once we have computed P , the problem
that remains is changing P so that the blue points
are no longer inside. The resulting polygon should be
contained in P and its perimeter should be as small
as possible. In this section we discuss the problem of
making sure that no blue point remains in the inte-
rior, although in practice it may be better for the final
shape to allow some blue points to stay inside. They
would be considered misclassified.

2.1 One blue point inside P

First, we assume that there is only one blue point b
inside the polygon P . We want to determine a poly-
gon P ′ so that b is not inside, P ′ is contained in P ,
all vertices of P are not outside P ′, and the perime-
ter of P ′ is minimal. It is clear that P ′ cannot have
edges that intersect the exterior of P . We consider
two cases: the special case where only point b is in-
side P , and the more general case where P contains b
and a number of red points.

Lemma 1 The optimal polygon P ′ is a possibly de-
generate simple polygon (i.e. vertices and edges may
be repeated) (i) with b on the boundary, and (ii) which
includes all edges of P , with the exception of one edge.

2.1.1 One blue and no red points inside P

Let P be a red polygon with only one blue point b
inside. Let e = p1p2 be the edge of P that does not
appear in P ′. The endpoints p1 and p2 are connected
by a path π via b in P ′. We denote the path that leads
to the smallest perimeter of P ′ by πmin; it consists
of a shortest geodesic path between b and p1, and
between b and p2. The optimal polygon P ′ has the
same boundary as P , except that edge e is replaced
by πmin. In the optimal solution P ′, the edge e and
the shortest path πmin have the following properties:

Lemma 2 1. The path πmin is a simple path.

2. A funnel π with root b and base e can only be
minimal if e is partially visible from b.

For every two adjacent vertices pi and pi+1 of the
polygon, we compute the shortest paths connecting
them to b. The algorithm of Guibas et al. [8] can find
them in O(n) time. For each possible base e = pipi+1

and corresponding funnel, we add the length of the

a) b) c)

b b b

p1 p1 p1p2 p2 p2

Figure 1: Removing one blue point from the red α-
shape. a) The old polygon b) Computing the shortest
path c) The new polygon

two paths and subtract the length of the edge e to get
the additional length of this choice.

Theorem 3 For a simple polygon P with n vertices
and with a single point b inside, we can compute the
shortest perimeter polygon P ′ that is contained in P ,
that contains all vertices of P , and that does not have
b in its interior, in O(n) time.

2.1.2 One blue and several red points inside P

In the general case we may also have red points inside
P . Let R be the set of these red points, and assume
that its size is O(n). We need to adapt the algorithm
given before to take these red points into account. We
at first ignore all red points. We again compute all
funnels from b to every edge e of P . We get a parti-
tioning of P into O(n) funnels with disjoint interiors.
In every funnel F we do the following: If there are no
red points inside F , we store the length of the fun-
nel without its base edge e. Otherwise, we need to
find a shortest path πmin from one endpoint of e to b
and back to the other endpoint of e, such that all red
points in R still lie inside the resulting polygon P ′.
The shortest path πmin inside some funnel F with

respect to a set R ∩ F of red points consists of two
chains which, together with the base edge e, again
forms a funnel F ′. This funnel is not allowed to con-
tain points of R∩F . We need to consider all possible
ways of making such funnels. Using dynamic convex
hulls, we can obtain:

Theorem 4 For a simple polygon P with n vertices,
a single point b inside and set R of O(n) red points in-
side, we can compute the shortest perimeter polygon
P ′ that is contained in P , that contains all vertices of
P and all red points of R, and that does not have b
in its interior, in O(n log n) time.

2.2 Several blue points inside P

2.2.1 Several blue and no red points inside P

For now, we assume that P is convex and has n ver-
tices. With m< n blue points inside the red polygon

128



EWCG 2005, Eindhoven, March 9–11, 2005

P , we could try to adapt the first algorithm to com-
pute a polygon that has all blue points no longer in-
side. However, as an iterative application of this algo-
rithm may not lead to an optimal, smallest perimeter
solution, we need to find a different approach. First
we will prove some properties of an optimal solution.

Lemma 5 Let P be a convex polygon with a set B
with m blue points inside. In an optimal solution, let
B be partitioned into k subsets. Then we have:

1. Each optimal path π of a subset B′ consists of a
part of the convex hull of B′, and the two outer
tangents of B′ and some edge e of P , such that e
and π form a convex polygon.

