Visualization of Algebraic Surfaces
Using the DEX Model

Rudolf Eisenstöck, RISC-Linz
Johannes Kepler University
Altenberger Straße 69, A-4040 Linz, Austria

Extended Abstract

The realistic and efficient visualization of algebraic surfaces together with basic operations (e.g. the intersection of two surfaces) is very helpful for the study of algebraic surfaces. An algebraic surface usually is displayed as a line drawing. For a realistic visualization it is desirable to generate a shaded image of the surface. Our idea was to represent the surface with a geometric modeler. In this way not only an efficient visualization can be done but also the advantages of the modeler like zooming, several windows with different view points, and different light sources can be used.

1 The DEX Model

The dEX model has been developed in [van Hook, 1986] and further been investigated in [Heinzelreiter, 1990] and [Heinzelreiter, 1992]. The name dEX is - in keeping convention with the names pixel (for picture element) and voxel (for volume element) - the abbreviation for depth element.

This modeling scheme decomposes an object as follows: the object to be encoded is intersected by a set of parallel, equidistant rays. Two intersection points defining a line segment that lies fully inside the object make up a dEX. All dEXs belonging to one ray are sorted and concatenated to a dEX list. All these dEX lists are organized in a dEX matrix. Figure 1 shows the dEX encoding of an object.

Generally the dEX list is a list of intervals. In case of a surface the intervals have length zero, i.e. collapse to single points. For the visualization of the internal model only the endpoints are relevant. So no problems arise when an interval collapses to a point.

The boolean operations on dEX encoded objects are reduced to the corresponding operations on sets of intervals. Because of the approximation that is done in the modeling step one has to care about the errors the endpoints of the intervals are afflicted with.
2 Encoding a Surface into the Dexel Model

To encode an object into the dexel model means to intersect the object with a set of parallel straight lines. In case that the object is an algebraic surface we have two possibilities for description.

* Surface Given in Implicit Form:
 In this case we specify the straight line \(L \) in explicit form:
 \[
 \begin{align*}
 x &= f(t), \\
 y &= g(t), \\
 z &= h(t),
 \end{align*}
 \]
 where \(f, g, h \) are polynomials linear in \(t \).
 Substituting \(L \) into \(S \) yields
 \[
 F(f(t), g(t), h(t)) = 0.
 \]
 This is a polynomial equation in one variable. Its degree is equal to the total degree of \(S \). Solving the equation for \(t \) and substituting it into \(L \) gives the solutions for \(x, y, z \).
 In case that \(F(f(t), g(t), h(t)) \) is identically 0 (i.e. all \((x, y, z) \in \mathbb{R}^3 \) are solutions) the dexel is the whole straight line \(L \).

* Surface Given in Parameter Form:
 In this case we specify the straight line \(L \) in implicit form, i.e. as the intersection of two planes:
 \[
 \begin{align*}
 U(x, y, z) &= 0, \\
 V(x, y, z) &= 0,
 \end{align*}
 \]
 where \(U, V \) are polynomials of degree 1.
Substituting S into L yields

\[
\begin{align*}
U & \left(\frac{f_1(s, t)}{f_2(s, t)}, \frac{g_1(s, t)}{g_2(s, t)}, \frac{h_1(s, t)}{h_2(s, t)} \right) = 0, \\
V & \left(\frac{f_1(s, t)}{f_2(s, t)}, \frac{g_1(s, t)}{g_2(s, t)}, \frac{h_1(s, t)}{h_2(s, t)} \right) = 0.
\end{align*}
\]

A possibility to compute the solutions of these two equations in s and t is to use Gröbner bases. In the case that the system has only finitely many solutions, the Gröbner basis contains one polynomial depending only on one of the variables. Otherwise either the whole line L is the dextral or L does not intersect S. (The two latter cases can also distinguished by the form of the Gröbner basis.)

To get a realistic visualization a grid of 200 x 200 lines is necessary. Therefore 40000 lines have to be intersected with the surface. So some effort has to be undertaken on an efficient intersection procedure. Since our first aim was to show the suitability of the model for visualizing algebraic surfaces, we restricted to surfaces of total degree 3.

The encoding of a surface is done w.r.t. a specific view point. By the view point a view plane is defined (the coordinate vector of the view point is the vector normal to the view plane). All rays are normal to the view plane. The following picture gives an example for a dextral encoded surface. The surface in implicit form is: \(x^2 - y - z^2 = 0\).
3 Applications of the Dixel Model

- Modeling of objects that may change their shape.
 For the visual simulation of NC-machining arise two requirements for the internal model:
 Fast performance of boolean operations and efficient visualization. These are two of the
 features of the dixel model.

- Visualization of algebraic surfaces.
 As described above the dixel model is well suited for modeling and visualizing algebraic
 surfaces [Eisenstöck, 1992].

- Image processing.
 Also for image processing-problems the dixel model is suited. The problem:
 given: a set of points in three dimensional space, taken by two video cameras
 find: a solid model of the scenario defined by the points
 is solvable by using dixels. The given points can be interpreted as endpoints of dixels.

4 Bibliography

[Eisenstöck, 1992]
Rudolf Eisenstöck
Visualization of Algebraic Surfaces Using the Dixel Model

[Heinzlreier, 1990]
Johann Heinzlreiter
3D Dynamic Modeling Using the Dixel Approach
Technical Report, RISC-Linz, J.Kepler University, A-4040 Linz, Austria

[Heinzlreiter, 1992]
Johann Heinzlreiter
Simulation and Algorithmic Verification of NC-Machining
Ph.D.thesis, RISC-Linz, J.Kepler University, A-4040 Linz, Austria;
in preparation.

[van Hook, 1986]
Tim van Hook
Real-Time Shaded NC Milling Display
In David C. Evans and Russell J. Athay, editors, Computer Graphics, volume 20