2. No two optimal paths intersect.

It follows directly from this lemma that we need only
consider partitionings of the blue points into subsets
with disjoint convex hulls.

Lemma 6 For a set of m points in the plane, there
are O(Cm) different partitionings into subsets with
disjoint convex hulls, for some constant C.

It is easy to see that every subset Bi chooses its opti-
mal edge independently of all other sets. We give the
following algorithm.

Let P = {B1, . . . , Bk} be a partitioning of the m
blue points inside the polygon P into k subsets with
disjoint convex hulls. For each Bi and every edge e
of P we determine their outer tangents and compute
the length of the shortest path. We store the optimal
configuration with the shortest added length for P.
We do this for every possible partitioning P of the
blue points inside P into subsets with disjoint convex
hulls. Finally, we generate the polygon P ′ by replac-
ing the appropriate edges of P with the optimal paths
for the groups in the optimal partitioning.

Theorem 7 For a convex polygon P with n vertices
and m blue points inside, we can compute a minimum
perimeter polygon P ′ that has no blue points in the
interior and no vertices of P in the exterior, in O(Cm ·
n) time, for some constant C.

In the case of a simple polygon P , we generate all pos-
sibleO(Cm log m) partitionings of them blue points in-
side P . However, the properties of an optimal solution
as well as the algorithm to find it, remain essentially
the same. We can state:

Theorem 8 For a simple polygon P with n vertices
and m blue points inside, we can compute a minimum
perimeter polygon P ′ that is contained in P , has no
blue points in the interior and no vertices of P in the
exterior, in O(Cm log m ·n) time, for some constant C.

3 Recoloring methods

In this section we present the recoloring approach.
We are given a set P of n points, each of which is
either red or blue. We first compute the Delaunay
Triangulation DT(P ) of P . In DT(P ), we color edges
red if they connect two red points, blue if they connect
two blue points, and green otherwise. A red point
is incident only to red and green edges, and a blue
point is incident only to blue and green edges. We
will recolor a point if it is surrounded by points of the
other color. We define for each point its green angle:

Definition 1 Let p ∈ P and let the edges of DT(P )
be colored as above. Then the green angle φ of p is

• 360◦, if p is only incident to green edges,

• the maximum turning angle between two or more
radially consecutive incident green edges,

• 0◦, if p has at most one radially consecutive inci-
dent green edge (or no incident green edges).

We recolor points only if their green angle φ is at
least some threshold value Φ ≥ 180◦; a suitable value
can be found empirically. After the algorithm has
terminated, we define the regions as follows. Let M
be the set of midpoints of the green edges. Then, each
Delaunay triangle contains either no or two points of
M . For each triangle that contains two points of M ,
we connect them by a straight line segment. They
define the boundary between the red and the blue
region. Before we present specific recoloring schemes,
we make the following basic observation.

Observation 1 If we can recolor a blue point to be
red, then we do not destroy this option if we first
recolor other blue points to be red. If we can recolor
a red point to be blue, then we do not destroy this
option if we first recolor other red points to be blue.

In the preferential recoloring scheme, we first recolor
all blue points with green angle φ ≥ Φ red, and then
all red points with green angle φ ≥ Φ blue. This
scheme has linear running time, however, it is not fair
and therefore not satisfactory.

3.1 The Angle-and-Perimeter Scheme

In the angle-and-perimeter scheme, we require that
every recoloring decreases the perimeter of the sepa-
rating polygon(s). Also, only points with green angle
≥ Φ (Φ ≥ 180◦) will be recolored. When there are
several choices of recoloring a point, we select the one
that has the largest green angle.

Theorem 9 The number of recolorings in the angle-
and-perimeter recoloring algorithm is at least Ω(n2)
and at most 2n − 1 in the worst case.

129



21st European Workshop on Computational Geometry, 2005

The condition that recoloring is only allowed if it de-
creases the separation perimeter is needed, otherwise
the separation perimeter may increase. Every recolor-
ing implies the recoloring of all edges incident to the
recolored point and updating its green angle as well as
the green angle of all its neighbors and the perimeter
of the polygons. We summarize:

Theorem 10 The running time for the angle-and-
perimeter recoloring algorithm is O(n ·Z), where Z ≤
2n − 1 denotes the maximum number of recolorings.

3.2 The Angle-and-Degree Scheme

In the angle-and-degree scheme we require that a
point p may only be recolored if the number of green
edges incident to it goes down. This requirement is
used in conjuction to the green angle ≥ Φ condition
for p. The degree condition gives a higher impor-
tance to the number of witnesses for the recoloring of
a point. We need the following definition.

Definition 2 A point p is a good neighbor of p′ if p
and p′ are connected and have the same color, other-
wise p is a bad neighbor of p′. Let δ(p), the δ-value of
p, be the difference between the numbers of bad and
good neighbors of p.

We recolor a point p if its green angle φ is at least
some threshold Φ and its δ-value is larger than some
threshold δ0 ≥ 1. This implies the recoloring of all
edges incident to p and updating its green angle as
well as the δ-value of p and all its neighbors. We can
state the following two theorems:

Theorem 11 The number of recolorings done in the
angle-and-degree recoloring algorithm is Θ(n).

Theorem 12 The running time for the angle-and-
degree recoloring algorithm is O(∆ · Z), where Z =
Θ(n) denotes the number of recolorings and ∆ is the
maximum degree in the Delaunay triangulation.

4 Conclusions

This paper discussed algorithmic problems related
to determining a reasonable boundary of a polygon,
based on a set of points assumed to be inside (red),
and a set of points assumed to be outside (blue). We
presented two basic approaches. The first was to for-
mulate the problem as a minimum perimeter polygon
computation, based on an initial red polygon and one
or more blue points that should not be inside. For
the case of one point in the polygon we presented a
linear time algorithm, and also O(n log n) time algo-
rithm if there are also points that must stay inside.
For the case of m points inside the polygon, we pre-
sented fixed-parameter tractable algorithms running

in O(Cm ·n) and O(Cm log m ·n) time, for convex and
simple polygons, respectively.
The second approach involved changing the color,

or inside-outside classification of points if they are sur-
rounded by points of the other color. We proved a few
lower and upper bounds on the number of recolorings
for different criteria of recoloring. A remaining open
problem is whether the angle-only version of this re-
coloring method terminates or not.
Another open problem is computing a minimum

perimeter polygon for m blue points inside and n red
points that must stay inside. Can a fixed-parameter
tractable algorithm be given in this case as well?

Acknowledgements: Iris Reinbacher was also
supported by a travel grant of the Netherlands Or-
ganization for Scientific Research (NWO). We thank
Subodh Vaid, Hui Ma, and Markus Völker for imple-
menting the algorithms.

References

[1] H. Alani, C. Jones, and D. Tudhope. Voronoi-based
region approximation for geographical information
retrieval with gazetteers. Int. J. Geographical Infor-
mation Science, 15(4):287–306, 2001.

[2] A. Arampatzis, M. van Kreveld, I. Reinbacher,
C. Jones, S. Vaid, P. Clough, H. Joho, and M. Sander-
son. Web-based delineation of imprecise regions.
manuscript, 2004.

[3] E. M. Arkin, F. Hurtado, J. S. B. Mitchell, C. Seara,
and S. S. Skiena. Some separability problems in the
plane. In Abstracts EWCG 2000, pages 51–54.

[4] T. M. Chan. Low-dimensional linear programming
with violations. In Proc. FOCS 2002, pages 570–579.

[5] P. Eades and D. Rappaport. The complexity of
computing minimum separating polygons. Pattern
Recogn. Lett., 14:715–718, 1993.

[6] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel.
On the shape of a set of points in the plane. IEEE
Trans. Inform. Theory, IT-29:551–559, 1983.

[7] J. Gudmundsson and C. Levcopoulos. A fast appro-
ximation algorithm for TSP with neighborhoods and
red-blue separation. LNCS, 1627:473–482, 1999.

[8] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir,
and R. E. Tarjan. Linear-time algorithms for visi-
bility and shortest path problems inside triangulated
simple polygons. Algorithmica, 2:209–233, 1987.

[9] A. Markowetz, T. Brinkhoff, and B. Seeger. Ex-
ploiting the internet as a geospatial database. In
Workshop on Next Generation Geospatial Informa-
tion, 2003.

[10] C. S. Mata and J. S. B. Mitchell. Approximation al-
gorithms for geometric tour and network design prob-
lems (extended abstract). In Proc. SoCG 1995, pages
360–369.

[11] Y. Morimoto, M. Aono, M. Houle, and K. McCurley.
Extracting spatial knowledge from the web. In Proc.
SAINT’03. 2003.

130




